The United Nations
University

UNU/IST

International Institute for
Software Technology

Discrete Time Network Algebra
for a Semantic Foundation of SDL

J.A. Bergstra, C.A. Middelburg, R. Soricut

October 1997

UNU/IIST Report No. 98

UNU/IIST

UNU/IIST enables developing countries to attain self-reliance in software technology by: (i) their own
development of high integrity computing systems, (ii) highest level post-graduate university teaching, (iii)
international level research, and, through the above, (iv) use of as sophisticated software as reasonable.

UNU/IIST contributes through: (a) advanced, joint industry—university advanced development projects
in which rigorous techniques supported by semantics-based tools are applied in case studies to software
systems development, (b) own and joint university and academy institute research in which new techniques
for (1) application domain and computing platform modelling, (2) requirements capture, and (3) software
design & programming are being investigated, (c) advanced, post-graduate and post-doctoral level courses
which typically teach Design Calculi oriented software development techniques, (d) events [panels, task
forces, workshops and symposia], and (e) dissemination.

Application-wise, the advanced development projects presently focus on software to support large-scale
infrastructure systems such as transport systems (railways, airlines, air traffic, etc.), manufacturing in-
dustries, public administration, telecommunications, etc., and are thus aligned with UN and International
Aid System concerns. UNU/IIST is a leading software technology centre in the area of infrastructure soft-
ware development.

UNU/IIST is also a leading research centre in the area of Duration Calculi, i.e. techniques applicable to real-
time, reactive, hybrid & safety critical systems. The research projects parallel and support the advanced
development projects.

At present, the technical focus of UNU/IIST in all of the above is on applying, teaching, research-
ing, and disseminating Design Calculi oriented techniques and tools for trustworthy software develop-
ment. UNU/IIST currently emphasises techniques that permit proper development steps and interfaces.
UNU/IIST also endeavours to promulgate sound project and product management principles.

UNU/IIST’s primary dissemination strategy is to act as a clearing house for reports from research and
technology centres in industrial countries to industries and academic institutions in developing coun-
tries. At present more than 200 institutions worldwide contribute to UNU/IIST’s report collection while
UNU/IIST at the same time subscribes to more than 125 international scientific and technical journals.
Information on reports received (and produced) and on journal articles is to be disseminated regularly
to developing country centres — which are then free to order a reasonable number of report and article
copies from UNU/IIST.

Dines Bjgrner, Director — 02.7.1992 — 01.7.1997

Zhou Chaochen, Director — 01.8.1997 — 31.7.2001

UNU/IIST Reports are either Research, Technical, Compendia or .Administrative reports:

Research Report e Technical Report e Compendium e Administrative Report

K&

NS . .
gla The United Nations
2 University

UNU/IST

International Institute for
Software Technology

P.O. Box 3058
Macau

Discrete Time Network Algebra
for a Semantic Foundation of SDL

J.A. Bergstra, C.A. Middelburg, R. Soricut

Abstract

We propose a process algebra model of asynchronous dataflow networks as a semantic foundation
for the specification language SDL. The model, which extends a model of network algebra, is
close to the concepts around which SDL has been set up. It is able to cover all behavioural
aspects of SDL except process creation. More abstract models are derived as well.

Jan Bergstra is a Professor of Programming and Software Engineering at the University of Am-
sterdam and a Professor of Applied Logic at Utrecht University, both in the Netherlands. His
research interest is in mathematical aspects of software and system development, in particular
in the design of algebras that can contribute to a better understanding of the relevant issues at a
conceptual level. He is perhaps best known for his contributions to the field of process algebra.
E-mail: janb@fwi.uva.nl

Kees Middelburg is a Senior Research Fellow at UNU/IIST. He is on a two year leave (1996-1997)
from KPN Research and Utrecht University, the Netherlands, where he is a Senior Computer Sci-
entist and a Professor of Applied Logic, respectively. His research interest is in formal techniques
for the development of software for reactive and distributed systems, including related subjects
such as semantics of specification languages and concurrency theory. E-mail: cam@iist.unu.edu

Radu Soricut is a Fellow at UNU/IIST. He is on a nine month leave (September 1996-May

1997) from Bucharest University, Romania, where he is a last year undergraduate student. His
research interest is in concurrency theory and logics for computer science. E-mail: rs@iist.unu.edu

Copyright © 1997 by UNU/IIST, J.A. Bergstra, C.A. Middelburg, R. Soricut

Contents

Contents
1 Introduction 1
2 Overview of ¢SDL 2
3 Overview of network algebra 4
3.1 General e 4
3.2 Asynchronous dataflow networks oL 5
4 Process algebra preliminaries 6
5 Basic network algebra 8
5.1 Signature and axioms of BNA L oo oo 8
5.2 A general process algebra model of BNA 00000 9
6 Asynchronous dataflow networks 12
6.1 Process algebra model for time-free asynchronous dataflow 12
6.2 Process algebra model for timed asynchronous dataflow 13
6.3 Timed asynchronous dataflow networks for SDL.. 15
7 Dataflow networks for SDL 17
7.1 Named components o e e e 17
7.2 Composition of named componentso 21
7.3 Abstract semantics for SDL networks 23
8 Conclusions 25
A Proofs of main lemmas 27

Report No. 98, October 1997

UNU/IIST, P.O. Box 3058, Macau

Introduction 1

1 Introduction

In telecommunications, the language SDL (Specification and Description Language) [24] is widely
used for describing structure and behaviour of generally complex telecommunication systems,
including switching systems, services and protocols, at different levels of abstraction. The in-
trinsic highly reactive and distributed nature of the systems developed in telecommunications
demands more advanced validation of SDL specifications than currently possible, e.g. validation
giving considerations to time dependent behaviour. Besides, the increasing complexity of the
systems brings along a growing need to use formal verification to justify design steps. Prerequi-
sites for advanced validation and formal verification is a dramatically simplified version of SDL
and an adequate semantics for it. The language ¢SDL [12], has been carefully chosen to meet
these requirements.

In [14], network algebra is proposed as a general algebraic setting for the description and analysis
of dataflow networks. Such networks represent systems as networks of nodes that consume and
produce data and channels between them to pass the data through. Assuming that the compo-
nents have a fixed number of input and output ports, networks can be built from their compo-
nents and (possibly branching) connections using parallel composition, sequential composition
and feedback. The connections needed are at least the identity and transposition connections,
but branching connections may also be needed for specific classes of networks. An equational
theory concerning networks that can be built using the above-mentioned operations with only
the identity and transposition constants for connections, called BNA (Basic Network Algebra),
is presented in [14]. In addition to BNA, an extension for asynchronous dataflow networks is
presented. A process algebra model is given as well, thus providing for a very straightforward
connection between asynchronous dataflow networks and processes.

In this paper, we adapt that model, that covers the time-free case, to discrete time asynchronous
dataflow. We add some atomic components to deal with SDL-like dataflow, viz. mergers, distrib-
utors and timers. They are to be used in composing components that correspond to processes
in ¢SDL. We also define an operation, corresponding to the kind of composition of processes
within a system needed for ¢SDL, in terms of the connections for discrete time asynchronous
dataflow and the parallel composition, sequential composition and feedback operations. Thus we
obtain a model that is close to the concepts around which SDL has been set up and well suited
as the underlying model for a compositional abstract semantics of ¢SDL. Such a semantics is
expected to be a suitable starting point for devising proof rules for (SDL. From the process
algebra model, more abstract models similar to Kahn’s history model [19] and Jonsson’s trace
model [18] are derived. In our opinion, this paper provides convincing mathematical arguments
in favour of the choice of concepts concerning storage, communication and timing around which
SDL has been set up.

The paper starts with overviews of ¢SDL (Section 2) and network algebra (Section 3), and some
process algebra preliminaries (Section 4). A general process algebra model for BNA is presented
in Section b, which is specialised for asynchronous dataflow, timed asynchronous dataflow and
further to SDL-like dataflow networks in Section 6. The latter is used in Section 7 in order to

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Overview of ¢SDL 2

define SDL dataflow networks, using a derived operator which acts as a constructor for these
networks. More abstract semantics for SDL networks are also proposed.

2 Overview of ¢SDL

The language ¢SDL focuses on the behavioural aspects of SDL. The structural aspects of SDL
are mostly of a static nature and therefore not very relevant from a semantic point of view.
The part of SDL that deals with the specification of abstract data types is well understood.
Actually, apart from the data type definitions, SDL system definitions can be transformed to
@SDL system definitions.

In this section, we give an overview of the concepts around which pSDL has been built up.
Some peculiar details, inherited from full SDL, are left out to improve the comprehensibility
of the overview. These details are, however, made mention of in [12], where a process algebra
semantics of ¢SDL is presented.

First of all, the ¢SDL view of a system is explained in broad outline. Basically, a system
consists of processes which communicate with each other and the environment by sending and
receiving signals via signal routes. A process proceeds in parallel with the other processes in
the system and communicates with these processes in an asynchronous manner. This means
that a process sending a signal does not wait until the receiving process consumes it, but it
proceeds immediately. A process may also use local variables for storage of values. A variable is
associated with a value that may change by assigning a new value to it. A variable can only be
assigned new values by the process to which it is local, but it may be viewed by other processes.
Processes can be distinguished by unique addresses, called pid values (process identification
values), which they get with their creation.

A signal can be sent from the environment to a process, from a process to the environment
or from a process to a process. A signal may carry values to be passed from the sender to the
receiver; on consumption of the signal, these values are assigned to local variables of the receiver.
A signal route is a unidirectional connection between the processes of two types, or between the
processes of one type and the environment, for conveying signals. A signal route may contain
a channel! Signals that must pass through a channel are delayed, but signals always leave a
channel in the order in which they have entered it. Thus a signal route is a communication path
for sending signals, with or without a delay. If a signal is sent to a process via a signal route
that does not contain a channel, it will be instantaneously delivered to that process. Otherwise
there may be an arbitrary transmission delay. A channel may be contained in more than one
signal route.

A process is either in a state or making a transition to another state. Besides, when a signal

!The original channels from full SDL have been merged with signal routes, but the term channel is reused in
@SDL.

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Overview of ¢SDL 3

arrives at a process, it is put into the unique input queue associated with the process until it is
consumed by the process. The states of a process are the points in its behaviour where a signal
may be consumed. However, a state may have signals that have to be saved, i.e. withhold from
being consumed in that state. The signal consumed in a state of a process is the first one in
its input queue that has not to be saved for that state. If there is no signal to consume, the
process waits until there is a signal to consume. So if a process is in a state, it is either waiting
to consume a signal or consuming a signal.

A transition from a state of a process is initiated by the consumption of a signal, unless it is
a spontaneous transition. A transition is made by performing certain actions: signals may be
sent, variables may be assigned new values, new processes may be created and timers may be
set and reset. A transition may at some stage also take one of a number of branches, but it will
eventually come to an end and bring the process to a next state or to its termination.

A timer can be set which sends at its expiration time a signal to the process setting it. A timer
is identified with the type and carried values of the signal it sends on expiration. Thus an active
timer can be set to a new time or reset; if this is done between the sending of the signal noticing
expiration and its consumption, the signal is removed from the input queue concerned. A timer
is de-activated when it is reset or the signal it sends on expiration is consumed.

The value of expressions in ¢SDL may vary according to the last values assigned to variables,
including local variables of other processes. It may also depend on the system state, e.g. on
timers being active or the system time.

In Fig. 1, we give a small example to illustrate how time related behavioural aspects of systems
can be specified in ¢SDL. The example concerns the control component of a simple telephone
answering machine. The specification is due to Mauw [21]. It is obvious that the behaviour of
the control component of an telephone answering machine is time dependent; e.g. the controller
should not start the answering immediately when an incoming call is detected.

The simplifications that have been made in ¢SDL with respect to full SDL can be summarised
as follows:

blocks are removed and consequently channels and signal routes are merged;
variables are treated more liberal: all variables can be viewed freely;

timer setting is regarded as just a special use of signals;

timer setting is based on discrete time.

Besides, ¢SDL does not deal with the specification of abstract data types. In this paper, timer
setting will be based on relative discrete time.

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Overview of network algebra

system AnsweringControl

signal inccall;
signal endcall;
signal offhook;
signal onhook;
signal beep;
signal rcvlifted;
signal playmsg;
signal endmsg;
signal startrec;
signal stoprec;
signal wtimer;
signal rtimer;

signalroute fromnetwork from env to AMC
with inccall, endcall;

signalroute tonetwork from AMC to env
with offhook, onhook, beep;

signalroute fromtelephone from env to AMC
with rcvlifted;

signalroute torecorder from AMC to env
with playmsg, startrec, stoprec;

signalroute fromrecorder from env to AMC
with endmsg;

process AMC
start;
nextstate begin;
state begin;
input inccall;
set (now+10,wtimer);

state waiting;
input endcall;
reset(wtimer);
nextstate begin;
input rcvlifted;
reset (wtimer);
nextstate begin;
input wtimer;
output offhook via tonetwork;
output playmsg via torecorder;
nextstate answering;
state answering;
input endcall;
nextstate end;
input endmsg;
output beep via tonetwork;
output startrec via torecorder;
set (now+30,rtimer);
nextstate recording;
state recording;
input endcall;
reset(rtimer);
output stoprec via torecorder;
nextstate end;
input rtimer;
output stoprec via torecorder;
nextstate end;
state end;
input none;
output onhook via tonetwork;
nextstate begin;

nextstate waiting; endprocess;
endsystem;

Figure 1: An answering machine controller in SDL

3 Overview of network algebra

This section gives an idea of what network algebra is. We refer to [13, 14] for extended treat-
ments. The meaning of its operations and constants is explained informally making use of a
graphical representation of networks. Besides, asynchronous dataflow networks are presented as
a specific class of networks.

3.1 General

In the first place, the meaning of the operations and constants of BNA (4, o, 1, | and X) is
explained. Following, the meaning of additional constants for branching connections is explained.

It is convenient to use, in addition to the operations and constants of BNA, the extensions 1™,
I, and ™X" of the feedback operation and the identity and transposition constants. These ex-
tensions are defined by the axioms R5-R6, B6 and B8-B9, respectively, of BNA (see Section 5.1,
Table 1). They are called the block extensions of the feedback operation and these constants.
The block extensions of additional constants for branching connections can be defined in the

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Overview of network algebra 5

same vein.

In Fig. 2, the meaning of the operations and constants of BNA (including the block extensions)
is illustrated by means of a graphical representation of networks. We write f : kK — [to indicate

rbedess
bl L pebebebeo bl 9 l ”””” | ‘ ‘ ’ X
] o] L] 0 Lo
] Iy] (R o] H e g
f:3 -1 g2-3 N T o
f+#+g:5—~4 gof 2—=1 gl:i1—=2

Figure 2: Operations and constants of BNA

that network f has k input ports and [output ports; k — [is called the sort of f. The input
ports are numbered 1, ...,k and the output ports 1,...,l. In the graphical representation, they
are considered to be numbered from left to right. The networks are drawn with the flow moving
from top to bottom. Note that the symbols for the feedback operation and the constants fit
with this graphical representation.

3.2 Asynchronous dataflow networks

In the case of dataflow networks, the components of a network are also called cells. The identity
connections are called wires and the transposition connections are viewed as crossing wires. The
cells are interpreted as processes that consume data at their input ports, compute new data,
deliver the new data at their output ports, and then start over again. The sequences of data
consumed or produced by the cells of a dataflow network are called streams. The wires are
interpreted as queues of some kind.

Basic to asynchronous dataflow is that computation is driven by the arrival of the data needed.
The underlying idea of asynchronous dataflow is that computation as well as storage and trans-
port of data take a good deal of time. Cells may independently consume data from their input
ports, compute new data, and deliver the new data at their output ports. This means that there
may be data produced by some cells but not yet consumed by other cells. Therefore the wires
have to be able to buffer an arbitrary amount of data.

Dataflow networks also need branching connections. Because there is a flow of data which is
everywhere in the network, the interpretation of the branching connections is not immediately
clear. Asynchronous dataflow reflects the idea of intermittent flows of data which go in one
direction at branchings well. This idea corresponds to the split/merge interpretation. We
will use the symbols A and ¥ for split and merge, respectively. Dataflow networks have been
extensively studied, see e.g. [15, 16, 18, 19, 20, 22].

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Process algebra preliminaries 6

4 Process algebra preliminaries

This section gives a brief summary of the ingredients of process algebra which make up the basis
for the process algebra models presented in the following sections. We will suppose that the
reader is familiar with them. Appropriate references to the literature are included.

We will make use of ACP, introduced in [10], extended with the silent step 7 and the abstrac-
tion operator 7; for abstraction. Semantically, we adopt the approach to abstraction, originally
proposed for ACP in [17], which is based on branching bisimulation. ACP with this kind of
abstraction is called ACP”. In ACP with abstraction, processes can be composed by sequential
composition, written P-(Q), alternative composition, written P+ @, parallel composition, written
P || Q, encapsulation, written Jy(P), and abstraction, written 7;(P). We will also use the fol-
lowing abbreviation. Let (P;);cs be an indexed set of process expressions where J = {i1,...,ip}.
Then, we write > ;. ; P; for P;, +...+ P;,, and ||jey P; for P;, || ... | P;,. We further use the
convention that Y, ; P; and ||;cs P; stand for § if J = . For a systematic introduction to ACP,
the reader is referred to [8].

Further we will use the following extensions:

renaming We need the possibility of renaming actions. We will use the renaming operator p,
added to ACP in [1]. Here f is a function that renames actions into actions, é or 7. The
expression pf(P) denotes the process P with every occurrence of an action a replaced by
f(a). So the most crucial equation from the defining equations of the renaming operator
is py(a) = f(a).

conditionals We will use the two-armed conditional operator </er> as in [3]. The expression
P b Q, is to be read as ifbthen Pelse Q. The defining equations are P <t>>@Q) = P and
P <f>Q = Q. Besides, we will use the one-armed conditional operator :— as in [3]. It is
defined by b:— P = P <1b> 4.

iteration We will also use the binary version of Kleene’s star operator *, added to ACP in [9],
with the defining equation P* Q = P - (P * Q) + Q. The behaviour of P * Q is zero or
more repetitions of P followed by Q.

early input and process prefixing We will additionally use early input action prefixing and
the extension of this binding construct to process prefixing, both added to ACP in [4].
Early input action prefixing is defined by the equation er;(z) ; P = > 4cp 74(d) - Pld/x].
We use the extension to processes mainly to express parallel input: (eri(zi) | ... ||
ern(zy)) ; P. We have:

(eri(z1) | era(w2)) s P = Y ri(da) - (era(w2) 5 Pldi/z1))

di€D

+ Z ra(ds) - (er1(z1) ; P[d2/x2])

ds€D

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Process algebra preliminaries 7

(eri(z1) || era(w2) [| era(za)) s P =) ra(dr) - ((era(ws) || ers(ws)) ; Plds/1])

d1€D

+Y ra(da) - ((era(21) || era(ws)) ; Plda/wa])
do€D

+ Y rs(ds) - ((er1(21) || era(w2)) ; Pds/ws])
d3z€D

etc.

communication free merge We will not only use the merge operator (||) of ACP, but also the
communication free merge operator (||). The communication free merge operator can be
viewed as a special instance of the synchronisation merge operator ||z of CSP, also added
to ACP in [4], viz. the instance for H =). It is defined by P | @ =P || @ + Q || P,
where || is defined as || except that a- P ||| @ = a- (P ||| Q). Communication free merge
can also be expressed in terms of parallel composition, encapsulation and renaming.

priority The priority operator # was originally introduced in [7]. It uses a partial order on
the atomic actions which is used to choose from the actions with the highest priority in
alternative composition. In order to describe it, an auxiliary operator < (unless) is needed.
The crucial equation is §(z +y) = 6(x) <y +0(y) <x. Here < behaves like a filter: a<b =a
unless a < b holds in the partial ordering; in that case a <b = 4.

discrete time We need a discrete time extension of ACP with relative timing. We will use the
extension introduced in [6], called ACPgq,, with abstraction as added to it in [5]. Here we
give a brief summary. We refer to [6] and [5] for further details on ACPg4,y and ACP},,
respectively.

Time is divided into slices representing time intervals of a length which corresponds to the
time unit used. We will use the constants a, a (for each a in some given set of actions), T
and 4, as well as the delay operator or. The process a is a performed in any time slice
and a is a performed in the current time slice. Similarly, is a silent step performed in
the current time slice and J is a deadlock in the current time slice. The process orel(P) is
P delayed one time slice. In this paper, we use the notations from [2]. In [6], the notations
ats(a), cts(a) and cts(d) are used instead of a, @ and §, respectively. Likewise, in [5], the
notation cts(7) is used instead of 7. The process a is defined in terms g and oy by the
equation a = a + ove(a). In a parallel composition P || ... || P, the transition to the next
time slice is a simultaneous transition of each of the P;s. For example, ¢ || orel(b) will never

perform b because § can neither be delayed nor performed, so J || ovel(b) = §. However,

a H O're|(b) =a- Urel(b)'

We will also use the above-mentioned extensions of ACP in the setting of ACPg4,¢. The
integration of renaming, iteration, communication free merge and priority in the discrete
time setting is obvious. The integration of early input and process prefixing may seem less
clear at first sight, but the relevant equations are simply er (z) ; P = > 4cpr;(d) - Pld/z]
and orel(P) ; Q@ = orel(P 5 Q).

conditionals and discrete time The discrete time extension requires a new conditional oper-
ator. This is the two-armed sliced conditional operator <ek>. The expression P<be-() can

be expressed using a one-armed sliced conditional operator: P<bp-Q =b:— P+ -b'— Q,

where (t ‘= P) = P and (f :— P) = §. The new operator requires an additional axiom
(due to Yaroslav Usenko): orei(P) |l (Q<€¢E-R) = (0re(P) || Q)< (0ve(P) | R).

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Basic network algebra 8

5 Basic network algebra

In this section, BNA is presented. First of all, the signature and axioms of BNA are given.
In addition, a general process algebra model of BNA is described. In a subsequent section,
extensions of BNA for asynchronous dataflow networks are provided.

5.1 Signature and axioms of BNA
Signature

In network algebra, networks are built from other networks — starting with atomic components
and a variety of connections. Every network f has a sort k — [, where k,[€ N, associated with
it. To indicate this, we use the notation f : £k — [. The intended meaning of the sort £k — [is
the set of networks with k input ports and ! output ports. So f : k — [expresses that f has k
input ports and [output ports.

The sorts of the networks to which an operation of network algebra is applied determine the
sort of the resulting network. In addition, there are restrictions on the sorts of the networks to
which an operation can be applied. For example, sequential composition can not be applied to
two networks of arbitrary sorts because the number of output ports of one should agree with
the number of input ports of the other.

The signature of BNA is as follows:

Name Symbol Arity

Operations:

parallel composition +H k—=0Dx(m—-on)—>(k+m—1+mn)
sequential composition o (k=0)x({l—=m)—(k—m)
feedback 0 (m+1—=n+1)—= (m—n)
Constants:

identity | 1—1

transposition X 2 — 2

Here k, 1, m,n range over N. This means, for example, that there is an instance of the sequential
composition operator for each k,1,m € N.

As mentioned in Section 3, we will also use the block extensions of feedback, identity and
transposition. The arity of these auxiliary operations and constants is as follows:

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Basic network algebra 9

Symbol Arity

s (m+l—=n+!l)—= (m—n)
I m—m

mxn m+n—n+m

Axioms

The axioms of BNA are given in Table 1. The axioms B1-B10 are concerned with H, o, I,

Bl fH(gHh)=(f+Hg) Hh Rl go(f1™)=((g+1lm)o f) 1
B2 lt#f=f=f+l R2 (f1t™)og=(fo(gHln)) 1™
B3 fo(goh)=(fog)oh R3 fH(g1t™)=(f++g) 1"
B4 lyof=f=fol R4 (fo(li#9))1"=((Ik tg)o f)1"
B5 (fH f)o(g+g)=(fog)H (fog) for f:k4+m—1l+n, gin—>m
B6 g1l =lkp R5 f1'=Ff
B7 kXL o IXE = 14 R6 (f l)Tk:kaJrl
B8 kX% =1,
B9 AXHT = (*XE 1) o (I FX™)
B10 (f # g)o™X" ="X"0 (g # f) F1 I th=1,
for f:k—m, g:l—>n F2 EXE Rz,

Table 1: Axioms of BNA

and ™X" and the remaining axioms characterise 1¥. The axioms R5-R6, B6 and B8B9 can
be regarded as the defining equations of the block extensions of 1, | and X, respectively. The
axioms of BNA are sound and complete for basic networks modulo graph isomorphism (cf. [23]).

As a first step towards the process algebra models for asynchronous dataflow networks described
in Section 6, a general process algebra model of BNA is provided.

5.2 A general process algebra model of BNA

Network algebra can be regarded as being built on top of process algebra. A process algebra
model of BNA is presented in [14], and this model is specialised to give a model for asynchronous
dataflow. Here we follow a similar approach, but we allow to give priorities to certain atomic
actions. The definitions for sequential composition and feedback are modified, using the priority
operator 6. It should be noticed that our new definitions do not change sequential composition
and feedback in an essential way: in case the atomic actions are unordered (i.e., for all actions a
and b, a £ b), our definitions are equivalent to the ones from [14]. This means that the modified
definitions turn out to be more general.

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Basic network algebra 10

We write [n], where n € N, for {1,...,n}.

Let D be a fixed, but arbitrary, set of data. D is a parameter of the model. The processes
use the standard actions r;(d), s;(d) and ¢;(d) for d € D only. They stand for read, send and
communicate, respectively, the datum d at port i. On these actions, communication is defined
such that r;(d) | si(d) = ¢;(d) for all i € N and d € D. In all other cases, it yields d.

We write H (i), where i € N, for the set {r;(d) | d € D} U{si(d) | d € D} and I(i) for
{ci(d) | d € D}. In addition, we write H (1, j) for H(:)UH(j), H(i+[k]) for H(i+1)U...UH (i+k)
and H(i + [k],j + [I]) for H(i + [k]) U H(j + [I]). The abbreviations I(i,j), I(i + [k]) and
I(i+ [k],j + [l]) are used analogously.

in(i/j) denotes the renaming function defined by

in(i/j)(ri(d)) = rj(d) forde D
in(i/j)(a) = a for a ¢ {r;(d) | d € D}

So in(i/j) renames port ¢ into j in read actions. out(i/j) is defined analogously, but renames

send actions. We write in(i+[k]/j+[k]) for in(i+1/j+1)o...cin(i+k/j+k) and in([k]/j+[k]) for
in(0+[k]/j+[k]). The abbreviations out(i+ [k]/j+ [k]) and out([k]/j+[k]) are used analogously.

Definition 5.1 (general process algebra model of BNA)
A network f € GProc(D)(m,n) is a triple
f = (m’ n’ P)

where P is a process with actions in {r;(d) | ¢ € [m],d € D} U{s;(d) | i € [n],d € D}. GProc(D)
denotes the indexed family of sets (GProc(D)(m,n))) « N-

A wire is a network | = (1,1, w}), where wi satisfies:

for all networks f = (m,n, P) and u,v > max(m,n),

(P1) 770,0) (Onr (o) (wy || wi)) | P =P

(P2) T1(0,0) O Orru0) (Bin(iyuy (P) Il wh) | w7y))) = P for all i € [m]
(P3) T1(u,0) (0B (u0) (out(j o) (P) Il w§) | wy))) = P for all j € [n]

where w = Pin(1/u) (pout(l/v) (w1))

The operations and constants of BNA are defined on GProc(D) as follows:

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Basic network algebra 11

Name Notation

parallel composition f -+ g € GProc(D)(m+p,n+q) for f € GProc(D)(m,n), g € GProc(D)(p,q)

seq. composition fog € GProc(D)(m,p) for f € GProc(D)(m,n), g € GProc(D)(n,p)
feedback 1t € GProc(D)(m,n) for f € GProc(D)(m + p,n + p)
identity In € GProc(D)(n,n)
transposition mX"® € GProc(D)(m + n,n + m)
Definition
(m7 n, P) +H (pa 9, Q) = (’ITL +p,n+gq, R) where R = P ||| pz'n([p]/m+[p])(pout([q]/n+[q])(Q))
(m,n,P)o(n,p,Q) = (m,p,R) where, for v = max(m,p),v = u + n,
R= Tl(u+[n],u+[n])(9(3H(u+[n],u+[n])((Pout([n]/u+[n])(P) Il pin([n]/v+[n])(Q)) I wZI} el wﬁiﬁ)))
(m+pn+p,P)tY = (mn,Q) where, for v = max(m,n),v = u + p,
Q = Tr(utinlo-+o) (O Ost (ut)0 10) Pt)0+ 1) (ot o)t o)y (P)) 1wt 1 1wy i)
I, =(n,n,P) where P=w; || ... || w2 ifn>0
TI(1,2)(0H(1,2)(w% | wf)) otherwise
mX"=(m + n,n +m, P) where P=wi y || ... || wm || w7 || .. | wt ifm+n >0
T1(1,2) Brr 1,2y (w2 || w)) otherwise

The conditions (P1)-(P3) are rather obscure at first sight, but see the remark at the end of this
section. The definitions of sequential composition and feedback illustrate clearly the differences
between the mechanisms for using ports in network algebra and process algebra. In network
algebra the ports that become internal after composition are hidden. In process algebra based
models these ports are still visible; a special operator must be used to hide them. For typical
wires, 77(19)(9p(1,2) (w3 || w?)) equals 6, 76 or 7-§ (the latter only in case ACP], is used).

In the description of a process algebra model of BNA given above, all constants and operators
used are common to ACP” and ACP], or belong to a few of their mutual (conservative) ex-
tensions mentioned in Section 4 (viz. renaming, communication free merge and priority). As a
result, we can specialise this general model for a specific kind of networks using either ACP” or
ACP},, with further extensions at need.

Theorem 5.2 (GProc(D),+H,0,1,1, X) is a model of BNA if actions are not ordered.

Proof: When atomic actions are not ordered, this result reduces to Theorem 4.4 in [14]. O

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Asynchronous dataflow networks 12

Later it will be shown that this result also holds for the non-trivial order on atomic actions
introduced in Section 6.3.

So if we select a specific wire, as we do in Section 6, we obtain a model of BNA if the conditions
(P1)-(P3) are satisfied by the wire concerned. It is worth mentioning that the conditions (P1)-

(P3) are equivalent to the axioms B2 and B4 of BNA: (P1) corresponds to lg H f = f = f + lg,
(P2) to L, o f = f,and (P3) to f = fol,.

6 Asynchronous dataflow networks

In this section, specialisations of the process algebra model of Section 5.2 for asynchronous
dataflow networks are described. We present models for time-free and timed asynchronous
dataflow networks, as well as a model of timed asynchronous dataflow for SDL.

6.1 Process algebra model for time-free asynchronous dataflow

In this subsection, the specialisation of the process algebra model of BNA (Section 5.2) for
time-free asynchronous dataflow networks is given. In this case, we will make use of ACP”.

In Section 5.2, only a few assumption about wires and atomic cells were made. In this subsection
these ingredients are actualized for asynchronous dataflow networks in the time-free case.

Definition 6.1 (wires and atomic cells in time-free asynchronous dataflow networks)
In the time-free asynchronous case, the identity constant, called the stream delayer, is the wire
l; = (1,1,sd}(¢)), where sdi is defined by

sd}(o) = eri(z) ; sdi(07z) + |o| > 0 :— s1(hd(0)) - sdi(tl(0))
An atomic cell with m inputs and n outputs is a network
C=lpo(mn,P)ol,

where P is a process with actions in {r;(d) | i € [m],d € D} U {si(d) | ¢ € [n],d € D}.

The restriction of GProc(D) to the processes that can be built under this actualisation is denoted
by AProc(D). O

The definition of sd} simply expresses that it behaves as a queue. The definition of atomic cells
shows that the buffering it needs because of the asynchronous dataflow is built in.

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Asynchronous dataflow networks 13

For AProc(D), the operations and constants of BNA as defined on GProc(D) can be taken with
sdi as wire. This means that only the additional constants for asynchronous dataflow have to
be defined.

Definition 6.2 (process algebra model for untimed asynchronous dataflow)

The operations H, o, 1" on AProc(D) are the instances of the ones defined on GProc(D) for
sd] as wire. Analogously, the constants I, and ™X" in AProc(D) are the instances of the ones
defined on GProc(D) for sd} as wire.

The additional constants in AProc(D) are defined as follows:

Name Notation

split A € AProc(D)(1,2)
sink & € AProc(D)(1,0)
merge ¥ € AProc(D)(2,1)
dummy source ? € AProc(D)(0,1)

Definition

R = lio(1,2,split") ol where split' = (er1(z) ; (s1(z) + s2(z))) * &

5 = lio(1,0,sink") where sink® = (eri(z);7)* 6

¥ = ly0(2,1,merge;)ol; where merges = ((er1(z) + era(z)) ; s1(z)) * 8
? = (0,1,sourcer)oly where source; = §

Theorem 6.3 (AProc(D),+H,0,1,1, X) is a model of BNA if actions are not ordered.

Proof: When the atomic actions are not ordered, this result reduces to the first part of
Theorem 5.4 in [14]. O

6.2 Process algebra model for timed asynchronous dataflow

In this subsection, the specialisation of the process algebra model of BNA (Section 5.2) for timed
asynchronous dataflow networks is given. In this case, we will make use of ACP,.

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Asynchronous dataflow networks 14

First wires and atomic cells are actualised for timed asynchronous dataflow networks. This is
similar to the actualisation for time-free asynchronous dataflow networks given in Section 6.1.

Definition 6.4 (wires and atomic cells in timed asynchronous dataflow networks)
In the timed asynchronous case, the identity constant, now called the timed stream delayer, is
the wire Iy = (1,1, tsdi(¢)), where tsd} is defined by

tsdl(o) = eri(z) ; tsdi(z)<|o| = O(er, () ; tsdl(o7z) + s, (hd(o)) -tsd}(tl(0)))
An atomic cell with m inputs and n outputs is a network
C=lpo(mmn,P)ol,

where P is a process with actions in {r;(d) | i € [m],d € D} U{s;(d) | i € [n],d € D}. The
restriction of GProc(D) to the processes that can be built under this actualisation is denoted by
TAProc(D). O

The definition of tsd} expresses that it behaves as a queue, it is able to contain an arbitrary
amount of data, but data will always enter and leave it within the same time slice. The definition
of atomic cells is the same as in the time-free case.

For TAProc(D), the operations and constants of BNA as defined on GProc(D) can be taken with
tsd}l as wire. This means that only the additional constants for asynchronous dataflow have to
be defined.

Definition 6.5 (process algebra model for timed asynchronous dataflow)
The operations H, o, 1" and the constants |, and ™X" in TAProc(D) are the instances of the
ones defined on GProc(D) for tsdi as wire.

The additional constants in TAProc(D) are defined as follows:

Name Notation

split A € TAProc(D)(1,2)
sink & € TAProc(D)(1,0)
merge ¥ € TAProc(D)(2,1)
dummy source ® € TAProc(D)(0,1)

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Asynchronous dataflow networks 15

Definition

R = lio(1,2,split!)ol, where split! = (er1(z) ; (s,(z) +5,(2))) *)

5 = l10(1,0,sink") where sink' = (er1(z) ;) * J

¥ = lao(2,1,merger)oly where merge: = ((eri(z) +era(z)) ;5 5 (x)) * J
* = (0,1,sourcer)oly where source; = §

Lemma 6.6 For the wire |; = (1,1,tsd}(¢)), lioly = I;.
Proof: The proof of this lemma is given in the appendix. O

Lemma 6.7 The wire I; = (1,1,tsd}) gives an identity flow of data, i.e. for all f = (m,n, P)
in TAProc(D), ly,o f=f = fol,.

Proof: By Lemma 6.6 we have that [y ol; = 1;. I, 0l, =1, and ™"X" o |,, = ™X" = [,;, 0 ™X"
follow trivially from Iy o Iy = I;. So the asserted equations hold for I, and ™X". Due to the
pre- and postfixing with identities in the definitions of the remaining constants and the cells, it
follows trivially that these equations hold also for them. The result then follows by induction
on the construction of a network in TAProc(D). O

Theorem 6.8 (TAProc(D),H,0, 1,1, X) is a model of BNA if actions are not ordered.

Proof: A simple calculation shows that lg + f = f = f H lp for all f € TAProc(D). Then
the theorem follows immediately from Theorem 5.2 and Lemma 6.7. O

6.3 Timed asynchronous dataflow networks for SDL

In this subsection we give another process algebra model for timed asynchronous dataflow which
will be mainly based on the definitions of TAProc(D). The difference is that a non-trivial partial
order on atomic actions is given such that the new model can deal with asynchronous dataflow
networks corresponding to systems described in SDL.

Let C be a fixed, but arbitrary, set of process names. C is an additional parameter of the model.
We write D for the cartesian product

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Asynchronous dataflow networks 16

(CU{env} U {timer} U {setr(i) | i € N} U {reset} U {nil}) x D

where timer, setr(i),reset € C (¢ € N). The use of timer, setr(7), reset and C will be explained in
Section 7.1. The processes now use the standard actions r;(d), s;(d) and ¢;(d) for d € D. We
define the priority relation < as the least partial order relation such that

x < c;((reset,y)) and x < s;((reset,y))
for all actions x ¢ {c;((reset,y))| i € N, y € D} U {s;((reset,y))| i € N, y € D}.

Definition 6.9 (wires and atomic cells for dataflow networks with SDL-timers)
The identity constant is the wire Iy = (1,1, ssdi(¢)), where ssdl is defined by

ssdi(o) =

(erll((:v,y)) ; (5, ((reset, y)) - ssdi(¢)<z = resetbssdl((z,v))))<|o| = O
(er,((z,y)) 5 (5, ((reset, y)) - ssdi (reset(o,y))<z = reset>ssdi (0™ (z,y)))+
5,(hd(0)) - ssdj(tl(0)))

where reset(o,d), d € D, stands for the sequence o with all the occurrences of the data (timer, d)
and (setr(z),d), for any ¢ € N, removed from it.

The atomic cells are defined as in Definition 6.4.

The restriction of GProc(D) to the processes that can be built under this actualisation is denoted
by SDLProc(C, D). O

The definition of ssd} expresses that it normally behaves as a queue, it is able to contain an
arbitrary amount of data, but the data will always enter and leave it within the same time
slice. However, if a datum (reset, y) enters it, all data (timer,y) and (setr(i),y) are removed, and
(reset, y) leaves it before any other datum has entered of left.

Definition 6.10 (process algebra model for dataflow networks with SDL-timers)
The operations +, o, 1™ and the constants |, and ™X" in SDLProc(C, D) are the instances of
the ones defined on GProc(D) for ssdi as wire.

The additional constants in SDLProc(C, D) are defined as in Definition 6.5 O

Lemma 6.11 For the wire I; = (1,1,ssd}(g)), ly o ly = Iy.

Proof: The proof of this lemma is given in the appendix. O

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Dataflow networks for SDL 17

Theorem 6.12 (SDLProc(C, D), +,0,1,1,X) is a model of BNA if the priority relation given
above is used.

Proof: By Lemma 6.11 the proof of Theorem 6.8 carries over to this theorem. O

7 Dataflow networks for SDL

In this section we make additions to the process algebra model SDLProc(C, D) from Section 6.3
to obtain a model of networks representing SDL systems. We define some atomic components
that are to be used in composing components that correspond to processes in SDL. We also
explain how SDL processes fit into our framework. And an operation is defined, in terms of the
connections for discrete time asynchronous dataflow and the parallel composition, sequential
composition and feedback operations, corresponding to the kind of composition of processes
within a system needed for SDL.

7.1 Named components

For each name in C there is a corresponding named component. A named component is built
from a merger, a distributor, a timer, and a main cell. The main cell makes use of the following
read and send actions only:

r1((c, d)) reading datum d from ¢ € C U {env}
r1((timer, d)) reading the expiration notification of timer d
r1((reset, d)) reading the reset notification of timer d
s1((c, d)) sending datum d to ¢ € C U {env}
s2((setr(7),d)) setting the timer d to ¢ units from now
s2((reset, d)) resetting the timer d

A main cell has only one input port and two output ports; input port 1 and output port 1 are
meant for communication with other named components and the environment, while output
port 2 is meant for setting and resetting of timers.

It is further assumed that there is a bijection p : [|C|+1] — CU{env} such that p(|C|+1) = env.
The bijection reflects the way the named components are connected, namely such that at the
input port i data from component p(7) is consumed and at the output port ¢ data for component
p(i) is produced. This explain how mergers and distributors transform data. When a pair (nil, d)
is offered at input port ¢, a merger produces the pair (p(7),d) at its only output port. When a
pair (p(i),d) is offered at its only input port, a distributor produces the pair (nil,d) at output
port <.

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Dataflow networks for SDL 18

In the definition of a timer cell below, a process timer(«) is defined for each infinite sequence «
of finite sets of data. The process timer(«) is informed that 7 time units from now the timers
in the set a(7) expire (for i € N).

Definition 7.1 (additional atomic cells for SDL)
A n-merger is a cell MERGER,, = |, o (n, 1,merger,,) o |;, where merger,, is defined by

merger, = (Y_ery((nil,z)) ; 5, (p(i),z))) * &

i€[n]

Similarly, a n-distributor is a cell DISTRIBUTOR,, = ly0(1, n,distributory,)ol,, where distributor,
is defined by

distributor, = (Z er1((p(7),x)) ; é@.((nil,x))) ¥4
i€[n]

A timer is a cell TIMER = |; o (1,1, timer(0™0"...)) o Iy, where

timer(a) = timer'(tl(a))<hd(a) = 0
(llaend(a) 3, ((timer, d)) - timer'(tl(c)))

timer'(a) = ery((setr(i),z)) ; timer' (upd(a,i,z))+
er1((reset, 2)) ; 8, ((reset,)) - timer'(rem(a, x))+
S ecctions er1((62) : 3, ((c,)) - vimer(a) +
Orel(timer(a))

where we write upd(a, i,d) for the infinite sequence o' such that o/(7) = a(i) U {d} and &/(j) =
a(j) —{d} for all j € N,j # i; and rem(«,d) for the infinite sequence o' such that o/(j) =
a(j) — {d} for all j € N.

d

The definition of timer expresses that there are two phases in the behaviour of timers during
a time slice. In one phase, for each timer that expires in the current time slice, a datum
representing expiration notification is produced at its only output port, and it does so in arbitrary
order. The expiration notification data are of the form (timer, d). In the other stage, it consumes
data representing timer setting and resetting requests. The purpose of sending (reset,d) is to
cover the following aspect of the SDL-timer mechanism: if a datum representing expiration
notification has been produced but not yet consumed and the timer concerned is set again or
reset, this datum has to be removed. The non-trivial priority relation and the wire ssd! are
needed to do so instantaneously. Besides, in this phase it consumes and delivers data received
from other processes and from the environment.

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Dataflow networks for SDL

19

Definition 7.2 (named component)
Let n be the number of names in C. To each name ¢ € C we will assign a network N, of sort
n+1— n+ 1, called a named component, where

N, = MERGER,, ;1 o ((¥ o TIMER o C,) 1) o DISTRIBUTOR, 1

for some main cell C. of sort 1 — 2. O

The graphical representation of a named component is given in Figure 3. Named components

| distributor

merger

Figure 3: The named component ¢

correspond to processes in SDL.

Constructing a main cell

The main cells C., for ¢ € C, are parameters for our construction, but they are meant to
correspond to SDL processes. We describe how to model, for some states of an SDL process,
the behaviour of the corresponding main cell by means of recursive specifications in ACP},-ID.

Assume that we have the following signals and signal routes in a given SDL description:

signal
signal
signal
signal
signal
signal

Sig;

Sig’;
Sigl;
Sig2;
Sig3;
Sig4;

signalroute
signalroute
signalroute
signalroute
signalroute
signalroute

from_env from env to ¢5 with Sig2;
to_env from c5 to env with Sig,Sig3;
from_c1l from c1 to c5 with Sigl;
to_c2 from c5 to c2 with Sig2;
from_c3 from c3 to cb5 with Sig3;
from_c4 from c4 to c5 with Sig4;

We take C and D such that cl,...,c5 € C and Sig, Sig’, Sigl,...,Sigd € D. The SDL processes
with names cl,...,cb correspond to the main cells of named components with these names.

Report No. 98, October 1997

UNU/IIST, P.O. Box 3058, Macau

Dataflow networks for SDL 20

Each SDL process is either in a state or making a transition. We describe how to model, for
some states of the SDL process ¢b, the behaviour of the corresponding main cell by means of
recursive specifications in ACP] -ID.

We use the notation Disc(S) for set of discarded signals in state S, i.e. the set D without what
is explicitly expected as signals in that state.

The input queue of the process is the sequence of data from the incoming wire of the main cell,
i.e. the wire |y in the construction C. = Iy o (1,2, P) o ls. The consumption of a signal by the
process P is the communication action between the process ssd} that makes up its input queue
and the process P. The behaviour of the main cell corresponding to the SDL process ¢5 from
the states that are presented in Figure 4 — using the graphical representation form of SDL —
described by the following equations:

2) 3)
Sig2
reset (Sig)
|
set (now set (now
+10, Sig) +1, Sig')

Figure 4: SDL states and transitions

So = ri((cl, Sigl)) - 5,((c2, Sig2)) - S1 + r1((env, Sig2)) - Sa+

> ((,)) So

(z,y)€Disc(So)
S1 = ri((e3,S1g3)) - 5,((env, Sig3d)) - s,((reset, Sig)) - s, ((setr(10), Sig)) - S5+

> 7“((,)) S1

(z,y)€Disc(S1)
S3 = ri((env, Sig2)) - s,((reset, Sig)) - 5, ((reset, Sig')) - 5,((setr(1), Sig')) - Sa+

> 7“1((96‘,1/)) - 53

(z,y)€Disc(S3)

Setting a timer must be preceded by a reset request of the same timer. Note that a timer can
be set using relative time only, i.e. s,((setr(i), Sig)) is a request for setting the timer referred to
by Sig for i time units from now.

According to [24], SDL processes may not send signals to themselves. The same restriction
applies the processes that make up the main cells. That is, the process that make up the

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Dataflow networks for SDL 21

main cell C, should not perform actions like r1((c, sig)) or s1((c, sig)), for any sig € D. This
restriction can be built-in. Recall that p is the bijection reflecting the way the named components
are connected. For each named component N, (i € [n]), the input and output port number i
can be eliminated, and the remaining ports can be renamed from 1 to n. However, in that case
we would need a different merger and distributor for each ¢ € [n].

Due to the special treatment the wire ssd} offers to data of the form (reset,y), it seems that we
do not model dataflow networks: the first-in-first-out discipline is not respected by our wires.
However, note that we only have data of the form (reset,y) inside a named component. If we
regard the named components as black-boxes, we only see wires that behaves as the wires tsd}.

7.2 Composition of named components

In this subsection, we define networks representing SDL systems, which we will call SDL net-
works. First we define an operation, called the inter-connection operation, to compose an SDL
network from named components. The notion of an SDL context will be introduced as well.
First of all, some auxiliary networks are introduced.

In order to build up an SDL network from named components, we need to make connections
between them. The network F,, will make these connections.

Definition 7.3 (connections between named components)
Let f, : [n?] — [n?], for every natural number n > 1, be the bijection:
fa())=n((i—1)modn)+ (1 —1)+n+1
where + and mod are integer division and modulo, respectively.
We define the network F,, representing the bijection f, as follows:
Fp = l,2 0 (n?,n%) o |2
where f,, is defined by

£, = () eri(z) 5 4,)()) i

i€[n?]

Cf. [23], any bijection can be represented by a network, using identities, transpositions and
parallel and sequential composition, only.

An SDL network containing n named components is of sort n — n, which means that it has n
input ports and n output ports. The network ITF, is used to connect the input port ¢ of the
SDL network to the input port n + 1 of the named component Ny ;), for each i € [n].

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Dataflow networks for SDL 22

Definition 7.4 (interfaces with the environment)
Let Z, : [n(n + 1)] = [n(n + 1)], for every natural number n > 1, be the bijection:

N) in+1) ifi<n
In(i) = { Vi otherwise

where the values for y; are defined as follows: for every n+1 <1i < n(n + 1), y; is the smallest
number between 1 and n(n + 1) different from y;, for all j < 4.

We define the network ITF,, representing the bijection Z,, as follows:
ITF, = In(n+1) o(n(n+1),n(n+1),itf,)o In(n+1)

where itf,, is defined by

i€[n(n+1)]

A network ITF, ! connecting the output port n+ 1 of the named component Np(s) to the output
port i of an SDL network containing n named components, for each ¢ € [n], can be defined
analogously using the function Z,, 1.

Definition 7.5 (inter-connection operator)
For n > 1, we define the inter-connection operation II,,, of arity

(n+1)=(n+1) x...x((n+1) = (n+1))) = (n — n).

n times

The operator 11, is defined by

n(te, ... tn) = ln o (ITFp o (t1 + ... 4+ 1) 0 ITF; " o (Iy 4 Fp)) 17°) o I

Definition 7.6 (SDL network)
Let n be the number of names in C, and let Np),..., N,

p
Then I, (Np(1), - - - » Np(n)) is an SDL network. O

(n) be the named components in C.

In Figure 5, Def. 7.6 is illustrated by means of a graphical representation, for the case n = 3. We
use the convention that the i-th entry and the i-th exit in the dotted feedback line correspond
to the i-th feedback.

In the next subsection, we will introduce more abstract models derived from the process algebra
model.

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Dataflow networks for SDL 23

Figure 5: SDL network

7.3 Abstract semantics for SDL networks

In this section, more abstract models for SDL networks are derived from the process algebra
model presented in Section 6.3 and their compositionality with respect to the inter-connection
operation introduced in Section 7. The main result is that also in this case trace equivalence is
fully-abstract with respect to history equivalence.

Derivation of related models

In this subsection, the derivation of several models from the process algebra model SDLProc(C, D)
is described. We obtain these models by defining equivalences on SDL networks.

In order to be able to use models of process algebra in the derivation of the history model the
input streams of a network have to be represented by networks. The resulting input networks
are then composed with the original network. The input streams concerned contain data which

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Dataflow networks for SDL 24

are to be sent to the network, as well as os representing the time steps in between.

Definition 7.7 (input network)
Let p be a stream over ({nil} x D) U {o}. The input network associated with p is the network
SOURCEq (p) = (0,1, source;(p)) where

source;(p) =
6<|p| = Ob-(s, (hd(p)) - source: (t(p))<isd(hd(p))e0ore(source: (ti(p))))

where isd(d) yields true if d is a datum in ({nil} x D).

Let f : m — n be a network and py,..., py be streams. The network f(p1,...,pm) is defined
by

f(p1,-- ., pm) = (SOURCE1(p1) + ... + SOURCE1 (pm)) o f
O

For given input streams, the output streams can be reconstructed from the complete traces of
the process corresponding to the composed network as described above. We write trace(P),
where P is a process, for the set of complete traces of P. We consider as complete traces the
union of the complete traces of P as defined in [11], the traces of P that become complete
if we identify livelock nodes (i.e. nodes that only permit an infinite path of silent steps) with
deadlock nodes, and the infinite traces of P. We treat the time step o in these traces on the
same footing as actions. Note however that the distinction between successful termination and
deadlock/livelock made in such traces is irrelevant here because the processes modelling timed
asynchronous dataflow networks do not include successfully terminating processes.

Definition 7.8 (stream extraction)
Let 3 be a trace over

{si(d) | i € [m],d € ({nil} x D)}U{r;(d) | j € [n],d € ({nil} x D)} U{c}.

We write streami™(3) for the stream of data obtained by first removing all send actions and after
that replacing each action of the form r;(d) by d. Analogously, we write stream?“!(j3) for the
stream of data obtained by first removing all read actions and after that replacing each action
of the form s;(d) by d. Often, we write only the relevant part from these pairs in {nil} x D. O

For a network f : m — n and an m-tuple of streams (p1,...,pm), the possible n-tuples of
output streams can now be obtained from the traces of the process corresponding to the network
f(p1,..., pm) using stream extraction.

Definition 7.9 (history relation)
We write trace(f), where f = (m,n,P) is a network, for trace(P). The input-output history
relation of a network f : m — n, written [f], is defined by

[f1(p1;- -, pm) = {(stream$¥*(3),... stream%(3)) | B € trace(f(p1,---,Pm))}

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Conclusions 25

Deﬁnition 7.10 (Ehlstory)
The history equivalence =p;gory on timed asynchronous dataflow networks is defined by f =pistory

g iff [f]=1[g]. O

Various interesting models for process algebra are obtained by defining equivalence relations on
processes. We mention:

=, completed trace equivalence,
o branching bisimulation equivalence.

Branching bisimulation was introduced, in the setting of ACP},,, in [5]. P =¢ Q iff trace(P) =
trace(®). The above-mentioned equivalences on processes naturally induce corresponding equiv-
alences on timed asynchronous dataflow networks, and consequently on SDL networks.

Definition 7.11 (=¢;ace)
Let f = (m,n,P) and g = (p,q,Q) be two networks. f and g are trace equivalent, written
[Strace g, i m=p,n=gand P = Q. O

Definition 7.12 (Ebisim)
Let f = (m,n,P) and g = (p, q, Q) be two networks. f and g are bisimulation equivalent, written
f =visim g, it m =p, n =gand P, Q. O

8 Conclusions

We conclude that an intuitively clear semantic model for SDL, including timer handling, can be
based on a relative discrete time version of network algebra. The main ingredient of this model
is a wire which, together with a priority mechanism in the sequential composition and feedback,
allows immediate execution of timer resets.

We obtain networks which can be seen as SDL systems. The semantics of these networks can be

expressed in terms of traces, and this trace semantics carries the minimal information in order
to obtain compositionality for the constructor operator of our networks.

Acknowledgements

The third author acknowledges Bogdan Warinschi and Yaroslav Usenko for their helpful discus-
sions and suggestions.

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

References 26

References

[1]

2]

[10]

[11]

[12]

[13]

[14]

J.C.M. Baeten and J.A. Bergstra. Global renaming operators in concrete process algebra.
Information and Control, 78:205-245, 1988.

J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra (extended abstract). In
W.R. Cleaveland, editor, CONCUR’92, pages 401-420. LNCS 630, Springer-Verlag, 1992.
Full version: Report P9208b, Programming Research Group, University of Amsterdam.

J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and conditions. In M. Broy,
editor, Programming and Mathematical Methods, pages 273-323. NATO ASI Series F88,
Springer-Verlag, 1992.

J.C.M. Baeten and J.A. Bergstra. On sequential composition, action prefixes and process
prefix. Formal Aspects of Computing, 6:250-268, 1994.

J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra with abstraction. In
H. Reichel, editor, Fundamentals of Computation Theory, pages 1-15. LNCS 965, Springer-
Verlag, 1995.

J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra. Formal Aspects of Com-
puting, 8:188-208, 1996.

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations for an inter-
rupt mechanism in process algebra. Fundamenta Informaticae, 9:127-168, 1986.

J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18, Cambridge University Press, 1990.

J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration. The Computer
Journal, 37:243-258, 1994.

J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information
and Control, 60:109-137, 1984.

J.A. Bergstra, JJW. Klop, and E.-R. Olderog. Failures without chaos: A new process
semantics for fair abstraction. In M. Wirsing, editor, Formal Description of Programming
Concepts 111, pages 77-103. North-Holland, 1987.

J.A. Bergstra and C.A. Middelburg. Process algebra semantics of ¢SDL. Research Re-
port 68, United Nations University, International Institute for Software Technology, April
1996.

J.A. Bergstra, C.A. Middelburg, and Gh. Stefinescu. Network algebra for synchronous and
asynchronous dataflow. Report P9508, University of Amsterdam, Programming Research
Group, October 1995.

J.A. Bergstra, C.A. Middelburg, and Gh. Stefanescu. Network algebra for asynchronous
dataflow. To appear in International Journal of Computer Mathematics, 1997.

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Proofs of main lemmas 27

[15]

[16]

[17]

[19]

[20]

[21]

[22]

23]

[24]

A

J.D. Brock and W.B. Ackermann. Scenarios: A model of non-determinate computation.
In J. Diaz and I. Ramos, editors, Formalisation of Programming Concepts, pages 252—259.
LNCS 107, Springer-Verlag, 1981.

M. Broy. Nondeterministic dataflow programs: How to avoid the merge anomaly. Science
of Computer Programming, 10:65-85, 1988.

R.J. van Glabbeek and W.P. Weijjland. Branching time and abstraction in bisimulation
semantics (extended abstract). In G.X. Ritter, editor, Information Processing 89, pages
613-618. North-Holland, 1989. Full version: Report CS-9120, CWI.

B. Jonsson. A fully abstract trace model for dataflow and asynchronous networks. Dis-
tributed Computing, 7:197-212, 1994.

G. Kahn. The semantics of a simple language for parallel processing. In J.L. Rosenfeld,
editor, Information Processing ’74, pages 471-475, 1974.

J. Kok. A fully abstract semantics for data flow nets. In J.W. de Bakker, A.J. Nijman, and
P.C. Treleaven, editors, PARLE ’87, pages 351-368. LNCS 259, Springer-Verlag, 1987.

S. Mauw. Example specifications in ¢SDL. Computing Science Report 96-04, Eindhoven
University of Technology, Department of Mathematics and Computing Science, 1996.

J. Russell. Full abstraction for nondeterministic dataflow networks. In FoCS ’89. IEEE
Computer Science Press, 1989.

Gh. Stefanescu. Feedback theories (a calculus for isomorphism classes of flowchart schemes).
Revue Roumaine de Mathematiques Pures et Applique, 35:73—-79, 1990.

Specification and description language (SDL). ITU-T Recommendation Z.100, Revision 1,
1994.

Proofs of main lemmas

In this appendix we prove Lemma 6.6 from Section 6.2 and Lemma 6.11 from Section 6.3.

Lemma 6.6 For the wire l; = (1,1,tsdl(¢)), lio 1y = I1.

Proof: First we state some equalities which are useful for this proof.

Ify# 5, we have

and

TTy=2x-y (*)

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Proofs of main lemmas 28

From axiom DRT B2 of ACP},,, i.e.
(2 (y+wma(z) +8) +y) =z (y+ve(z) +9),

it follows that = - (z- (y + 2) +y) = - (y + 2), if z is of the form z = g - v; and from this it
follows that

rre=1-(y+z2)=>r-c=1-(y+1-2+2) (%%)

if 2 is of the form z = a - v.
A wire |y is a network (1,1, tsd}), where we have an input port denoted by 1 and an output port
denoted by 1. For a calculation in ACP},, we need to distinguish the ports by their names, so

for this proof we denote by tsdé- our process using the input port ¢ and the output port j. We
define:

P(o1,02,03) = 71(2,3)(311(2,3)((tSdé(Ul) | tsdi(os)) || tsd3(o2)))
Q(01,02,03) = tsdj(oz 02" 0y)

where o; are sequences of data in D. The statement of the lemma becomes:

P(g’ 8’ 8) = Q(g’ 8’ 8)

It follows that

P(g,e,e) = eri(x); P(z,e,¢) and

Q(e,e,¢) = er1(x); Q(e, &, x) = er1(z); Q(x, &, ¢) .

We apply RSP and finish the proof using (%) and the fact:

o3 709701 >0 = z-P(01,09,03) =1-Q(01,02,03) .

To prove this, there are 7 cases to distinguish: for o; empty or not, i € [3] and fulfilling the
condition |03 0o2 701 > 0. Each of these cases can be proved using RSP, but the guarded

equation that both processes satisfy is different from case to case. We will discuss some relevant
cases.

1. |os| > 0,]o1| = |o2| = 0, only the third queue is non-empty. In this case we consider the
guarded equation

(1) X(e,e,03) =1 (er,(z); X(z,¢,¢) +3, - (hd(o3)) - X(¢,¢,tl(03)))

Both 7 - P(e,¢,03) and - Q(e, €, 03) satisfy it.

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Proofs of main lemmas 29

2. |o1] > 0,]o2| = |os| = 0, only the first queue is non-empty. In this case we consider the
guarded equation

(2) X(o1,e,e) =1 (er,(z); X(017z,¢6,¢) + - X(t(01), hd(01),¢))

The equation 2 is guarded because a repeated replacing of the 7-guarded variables by the
right-hand side of their equations leads to the left-hand side variable from the equation 1,
which is completely guarded. The process 1 - P(o1,¢,¢) satisfies the equation 2, which
can easily be proved using (). The process 7 - Q(o1, ¢, €) satisfies the equation 2 as well:

T- Q(O‘l,6,8) = - (gl(x);Q(Ulﬂxagag) +§4(hd(01)) : Q(tl(01)7878))
PEP (e (0):Q(0r e 6) +
- (er,(2); Qo1 @, ¢,¢) + 5,(hd(01)) - Q(tl(01), ¢, €)))
- (er,(#);Q(o17w,6,¢) + - Q(oy,¢,¢))
- (6:1(56), Q(Ulﬁxa g, 6) + r Q(tl(o-l)a hd(al)a 8))

3. log| > 0, i € [3], every sequence is non-empty. Then both £ - P(01,02,03) and 1 -
Q(o1,02,03) are solutions for the guarded equation

X(O’1,0'2,0'3) = . (erl(m)'X(al’\x,az,ag)+

- X (tl(o1),09"hd(01),03)+

X((Il,tl(ag) o3 hd(o‘g))—l—

s, (hd(03)) - X (01,0, tl(03))

3)

Lo Il‘l IH 1=

The system is guarded for similar reasons as in the previous case. The process T -
Q(01, 02, 03) satisfies it, which can be proved using () twice. The process - P(o1, 02, 03)
satisfies it as well, which can be proved using (*).

The other cases can be treated along the lines of the above ones. O
Lemma 6.11 For the wire I = (1,1,ssdi(¢)), Iy o1y = Iy.

Proof: A wire |; is a network (1,1,ssd}), where we have an input port denoted by 1 and an
output port denoted by 1. For a calculation in ACPgrt,o, we need to distinguish the ports by
their names, so for this proof we denote by ssdj- our process using the input port ¢ and the
output port j. The following definitions will be useful in the proof:

P(o1,02,03) = Ty53) (002 ((s8d3(01) || s8di(03)) || s8d3(02))))
Q(O’l,O'Q,O'g) = SSdéll(O'gﬁa'zf\O'l)

where o; are sequences of data in D. The statement of the lemma becomes

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Proofs of main lemmas 30

P(87 87 8) = Q(87 87 8)

We will use ¢’ for the sequence o after the function reset is applied. For the legibility of the
calculations we also introduce some auxiliary processes, namely

Py(01,02,03) = 71(,3)(0(O (2,3 (8, ((reset, y)) - ssdj(a1) || ssdi(os)) || ssd3(02))))

and with these notations we have

P(g,g,g) = Zzyeresetrl((fay)) 'P(($,y),€, €)+
yeD

Yyep ri((reset, y)) - (77(2,5)(0(Ogr(a,3) (3, ((reset, y)) - ssdj(e) || ssdi(e)) || ssdi(e)))))

= Zz;erels)et Tl((.’L‘, y)) . P((.’L‘, y),€,€) + ZyED Tl((resetay)) . P?;(S, g, 6)
ye

and for the right hand side we have

Q(g, g, 6) = ZyGD 1 (y) ’ Q(y, g, 6) + Zz;ﬁreset 7"1((.’17, y)) ’ Q((.’L‘, y)a & 8) +

yeD
ZyED T‘]_((I’&Set, y)) : 24((reset, y)) : Q(e’;‘, g, 8)

where Q(e, ¢, (z,y)) = Q((x,y), e, &) was applied. Using Facts 1 and 2 below, we can apply RSP
in order to finish the proof.

Fact 1. T-P(01,02,03) =1 Q(01,02,03)
for sequences o1, 09,03 € D“ which do not contain data of the form (reset, y).

Fact 2. T-Py(e,e,6) =1 5,((reset,y)) - P(e,¢,¢)

Proof: We give the proof for the first fact. The second one can be proved as a particular case
of the first.

The observation that none of the sequences can contain data of the form (reset, y) is an important
one. It expresses that when a datum of this form is received, it is delivered immediately.

The proof uses RSP showing that both processes z - P(o1,092,03) and 1 - Q(01,02,03), for
|os "oy 01| > 0, satisfy a guarded equation. Analogously with the proof of Lemma 6.6, there
are several cases to distinguish, but we treat here only the most representative one. The other
cases can be solved in a similar manner.

Now, for |o;| > 0, i € [3], both - P(01,02,03) and 7-Q(01,02,03) are solutions for the guarded

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Proofs of main lemmas 31

equation

X(Ula 02, 03) =T (ZyGD Ql((reset,y)) ’ §4((reset’ y)) ’ X(Ullﬂ 012’ Ué)_i_
Zz;ﬂ’esetgl((may)) : X(Ulﬂ(xay)a 02703)+
yeD
s,(hd(a3)) - X(01,02,tl(03))+
7 - X(tl(01),09 " hd(0o1),03) + - X(01,tl(02), 03" hd(02))) .

Equation 4 is guarded following the same arguments as in Lemma 6.6. The process 7-Q (o1, 02, 03)
satisfies this guarded equation because of (**) in the proof of Lemma 6.6.

fory;é:Sandzoftheformz:g-v, wehaver-z =1-(y+2)=>12-r=1-(y+2-2+1-2+2).

We can write the process P(o1,09,03) in the following form:

P(o1,09,03) =X cpr,((reset,y)) - Py(o1,02,03)+
Zx;ereset Ql((x,y)) -+ P(o17 (2, y),02,03)+
D

s, (hd(03)) - P(oy, 02, tl(03))+
1 - P(tl(01),09"hd(01),03) + 1 - P(01,tl(02), 03 hd(02))

Then process P(o1, 09, 03) satisfies the guarded equation 4 iff

Yyenry((reset,y)) - Py(o1,09,03) = Yyepr,((reset, y)) - 5,((reset, y)) - P(01,03,03)

and this follow easily with RSP and 1 - P)(01,02,03) = - 5,((reset,y)) - P(07,05,0%) .

We prove the last equality by expanding the left hand side term. Thus certain terms will be
removed by Jy or 6; they will be denoted by (..). We further use the notation P?j((x, y),o) for
8,1 ((reset, y)) - ssdl,;(0')<z = reset>ssdl, | (07 (,y)) .

. PI(O'1,0'2,0‘3)
(6(”| ()2,3)((22((%56% y)) - ssdj(01) || ssdi(o3)) || ssd3(02))))
e expand
T - T1(2,3)(0(Fpr2,3) (8, ((reset, y)) - (ssdh (1) [l ssdf(o3)) + er,y((z,)); () +
5,(hd(03))(.)) || (ery((2,9)); Py ((2,y), 02) + 84(hd(02))(.-)))))
(expanding | and communicating)
= T Ty(a,3)(0(cy((reset, y)) - ((ssd3(a?) || s8di(a3)) || Py ((reset,y), 02))+
3,(hd(a3))(..) + c5(hd(02))(..)))
(co((reset,y)) has priority over the other two actions)
=11 T12,3)(0(Fpr(2,3)((55d5(a1) ||| s8dF(03)) || 55((reset,y)) - ssd3(03))))

N 1I=
N 2N
|
=
o
D)
ay

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

Proofs of main lemmas 32

One can observe there is a symmetry between the formula from the first step and the last one;
analogous calculations can go further in the same way obtaining

LT Ty (BB (5503(01)] 5, (reset,) - 5303(h) || ssad(h)
(now s4((reset,y)) has priority over all the other actions)
=z-7-7-5,((reset, y)) - P01, 03,03)

=1 5,((reset,y)) - P(01,03,03)

and we have finished the proof. O

Report No. 98, October 1997 UNU/IIST, P.O. Box 3058, Macau

