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Introduction 1

1 Introduction

Process algebras are models of axiom systems which can be constructed with several techniques.
An important technique is to view the domain of a process algebra as a set of equivalence classes
of transition systems. Operations of process algebra are then represented as transformations of
transition systems. In recent years process algebras which involve time have been proposed to
fulfill the need for formalisms able to deal with quantitative time aspects of systems. The option
to represent time by non-negative reals and to have time stamps on actions is taken into account
in [2] for ACP, in [9] for CCS and in [1] for CSP. Another option is to divide time into slices,
thus giving the possibility to use an implicit or explicit time stamping mechanism that provides
each action with the index of the time slice in which it occurs. This has been developed for the
case of ACP in [3].

Frame algebra is developed in [8] in order to obtain an algebraic framework for transition systems
quite independent of process algebra. This will allow to obtain algebraic representations of
transformation of transition systems corresponding to operations of process algebra. Simple
frames are built from states and action-labelled transitions. Equipped with a root marker and
optionally with a termination marker they make up transition systems. A further step is taken
in [7] where special transitions are introduced to model passage of (discrete) time, thus providing
a framework in which one can deal with time aspects, others than precedence relations. In order
to keep the basic operations on frames as simple as possible, and at the same time to provide the
level of abstraction needed for studying discrete time processes a special kind of bisimulation,
called o-bisimulation, has been introduced. The objective of this paper is to generalise [8] to
a setting of discrete time processes. For this purpose timed frames are needed which were
introduced in [7]. We obtain a process algebra based on timed frames and explicit algebraic
descriptions of the transformations that correspond to the process operations.

The structure of the paper is as follows. First of all, we give a survey of relative discrete time
process algebra (Section 2). Further a graph model for discrete time process algebra without
recursion is presented (Section 3). The next section is dedicated to an survey of timed frames
(Section 4). Section 5 introduces a timed frame model for basic discrete time process algebra.
Finally we construct a graph model and a frame model for basic discrete time process algebra
with recursion and we prove that they are isomorphic (Section 6).

2 Relative discrete time process algebra

Process algebra in the form of ACP describes the main features of concurrent programs but does
not deal explicit with time. However the time order is covered; p - ¢ expresses that the process
p has to be performed before the process q. A more quantitative view of time is taken into
account in discrete time process algebra where a division of time in slices is used. For example,
the property that a process is delayed n time slices can be expressed in this setting.
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Relative discrete time process algebra 2

In Section 2.1 the theory of BPA, is presented. This is the kernel of discrete relative time
process algebra. The superscript = stands for the absence of the immediate deadlock constant
used in [4] to provide conformity in the absolute and relative time cases. Recursion is added in
Section 2.2.

2.1 Basic process algebra

In this subsection we describe basic discrete relative time process algebra without immediate
deadlock (notation BPAZ,,).

It is assumed that a fixed but arbitrary set A of actions has been given, such that § is not in A.
We denote AU {o} by A,.

The signature of BPAS,, is as follows:

Constants:

cts(a) a€A (a in the current time slice)

cts(6) deadlock (§ & A) (deadlock in the current time slice)
Unary operators

Orel delay operator

Binary operators:
sequential composition
+ alternative composition

Given the signature, terms of BPA g, usually referred to as process expressions, are constructed
in the usual way. We write P for the set of all variable-free process expressions. We shall use
meta-variables z, 2,y and y' to stand for arbitrary process expressions. The axioms of BPAZ,
are given in Table 1.

rT+y=y+z Al Urel(x) + Urel(y) = Urel(x + y) DRT1
(z+y)+z=z+(y+2z) A2 orel() -y = orel(z - y) DRT2
r+r==z A3

(x4+y)-z=z-2+y-z A4 z+cts(d) =z A6ID
(z-y)-z=z-(y-2) A5 cts(d) - © = cts(9) ATID

Table 1: Axioms of BPAZ,

We give a structured operational semantics for BPA . We use rules in the style of Plotkin to
define the following relations on P:

action step CP xAx P
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Relative discrete time process algebra 3

action termination C P x A

time step C P x P.
We write

xr -2 o' for (x,a,2') € action step
z —% / for (z,a) € action termination

z % 2’ for (z,2') € time step.

The rules of Table 2 define these relations by simultaneous induction. So rule (2.1) for example,
is read as follows: if z and 2’ are in the relation %+ , then so are z + v and 2’ as well as y + x
and z’. Rules (1.1) and (4.1) are unconditional. Although there is a negative premise in rule
(4.2) these rules define a unique smallest relation. This is not generally the case.

Besides the above mentioned interpretation of the rules, a more operational one can be attached
to them. If z -2+ 2/, this can be read: the process = can perform the action a and then proceed as
process z’. The notation x - 4/ indicates that the process z can perform an action a and then
terminate successfully. Finally, -+ 2’ has as operational meaning that the process x can pass
to the next time slice and then proceed as process z’. So rule (2.1) can be read operationally as
follows: if process = can perform an action a and then proceed as process z’, then the alternative
composition of x with some other process y has the choice to perform the action a and after
that to proceed as process z'. Note that rules (4.2) and (4.3) have complementary conditions.
Together they enforce that the choice between two processes that both can pass to the next
time slice is postponed till after the passage to the next time slice. This corresponds to the time
determinism property reflected by the axiom DRT1.

The equivalence we use is bisimulation on transition systems. It is defined as follows:

Definition 2.1 (bisimulation on transition systems)
A bisimulation relation is a symmetric relation R on process expressions such that:

1. if R(p,q) and p £ p' for some pu € A, and process expression p', then there is a process
expression ¢' such that ¢ £ ¢’ and R(p’, ¢")

2. if R(p,q) and p —*+ / for some a € A then ¢ % /.
O

Two process expressions p and ¢ are bisimilar, notation p £ ¢, if there exists a bisimulation
relation R relating them. The set of process expressions modulo bisimilarity is a model for
BPAj,,. This kind of model is known in the literature as a term model.
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Relative discrete time process algebra 4
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Table 2: Operational rules for BPA

2.2 Recursion

In this subsection we introduce finite linear recursion into the theory of BPA,,. The obtained
theory will be denoted by BPAZ ,Lin.

Definition 2.2 (recursive specification)
Let V be a set of variables. A recursive specification £ = E(V') in BPAg, is a set of equations

E={X=Ex(V)|X eV}

where each Ex (V) is a BPAg,, term that only contains variables from V. These equations are
called recursion equations. By convention we use capital letters XY ... (possibly decorated with
indices) for variables bound in a recursive specification. O

Definition 2.3 (solution of recursive specification)

A solution of a recursive specification £ = E(V') in some model of BPAy, is an assignment that
attaches to each variable X € V a process in that model such that the equations of the recursive
specification are true statements under this assignment. The process attached to the variable X
will be referred to as (X|E). If we are interested in a particular variable X we will call (X |E)
the solution of the recursive specification. O

Definition 2.4 ((t|E))
Let E be a recursive specification and let ¢ be a BPA , term. Then (t|E) is the process ¢ with
all occurrences of X € V in t replaced by (X|E). O
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Relative discrete time process algebra 5

Definition 2.5 (linear recursive specification)
An recursion equation is said to be linear if the right hand side of the equation has one of the
following forms:

o> L cts(ai) Xi + X cts(by)
o8 L cts(a) Xi + L cts(by) + ove(Y)
By convention the empty sum is cts(d).

We call a recursive specification linear if all equations are linear. We call a recursive specification
finite if it has a finite number of equations. O

The signature of BPA3 ,Lin consists of the signature of BPA3, plus a constant (X|E) for all
finite linear recursive specifications £ = E(V) and for all X € V. The axioms of BPA,Lin
consist of the axioms of BPAZ, plus for all recursive specifications £ = E(V') and for all X € V
an equation (X|E) = (Ex|E). We get an operational semantics of BPAg Lin by adding the
rules given in Table 3 to the rules given in Table 2. We obtain a term model for BPA_,Lin as in
the case of BPAg,. In this setting, models for theories involving recursion are considered those
models in which the principles RSP and RDP (given below) hold. Note that in the following we
refer only to linear recursive specifications.

Definition 2.6 (RDP)
A model is said to satisfy the RDP (Recursive Definition Principle) if every recursive specification
FE has at least one solution. O

Definition 2.7 (RSP)
A model is said to satisfy RSP (Recursive Specification Principle) if every recursive specification
has at most one solution. O

If both RSP and RDP hold, then a recursive specification has a unique solution.

In the untimed case these principles hold for the term model. The proof of this makes use of the
bounded-nondeterminism property and of a projection operator. The model we have presented
has the bounded-nondeterminism property and a similar projection operator can be given in
the timed case (see for example [3]). We conjecture that the model given above is a model of
BPA 4, Lin.
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Graph model for discrete time process algebra without recursion 6

(Ex|E) % ¢ (Ex|E) % (Ex|E)-% 2
(X|E) %« (X|E) % (X|E) S

Table 3: Additional rules for BPAS ,Lin

3 Graph model for discrete time process algebra without recur-
sion

In this section we will present a graph model for BPA;,. The elements of the model will be
finite directed labelled graphs in which a root node and several successful termination nodes are
distinguished. We will use the common notions of "node” and "edge” as well as the notions of
"source” and ”target” in order to indicate the direction of an edge.

Definition 3.1 (termination node)
A termination node is a node without outgoing edges. O

Definition 3.2 (o-edges, final edges)
The edges that carry the label o will be referred to as o-edges. An edge which has as target a
termination node is said to be a final edge. O

The construction of process graphs is after [3] and [5].

Definition 3.3 (process graph)
A process graph is a quadruple (N, E,r, ), where

e N is the set of nodes,
e EC (N\J])x Ay x N is the set of labelled edges,

e 7 € (N\ ) is the root node,

e | is the set of successful termination nodes (all nodes in | are termination nodes);
such that the following conditions hold:

1. from any node, there is at most one outgoing o-edge,
2. a node marked as a successful termination node has no incoming o-edges,

3. the root is not marked as successful termination node.
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Graph model for discrete time process algebra without recursion 7

If G is a process graph, N(G) will denote the set of nodes of G, E(G) the set of edges of G,
L(G) the set of successful termination nodes, and r(G) the root of G. O

Definition 3.4 (unsuccessful termination)
A node will be called an unsuccessful termination node if it is a termination node and is not in
the set of successful termination nodes of the graph. O

The equivalence we use is bisimilarity on graphs which is defined as follows.

Definition 3.5 (bisimulation on graphs)

Let G1,G2 be two graphs and R a relation between the nodes of G; and the nodes of Gs.
Relation R is a bisimulation between G, and G3, notation R : G1 & G4 if it is symmetric and
the following conditions hold:

1. the roots of G; and G are related;

2. if u £ v, p € A, is an edge in G1 and R(u,u'), for some node in Gy, then there is an
edge u' £ v' in G5 and R(v,v");

3. if R(u,u’) and u | then u' |.

We will use the root unwinding operation p that transforms a graph G to a graph p(G).

Definition 3.6 (root unwinding)
Given a graph G, we obtain p(G) as follows: add a new node 7’ to G, add an edge r' £+ s for
each edge r % s in G (u € A,), and take 7' as the root of p(G). O

Lemma 3.7 G p(G)

Proof: Similar to the proof for the untimed case given in [6]. O

We will also use for an arbitrary graph G an operation idng, which given two nodes of the graph,
u and ', will produce a new node, idng(u,u') such that idng(u,u') = idng(v,v") iff w = v and
u' =

In the following definitions we suppose, without loss of generality, that the set of nodes of G
and (9 are disjoint. Besides we use r; and 7y to refer to the roots of G; and G, respectively.
The interpretation of the constants and the operators of BPA g, is as follows.
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Graph model for discrete time process algebra without recursion 8

Definition 3.8 (graph model)

1. The process graph cts(d)g is the process graph with one node that is not marked as a
successful termination node u.

2. The process graph cts(a)g is the process graph with two nodes, say r and ¢, where r is the
root node and t is marked as a successful termination node, and one edge, viz. r - ¢.

3. Given two process graphs G; and G4, we obtain the process graph G1 +g G2 as follows:

(a) First we obtain a graph Hj as follows: take the nodes and edges of G and G, add
the node idng (r1,79), add an edge idng (ry,72) £ u (u € A,) for each edge 71 £ u
in G1 and each edge 79 25 ' in G4, and take idng (r1,7r2) as the root of Hy. Continue
with step (b).

(b) If the root of H;, say r', has at most one outgoing o-edge, then continue with step
(c). Otherwise r’ has two outgoing o-edges, say r' -2+ u and r’ %+ u’. In this case,
we obtain a graph H;; from H; as follows: remove the two o-edges and

i. if the node idng(u,u’) already exists in the graph H;, then add a o-edge from
the root to idng (u, u');
ii. if the node idng(u,u’) does not exist in the graph H;, then add it to the graph,
add an edge idng(u,u') £ v (u € A,) for each edge u -5 v and for each edge
u' 5 v in H;, and take idng (u,u') as the root of Hj 1.
In case i continue with step (c) and in case ii repeat step (b).

(c) Let H be the last graph obtained by performing step (b). We obtain G1+¢Gs from H

as follows: mark those nodes in H as successful termination nodes that are marked

as successful termination nodes in Gy or Go, and take idng(ry,r9) as the root of
Gq +¢ Gs.

4. Given two process graphs G1 and G, we obtain the process graph G; -g G2 by appending
a copy of G5 to each node of G; marked as a successful termination node.

5. Given a process graph G1, we obtain the process graph o,¢, (G1) by adding a new root
node, say 7', and an edge ' % r1.

Figure 1 indicates how the alternative composition of the graphs corresponding to some recur-
sively defined processes is calculated.

Definition 3.9 ([ )
For G € G we will denote by [Gl the equivalence class of G modulo bisimilarity. O

Bisimulation (Definition 2.1 is a congruence on G with respect to the operations defined as above.
We extend the definition of operations on equivalence classes as usual. We define:
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Timed frames 9

2 idn(1,2) idn(1,2) idn(1,2)
N ¢
.Q a g < > - c c >cr
idn(1,4)
b 4 b 1 o : b ﬁ. :
c a o o ° C. Q a o o

3 b

5 4
G G c ¢ c

1 2 K 3
5
H H0 H H
1 2

Figure 1: Interpretation of 4+ on process graphs

L Urelg/ﬁ([G]ﬁ) = [Urelg(G)]tﬁ

o [Gile tg/ [Gale = [G1 +g Gal;
o [Gike g/n [Goko = [G1 g Gale

Lemma 3.10 (G/<, +g/05: G/ Trelg [cts(a)gko, [cts(d)gk=) satisfies BPA4,.

Proof: The equalities that constitute the axioms of BPAg, correspond to bisimulations at the
level of graphs. For each axiom, a general construction of a bisimulation can easily be devised.
O

4 Timed frames

This section contains a survey of simple timed frame algebra. We refer to [7] for further details.

Timed frames are built from states and transitions between states. The states are obtained
by an embedding of naturals in states, and a pairing function on states. Simple timed frames
contain two kinds of transitions: action steps and time steps. We consider action steps with a
label from a finite set A of actions.

The signature of (simple) timed frames is as follows:
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10

naturals;
states;
timed frames;

Z€ro;
successor;

embedding of naturals in states;

pairing of states;

empty timed frame;

embedding of states in timed frames;

action step construction (one for each a € A);
time step construction;

Sorts:
N
S
Fs
Constants & Functions:
0 :N
S :N—N
w :N—S
Y{:82 S
0 :F
15 : 5=y
i): 82 — [Ft
25: 52 5 I,
® :F2 =T

timed frame union.

Given the signature, (closed) terms are constructed in the usual way. We shall use the meta-
variables n and m to stand for arbitrary terms of sort N, the meta-variables s, s’ and s” to stand
for arbitrary terms of sort 5, and the meta-variables X, Y and Z to stand for arbitrary terms of
sort Fy. We write n instead of u(n) or us(u(n)) as well as s instead of 25(s) when this causes no
ambiguity. Terms of the forms 15(s) and s -2+ s’ denote atomic timed frames, i.e. timed frames
that contain a single state or transition. The constant () denotes the timed frame that contains
neither states nor transitions. The operator @ on timed frames gives the union of the states
and transitions of its arguments. The pairing function )~ is a simple means to define “fresh”
states.! The axioms for timed frames are given in Table 4. These axioms characterise frames as

(FAT) Xov
(FA2) X & (Ve 2)
(FA3) X®X
(FA4) X0
(FA5) s® (s 8
(FA6) s'@ (s
(TFA1l) s& (s 5 &)
(TFA2) s'@ (s &)

Y X
(XaY)aZ
X

X

s s 8

s 25 8

s L5 8

s L5 s

Table 4: Axioms for timed frames.

objects consisting of a finite set of states and a finite set of transitions (axioms (FA1)—(FA4)).
In addition, frames are identified if they are the same after addition of the states occurring in

the transitions to the set of states (axioms (FA5), (FA6), (TFA1) and (TFA2)).

We define iterated frame union by

DF Xi:{w

Xn ® O, 1 X

if £ <mn,

otherwise.

'Tn [8], where time-free frames were introduced, the pairing function is used to define a frame product function.
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Timed frames 11

Every frame has a finite number of states and transitions. In [8], frame polynomials are in-
troduced to deal with the countably infinite case as well. This paper focuses on timed frames
corresponding to regular discrete time processes. Therefore only frames with a finite number of
states and transitions are considered.

In order to investigate the connection with discrete time process algebra, we introduce in Defi-
nition 4.3 a special kind of bisimulation, called o-bisimulation. That definition and subsequent
ones need some conditions that are related to the transitions contained in a given frame. These
frame conditions are as follows.

Definition 4.1 (frame conditions)

s 9 sp = | ° if (s % s)@F=F
U f otherwise
o, _ t if(s s N@F=F
s = sle = { f otherwise
[s » s'lp = t if [s % s']p =t for some a or [s L §'|p =1t
B f otherwise
t if[s—s'lp=tor
s =5 sr = [s = s"]p = tand [s" =% s'|r =t for some 8" € S
f otherwise

In the sequel, we will write [s - s']F instead of [s - s']p = t, [s - s']F instead of [s T
s'|F = t, etc. when this causes no ambiguity. We write |F'| for {s € S | 1s(s) & F = F}. For
s’ € |F|, we write [-% s'|F to indicate that there exists no s € |F| such that [s -— s'|F and
[s /]F to indicate that there exists no s” € |F| such that [s - s"]p.

Below bisimulation and o-bisimulation are defined as equivalences on pointed frames, i.e. frames
equipped with a root marker and a termination marker. For further explanation of o-bisimulation
we refer to [7]. Pointed frames, which are closely related to transition systems, are defined first.

Definition 4.2 (pointed timed frame)
A pointed timed frame is a triple (F,p, q) where F' is a timed frame and p,q € |F|. O

Definition 4.3 (o-bisimulation)

Let F and F’ be timed frames, and let p,q € |F| and p',¢' € |F'|. The pointed timed frames
(F,p,q) and (F',p',q') are o-bisimilar, written (F,p,q) < (F',p',¢'), if there exists a relation R
on P(|F|) x P(|F'|) such that:
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Timed frames 12

1. R({p},{r'});

2. if R(S,T) and [s - s'|F for some s € S and s’ € |F|\{q}, then [t < | and R({s'}, {t'})
for some t € T and t' € |F'|\ {¢'};

2¢. rule 2 vice versa;
3. if R(S,T) and [s % ¢]r for some s € S, then [t - ¢']p for some t € T;
3¢. rule 3 vice versa;

4. if R(S,T), then R(S',T") where ' ={s' € |F|\{¢} | s € S-[s D s'lp} and T' = {t' €
[F'I\{d'} | FeT [t = t]p};

5. if R(S,T) and [s = s'|F for some s € S and s' € |F|, then [t — t'] for some t € T and
t' e |F'|;

5¢. rule 5 vice versa.

(F,p,q) and (F',p',q') are bisimilar, written (F,p,q) < (F',p’,q'), if there exists a relation R
that satisfies, in addition to the above-mentioned conditions, the following one:

6. if R(S,T), then card(S) = card(T) < 1.

o-bisimulation is an equivalence relation on frames. We will write R : (F,p,q) & (F',p',¢') to
indicate that R is a o-bisimulation relation between the frames (F,p,q) and (F',p',q').

For S C |F|, we write o(p.q)(S) for {s' € |F|\{¢}|3s € S-[s = §']r}.

Lemma 4.4 If(F,p,q) is a pointed frame then there is an auto o-bisimulation on (F,p,q) which
relates only sets of states that are reachable from p.

Proof: Let F? = {(M,M)|M € P(|F|) }. For every B C F? define N(B) as the smallest
subset of F? with the following properties:

1. if (M,M) € B,s € M and [s -* 7]p then ({r},{r}) € N(B);

2. if (M, M) € B then (U(F,p,q)(M)aU(F,p,q)(M)) € N(B).

It is immediate that B C F implies N(B) C F2. Let By = {({p}, {p})} and R = U,cpy N"(By),
where N°(B0) = By and N"*1(B0) = N(N"(B0)). It can be easily shown by induction on n
that s € M and (M, M) € N™(Bq) imply s is reachable from p with n transitions. We now show
that R is an auto o-bisimulation on (F), p, q) by checking each of the conditions for o-bisimulation.
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Timed frames 13

1. R({p},{p}), because By € R.

2. Suppose that R(S,S), [s -2 r]p for some s € S and r € |F|\ {¢}. Then (S, S) € N*¥(By)
for some k € N and ({r}, {r}) € N¥1(By), thus R({r}, {r}).

3. Immediate.

4. Suppose R(S,S). Then (S,S) € N¥(Bg) for some k € N and (0(p,.)(S), 0(rpe)(S)) €
N¥H(Bo), thus R(0(5,)(S), 9(r,p.0)(5)):

5. Immediate.

Definition 4.5 (frame isomorphism)

Two pointed frames (F,p,q) and (F',p’,q') are said to be isomorphic if there is a bijection
between states which preserves the transitions, the starting state and the termination state,
i.e. there is a bijection f : |F| — |F'| such that f(p) = p', f(q¢) = ¢’ and [s 5 t]p iff
[f(s) £ f(t)]pr, for any p € A,. O

Lemma 4.6 Two isomorphic frames are o-bisimilar.

Proof: Suppose that f is an isomorphism between(F,p,q) and (F',p’,¢'). Let R be an auto
o-bisimulation on (F,p,q), and for S C |F| denote by f(S) the set {f(s)|s € S}. Then R' =
{(S, f(T))|R(S,T)} is a o-bisimulation between (F,p,q) and (F',p',q¢'). O

We now define time determinism and time persistency for frames, because together they char-
acterise the kind of frames that corresponds to the timed transition systems that underlie the
model of discrete time process algebra with relative timing presented in [3]. Frames of this kind
are called proper timed frames.

Definition 4.7 (o-deterministic, o-persistent, proper timed frames)
A timed frame F' is o-deterministic if it satisfies:

if [s % t]F and [s -5 ¢']|p for some s,t,t' € |F|, then t = ¢'.
A timed frame F' is o-persistent if it satisfies:

if [s = t]p and [s -2 t']p for some s,t,t' € |F|, then [t' — t"]p for some t" € |F|.
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A timed frame F' is proper if it is o-deterministic and o-persistent. O

In [3], discrete time process algebra with relative timing is based on transition systems corre-
sponding to pointed frames (F,p,q) where F is proper and ¢ has no incoming time steps (i.e.
[-% q]F). For pointed frames satisfying these conditions, the definition of bisimulation given
here is equivalent to the one given in that paper.

According to the following three lemmas, every pointed frame is o-bisimilar to one of the pointed
frames that correspond to the transition systems that underlie the model of discrete time process
algebra with relative timing presented in [3].

Lemma 4.8 Every pointed timed frame (F,p,q) is o-bisimilar to a pointed timed frame (F',p,q)
where [ % q|p.

Proof: Add a new state, ¢/, to the frame and replace ¢ by ¢’ in all its incoming time steps.
The frame obtained is o-bisimilar with the original one. O

Lemma 4.9 Every pointed timed frame (F,p,q) where [ %4 q]F is o-bisimilar to a pointed timed
frame (F',p',q') where F' is o-deterministic and [ -2 q]p.

Proof: Let en: P(|F|) U{q} — N be an enumeration of the elements of the power set of |F|.
Construct a frame F' as follows:

1. for each S € P(|F|), there is a state en(S) in the frame;

2. for each S € P(|F|), if [s % t]p for some s € S, then the action step en(S) —*> en({t})
is in the frame;

3. for each S € P(|F|), if 0(pp4)(S) # 0, then the time step en(S) = en(o(ppq)(S)) is in
the frame;

4. for each S € P(|F|), if o(ppq)(S) =0 and [s = ¢]p for some s € S then en(S) = en{q}
is in the frame.

F' is clearly o-deterministic. Let p’ = en({p}) and ¢’ = en({q}). Let R be an auto o-bisimulation
on (F,p,q). Then R’ defined by R'((), () and R'(S,en(S)) iff R(S,S) is a o-bisimulation between
(F,p,q) and (F',p',¢'). O

Lemma 4.10 Every pointed timed frame (F,p,q) is o-bisimilar to a pointed timed frame (F',p, q)
where F' is o-persistent.
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Proof: Construct F’ from F by removing all the final time steps provided that they have
outgoing action steps from their source. The frame F' is obviously proper. Let R : (F,p,q) &
(F,p,q) be an auto o-bisimulation. A o-bisimulation R : (F,p,q) & (F',p',q') is obtained as
follows: R'(S,T") iff R(S,T) and T" is T without the targets of the removed time steps. O

We will use the following fact:

Remark 4.11 Let (F,p,q) be a proper frame and let (F’;p’,¢') be a frame that is obtained by

applying the constructions (either one of them or both) given in the proofs of the Lemmas 4.9

and 4.10. Then the part of F reachable from p is isomorphic with the part of F’ reachable from
/

p. O

According to the following lemma, < and < coincide for the pointed frames that correspond
to the transition systems that underlie the model of discrete time process algebra with relative
timing presented in [3].

Lemma 4.12 For any two proper timed frames F and F', p,q € |F| and p',q' € |F'|, (F,p,q) &
(F'.p',d) iff (F,p,q) & (F',p',q').

Proof: The proof is analogous to the proof for Lemma 3.7 from [7]. O

5 Frame model for discrete time process algebra without recur-
sion

In this section, we introduces a timed frame model for BPA g ,-ID without recursion. We extend
this frame model for BPA,-ID with finite linear recursion in the next section.

We use timed frame algebra to give an interpretation of the constants and operators of BPA -
ID on frames. This extends to a model of BPAg,-ID since o-bisimulation is a congruence with
respect to the interpretation of the operators.

We first define some useful auxiliary operations on frames.
To begin with, we shall use the extension of the successor function S to states and frames. This

extension will be used to make the set of states of one frame disjunct from the set of states of
another frame. It is straightforward to define the extension:
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Sn(n)) = w(S(n))
S(s)Hs") = S(s)HAS(s")
S@ = 0
S(s(s)) = s5(S(s))
S(s 25 1) = S(s) - S(1)
S(s-251) = S(s) % S(1)
S(XaY) = S(X)&S(Y)

We also simply write S™(E) for the nth successor of E, where E is a term of sort N, S or Fy.

This notation can be defined as follows:

S°(E
Sn+1 (E)

E
= S(5™(E))

Furthermore, we shall use operations psrc, prg, Prge : S X S X Fy — [y to replace a state in each of
its outgoing transitions, in each its incoming action steps and in each its incoming time steps,
respectively. These replacements operations will be used to identify the root or termination state
of one frame with the root or termination state of another frame. It is rather straightforward

to define the replacement operations:

psrc(s/s’)( ) = 0
psrc(s/s’)a(su) = g" .
Psrc(s/s) (s == 1) = s 5 tDs
Psrc(s/s) (8" —=>1) = st ifs#s"
Psrc(s/s' )(3 Sty = & Dtds
Psrc(ss) (8" 1) = "Dt ifs#s”
Psrc(s/s' )(X ®Y) = Psrc(s/s’)(X) @ Psrc(s/s’)(Y)
p?gt(t/t')( ) 0
ptogt(t/t’) (SII) — g
pic:)gt(t/t’)(s =t = sHt'at
Prar(esiy(s = t") = st it #t"
Prgr(ejey(s —>t") = s t"
Prge(e/) (X ©Y) Prgt(t/e) (X) ® Prgeesiny (Y)
Prgrey) () = 0
pt.gt(t/t’) (SII) — g
Prat(/en (s = 1") = s t"
pt.gt(t/t’)(s L> t) - S L) t, EBt
Prat(syiny (s = t") = st if ' £t
p;gt(t/t’)(X @ Y) p;gt(t/tl)(X) 5%} p;gt(t/t,)(Y)

Note that, even if there will be no incoming or outgoing transitions left for the state to be
replaced, these operations do not remove a state from a frame.
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Root unwinding can simply be defined in terms of the other operations:

v(X,7) = perc(s(r)/0)(S(X)) @ S(X)

With these auxiliary operations, it is now easy to give the interpretation of the constants and
operators of BPAg, on pointed timed frames. The interpretations are given by the definitions
in Table 5. They are denoted by the constant or operator decorated with the subscript .

cts(a)r = (0-%1,0,1)
cts(d) = (0-51,0,1)
orer((X,m,1)) = (0 S(r) @ S(X),0,5(¢))
(X t) -7 (X', 1) = (Ptgt(t/sn(r ))(Ptgt(t/sn(t/))(X)) & S"(X')),r, S"(t'))
where n = S(max(] X))
(X,mt) +7 (X0 t) = (Pgge(s(e)sm+ ) (Plge(sieysma (ery) (K ru)) @ X7, 0, S™FH(E))

where X,,=v(X,7),
n = S(maX(|Xru|))7
X{«u: U(Sn(Xl)a‘S’n(rl))

Table 5: Interpretation of constants and operators

Let F be the set of pointed timed frames (F, p, q) that satisfy:

1. [p _>‘*F| slp = (s =q) V[s — §']p for some s’ € |F|;

2. —[qg — §'|p for any &' € |F|.

For (F,p,q) € F we will denote by [(F,p, Q)Lg the equivalence class of (F,p,q) on F modulo

o-bisimilarity. We will prove that (F/ <, 4—]C & /@ , [cts(a ]-‘L_> [cts(d satlsﬁes BPAZ,, by

showing it is isomorphic with the graph model described in Section 3.

First note that the frames and the graphs are closely related. This is reflected by the following
transformation:

Definition 5.1 (underlying graph)

To a given frame a finite directed labelled graph can be attached in a natural way. For each state
of the frame there is a node in the graph. For each transition in the frame there is an edge in the
graph from the node corresponding to the source of the transition to the node corresponding to
the target of the transition. If the transition is an action step then the edge is labelled with the
action concerned, otherwise the edge is labelled with . The graph obtained is unique modulo
isomorphism and it will be referred to as the graph underlying the original frame. We use as
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notation for the underlying graph of the frame F', ugr(F'). To avoid a heavy notation we denote
the node corresponding to a state s also by s, since it will always be clear from the context if
we refer the state or to the corresponding node. We can extend now the definition to pointed
frames. The graph ugr(F,p, q) is the graph underlying F' in which we distinguish a root, p, and
a successful termination node, q. O

The above transformation is not enough to relate G and F in a satisfactory way. This is indicated
in the following remark.

Between the graph model and the frame model there are two major differences. Firstly, the
latter admits time nondeterminism, i.e. there may be more than one time step outgoing from a
certain state and, as a consequence, the underlying graph of a frame is not necessarily a process
graph. Secondly, although in both models process behaviours have similar representations, the
role of the (unsuccessful termination) nodes of a process graph that represent deadlock is taken
by the states of a frame which have an outgoing final time step. This is a reasonable way to
represent deadlock because of two reasons: it allows for extensions to frame models for process
algebras which include §, and it yields consistency between the interpretation of processes as
frames and the process extraction operator defined in [7].

We will devise a transformation gr2fr between the set of process graphs G and the set of pointed
frames F, as well as an inverse transformation fr2gr from F to G. We further prove that
the transformations induced on equivalence classes of G and of F, respectively, are inverse
functions of each other. Then by proving that the function induced by gr2fr to equivalence
classes commutes with the operations we actually obtain an isomorphism between the graph
and the frame model.

Definition 5.2 (gr2fry)
Let G = (N, E,r,|) be a graph in G. On G perform the following transformations:

(a) add an outgoing o-edge (to a new node) to all unsuccessful termination nodes;

(b) if there is no termination node add a new node ¢ to the graph; otherwise identify all
termination nodes and let ¢ be the node obtained.

Let G' be the graph obtained after this transformation. Consider g : N(G') — N an arbitrary
enumeration of the nodes of G'. We define gr2fr,(G) to be the pointed frame (F, g(r(G)), g(q)

where |F| = {g(u) | u € N(G) \ (G)} U {g(q)} and [g(u) > g(u)]geon (c) iff u == o' (1 € Ay)
is an edge of G'. O

Definition 5.3 (fr2gr)
Let (F,p,q) € F be a pointed timed frame. On (F,p, q)

(a) apply the construction in the proof of Lemma 4.8 (the frame obtained has the property
that [ % ¢]r and is o-bisimilar to (F,p,q));
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(b) apply the construction in the proof of Lemma 4.9 (the frame obtained is o-deterministic
and is o-bisimilar to (F,p,q));

(c) apply the construction in the proof of Lemma 4.10 (the frame obtained is o-persistent
and is o-bisimilar to (F,p,q));

(d) remove all remaining final time steps (the frame obtained has as underlying graph a
process graph).

Let (F',p',q') be the frame obtained in this way. We define fr2gr((F,p,q)) to be the graph

Lemma 5.4 If G € G and gr2fr (G) = (F,p,q) then F is a proper frame.

Proof: Straughtforward from the definition of process graphs. O

Lemma 5.5 gr2fr (G) does not depend on g, i.e. gr2frg(G)<§gr2frg,(G) for any g and ¢'.

Proof: Let G' be the graph obtain after steps (a) and (b) from the definition of gr2fr,. If R is an
auto-bisimulation of G’ then the relation defined by R' = {({g(u)}, {¢' (') }|(u,u') € R}U{(0,0)}
is a bisimulation between gr2fr (G) and gr2fr,(G). Then from the previous lemma and 4.12,

gr2fr (G) & gr2fry, (G). O

Remark 5.6 If (F,p,q) is an arbitrary pointed frame and (F’,p’, ¢') is the frame obtained from
(F,p,q) after the first three steps of fr2gr then F' is proper and (F,p,q)< (F'p',¢'). O

Lemma 5.7 Let G1 & G9 and let g1 and go be the enumerations used in gr2frgl(G1) and
gr2fry, (G2). Then gr2frgl(G1)<§gr2frg2(G2).

Proof: For i € {1,2}, let ¢; be the node which is obtained in step (b) of gr2fr;, when it
is applied to the graph G;. Suppose R : G1 & Ga, gr2fry (G1) = (F1,91(r(G1)),91(¢q1)) and
gr2fry, (G2) = (F2, 92(7(G2)), 92(g2)). Then taking into account Lemma 5.4 it is straightforward

to show that if R' = {({g1(s)},{92(s)})|(s,8") € R,s & [(G1),s" & L(G2)} U{(0,0)}, then
R': (Fi,p1,q1) € (F2,pa,q2). O

Lemma 5.8 If (F,p,q) < (F',p',q') then fr2gr((F,p,q)) & fr2gr((F',p', "))

Proof: Suppose fr2gr((F,p, q)) = G1 and fr2gr((F', p', ¢')) = G2. Let (Fi, p1,q1) and (Fy, pl, ¢1)
be the frames obtained from (F,p,q) and (F',p’,q'), respectively, after applying steps (a), (b)
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and (c) from the definition of fr2gr. Then it follows from the assumptions and Remark 5.6 that
(FL,p1,01) € (Fop, ) & (F,p',¢') & (F{,p}, ).

By Lemma 4.12 and once more 5.6, there is R : (F1,p1,q1) € (F{,p},q7)- The relation R’
defined by R'(q1,¢}) and R'(u,v) iff R({u},{v}) is a bisimulation between ugr(Fi,p1,q1) and

ugr(F{,p',q1)-

Now, the graphs fr2gr((F,p,q)) and fr2gr((F’,p’,q')) can be obtained from ugr((F1,p1,491)) and
ugr((Fy,pY,q})), respectively, by removing the remaining final o-edges. It follows that R’ is a
bisimulation between fr2gr((F,p,q)) and fr2gr((F',p',q')) as well. O

Lemma 5.9 If G € G then fr2gr(gr2fr (G)) < G.

Proof: Suppose that gr2fr(G) = (F,g(r(G)),9(¢)). In the case that G has no termination
node, ugr(F,g(r(G)),g(q)) is the graph G in which each node u is renamed to g(u) and a
new node g(q) is added. Obviously ugr(F, g(r(G)), g(q)) is bisimilar to G. Applying fr2gr to
(F,9(r(G)), 9(q)) will have no effect on (F, g(r), g(q)) thus fr2gr(gr2fr,(G)) € @. In the other case
(G has at least one termination node), the graph ugr(F, g(r(G)), g(q)) is the graph G in which a
o-edge is added to all unsuccessful termination nodes, all termination nodes are identified and
each node u is renamed to g(u). Because (F,g(r(G)),g(q)) is a proper frame (Remark 5.4),
fr2gr((F,g(r(G)),g(q))) is obtained by applying steps (a) and (d) from the definition of fr2gr
(Remark 4.11). This will have as effect the removal of the time steps corresponding to the
o-edges added in step (a) of gr2fr,. The graph which is obtained is the graph G in which each
node u is renamed to g(u) and all successful termination nodes are identified. The equivalence
fr2gr(gr2fr (G) € G is obvious. O

Lemma 5.10 If (F,p,q) € F then gr2fr (fr2gr((F,p, q))) & (F,p,q).

Proof: Let (F',p’,q') be the frame obtained from (F,p, q) after applying steps (a)-(c) of fr2gr.
According to 5.6, (F,p,q) & (F',p',¢'). Step (d) of fr2gr and (a) of gr2fr, are complementary
in the sense that the time steps which are removed in step (d) of fr2gr are replaced by the time
steps corresponding to the o-edges added in step (a) of gr2fr,. The graph underlying (F',p',q")
is isomorphic with the graph underlying gr2fr (fr2gr((F, p,q))). O

We define the transformations induced by gr2fr, and fr2gr on equivalence classes and prove that
these transformations are functions. Further we prove that the transformation induced by gr2fr
is a homomorphism with respect to the operations on G /<.

Define gr2fr([Glz) = [gr2frg(G)]<£> for an arbitrary g. Note that the definition does not depend

on g (from 5.5) and the transformation which is obtained is a function between equivalence
classes (from 5.7). Overloading fr2gr we define fr2gr([(F, p, Q)]@) = [fr2gr((F, p, q) ).
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Lemma 5.11 o-bisimilarity is a congruence on (F,+r,-F,cts(a)r, cts(d)r).

Proof: We prove that the operations on F respect o-bisimilarity. Let (Fy,p1,q1), (F1,p},4}),

(F2,p2,q2), (F3,ph,q5) be pointed timed frames in F, such that Ry : (F1,p1,q1) < (F{,ph,q})
LoN

and Ry : (Fy,p2, q2) & (F3, ph, 43)-

We will use the following extensions of the function successor: for M C N, S(M) = {S(m) |
m € M}; and for n € N, S(M) = M and S"*} (M) = S(S™(M)).

L4 Urely:(FlaplaQI)éarely:(Fllapllaqll):
take R = {({0},{0})} U{(S(M), S(M"))|(M, M) € R1};

o (Fi,p1,q1) 7 (Fa,p2,42) € (FY,pY, ) = (F3,ph, b): ,
take R = {(M,M")|(M,M') € Ry} U{(S™(M),S™(M")|(M,M') € Ry}, where n; =
S(maz(|F1|)) and n} = (maxz(|Fj]));

o (Fi,p1,q1) +7 (Fa,p2,42) & (Y, p, 1) +7 (F3, ph, ¢b):
take R to be the smallest relation satisfying the following conditions:
— ({0}, {0}) e R,
— if (M, M') € Ry, (N,N') € Ry and for some k € N, M = o*({p1}), M' = o*({p}}),
N = o*({p2}) and N’ = o*({p4}) then (S(M)U S™(N), S(M')U S"1(N")) € R,
— if (M, M') € Ry then (S(M),S(M")) € R,
— if (N, N') € Ry then (8™ (M), 8™ (M")) € R,

~—_ T

where ny = S(S(max(|F1|)) and n} = S(S(maz(|F1]))).

We define the following operation on graphs.

Definition 5.12 (frame-like sequential composition on graphs)

Given G; and Gy graphs in G the graph G; -rg G2 is obtained by identifying all successful
termination nodes in G;. To the node obtained this way append the graph G5 in which all
successful termination nodes are identified. O

Lemma 5.13 G1-¢ Go< Gy - g Gs.
Proof: Obvious. O

Lemma 5.14 gr2fr, (G1-7g G2) égr2frgz(G1) 7 gr2fry, (Ga).
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Proof: ugr(gr2fry, (G1-7g G2)) is obtained by appending to each unsuccessful termination node
of G -rg Go an outgoing o-edge to a new node and identifying all termination nodes.

ugr(gr2fr,, (G1) -7 gr2fr,,(G2)) is obtained as follows:

1. a o-edge is appended to all unsuccessful termination nodes of G and all termination
nodes (including the new nodes which were added) are identified, thus obtaining a unique
termination node;

2. the same operation is performed on Gs;

3. (a) the graph obtained in step (2) is appended to the node obtained in the identification
performed in step (1);
(b) the time steps which were appended to the unsuccessful termination nodes of G; and
now have as target the termination node of G are "re-directed” to the termination
of Gz.

It is easy to see that ugr((gr2fr,, (G1-rgG2)) and ugr(gr2fr, (G1) Fgr2fry,(G2)) are isomorphic. A
bisimulation between these graphs can be translated to a o-bisimulation between gr2fr, (G1-rg
G2) and gr2fr, (G1) -7 gr2fry, (G2). O

Lemma 5.15 gr2fr is a homomorphism between (G /<, +6 /ey *G /s Trelg s [cts(a)glk=, [cts(d)g )

and (F/ &, SO ol o [ets(a) g, [ets(0) 7la)-

Proof: We have to prove that gr2fr commutes with the constants and operations of G /&, i.e.
that the following equivalences hold: cts(a)r & gr2fr (cts(a)g), 67 & gr2fr (6g), ovel(gr2fr,, (G)) &
gr2fry, (0ve1(G)) and for any two process graphs G and Ga in G we have: gr2fr, (G1 g G2) &
gr2fry, (G1) - gr2fry, (G2) and gr2fr, (G1 +¢ Gg)égr2frg2(G1) +7 gr2fr, (G2).

e (constants and o)
For the constants and the o, operator the conclusions follow immediately from the defi-

nitions of constants and oye and the definition of gr2fr.

e (sequential composition)
From Lemma 5.13 we have that G1-g G2 € G -£g G2. This means that gr2frgl(G1 ¢ Ga) &
gr2fry (G1 -rg G2) (Lemma 5.7). From this result combined with Lemma 5.14 we get

gr2fr, (G1 g Gg)égr2frg2(G1) F gra2fry, (Ga).

¢ (alternative composition)
Let G; and G be two arbitrary graphs in G. We distinguish four cases:
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- G =Gy = CtS(5)g.
It is a matter of simple calculations.

— Gy = cts(d)g and Gy # cts(d)g.
By definition, cts(d)g +¢ G2 = Ga. It follows that it is enough to prove that
gr2fr (Ga) égr2frg1(cts((5)g) +g gr2fry, (G2). For this, observe that gr2fr, (cts(d)g) =
((0 = g1(u)),0,91(u)), where u is the only node in cts(d)g. The o-bisimulation
between gr2fr (G2) and gr2fr, (cts(d)g) +g gr2fry,(G2) is R constructed as follows:
R ={(g(r(G2)),{0}}U

{({g(w)}, {5 (g2(u))Plu € N(G2) \ (G2)},

where ny = S(g1(u)).

— Gq = cts(d)g and Gy # cts(d)g.
Similar to the above case.

— Gy # cts(d)g and Gy # cts(d)g.
We have to prove that gr2fr, (G1+¢G2) <£>gr2frg2 (G1)+Fgr2fr,, (Ga) for two arbitrary
graphs G1 and G2. For a graph G and s,s’ € N(G) we will write s 7", ¢ to mean

that there is a path of length k starting from the node s, ending with the node s’ and
which contains only o-edges. Take the following relation:

R ={({glidn(r1,r2))}. {0} S
{({o(ien(ur, )}, {S (1 (), S™ (ga(w))D[3k € N,y 5w,y 5 w'h
{{o(u)}, {S(ar (w))|u € N(G) \ UG}

{o(u)}. L™ ()Pl € N(G2) \ L(Ga)}:

where n; = S(max{g1(u) | u € N(G1) \ }(G1)}).

Theorem 5.16 The graph model (G /<, +G /s G /ey Orelg sl Cts(@) 2, [cts(8)|2) is isomorphic to

the frame model (F /|, +f/§" elJr/é[cts( )]H’ [Cts(é)]t)).

o, 0
T

FA2

Proof: The function gr2fr is a bijection on equivalence classes (Lemmas 5.9 and 5.10), and it
is a homomorphism with respect to the operations (Lemma 5.15). O

6 Recursion in graphs and frames

In this section we give an interpretation of the constants (X|E), for finite linear recursive spec-
ifications E, on frames. First we extend the graph model of BPAg, for these constants. The
resulting model satisfies RDP and RSP. After that we extend the frame model for these constants
as well, resulting in a model isomorphic with the extended graph model.
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6.1 Graph model for BPA Lin

The construction of the process graph corresponding to (X|E) in case of finite linear recursion
follows the one for the untimed case (see for example [6]).

Let X € V and E = E(V) be a finite linear recursive specification. Then the process graph
(X|E)g is constructed as follows:

e there is a node in the graph for each variable Y € V' (also be denoted by Y);
e the root of the graph is the node X;
e for each equation Z = sz in E(V):

— for each summand cts(a;) - X; in sz there is an edge labelled with a; from the node
Z to the node X;,

— for each summand cts(b;) in sz there is an edge labelled with b; from the node Z to
a new node that is marked as a successful termination node,

— for each summand o, (Y;) in sz there is an edge labelled with o from the node Z to
the node Y;.

Theorem 6.1 The graph model (G /&, +g /s G i3 Orelg s [cts(a)g ke, [cts(d)gle, [(X|E)gle) sat-
isfies BPAZ, Lin+RDP. B

Proof: We show that, if E = E(V) is a recursive specification and X = )", cts(a;) - X; +
> cts(bi) + 0w (Y) is an equation of E, then

(X|E)g & 3 cts(ai)g - (Xil E)g + 32 cts(bj)g + ara((Y]E)g)

holds. RDP follows then immediately.

The right hand side of the equation is the alternative composition of several graphs. First there
are the graphs of the form cts(a;)g(X;|E)g. Then there are the graphs cts(b;)g and finally there
is the graph o,((Y|E)g). Among these graphs only the latest has an outgoing o-edge from
its root. This implies that step (b) from the definition of alternative composition on graphs
will not be applied. Due to this fact calculating the alternative composition of these graph is
just unwinding their roots and identifying all the new roots. A general picture is presented in
Figure 2. The picture also gives a clue on how a bisimulation between the left hand side graph
and the right hand side graph can be obtained, namely a relation which relates the node X in
the graph (X|E)g with all its copies and with the root r of the graph on the right hand side,
each node Z € V' \ {X} with all its copies on the right hand side, and a successful termination
node on the left hand side with all its copies on the right hand side. O
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X|E yoox .
<X >g iths(a,)g g<>qE>g +gJ_ths(b,)g+gordg(<Y\E>g)

Figure 2: The graph model satisfies Lin

We will prove now that the graph model for discrete time process algebra with recursion satisfy
RSP.

For this we introduce a projection operator for discrete time process algebra without immediate
deadlock. The axioms which define this operator are given in Table 6.

mo(X) = cts(6) PR1 Tnt1(cts(a)) = cts(a) PR4
mn(cts(d)) = cts(9) PR2 mnr1(cts(a) - X) = cts(a) - 7, (X) PRS
Tn+1(0rel (X)) = orel(mn(X)) PR3 (X +Y) = mp(X) 4+ mo(Y) PR6

Table 6: Axioms of the projection operator

We can formulate now the AIP (Approximation Induction Principle). Informally it states that
the processes are uniquely defined by their finite projections.

Definition 6.2 (AIP)
A model is said to satisfy AIP if for any = and y the following statement is true:

(Vn > 1,mp(2) = mp(y)) = 2 =y.
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We also define the head normal form of a process.

Definition 6.3 (head normal form)

We say a process expression p has a head normal form if p = cts(d) or there are k,I,m € N, with
k+1+m > 0, atomic actions a; (1 < k), b; (¢ <) and processes p; (i < k), g; (¢ < m) such that
p=Yickcts(ai) - pi+ Xiqcts(bi) + Xicm ove (@), O

Using this notions we will prove that a model satisfying AIP also satisfies RSP.

Lemma 6.4 Every process expression in BPAL, Lin has a head normal form.

Proof: We do the proof by structural induction on the terms of BPAZ Lin. For the constants
it is obvious. Consider that the processes p and p’ have as head normal form:

o p=73k cts(ai)  pi + 3y, cts(bi) + 3, ovel(gi)

o p' =3k, cts(ag) - i+ Xy, Cts(b)) + X icim, orel(4)

The head normal form of processes are:

* (0rel)
orel(p) is a head normal form already;

¢ (alternative composition)
p+p =ik, cts(ai) pit Dicp, cts(ag) pi+ iy, cts(bi) + 35, cts(by) + Xicm, Orel(ai) +
Di<ms Orel (47);

¢ (sequential composition)
PP = ick, cts(ai) - pi - P+ iy, cts(bi) P+ Xicm, Orel(@i - ).

We conclude that all processes in BPA;  Lin have a head normal form. Moreover, every p in
BPAZ, . Lin has a head normal form >, ;. cts(a;) - pi + > ;- cts(b;) + ;-1 Oret(gi) with all the p;
and pj processes in BPA Lin. O

Theorem 6.5 All projections of a process in BPAg, Lin are equal to a closed term.

Proof: By induction on k it is proved that m;(p) is equal to a closed term. The proof is as
in [6] with small, obvious modifications. O
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Corollary 6.6 If E is a linear recursive specification with solutions p and q then for alln >0
we have m,(p) = mn(q)

Theorem 6.7 A model which satisfies AIP satisfies RSP.

Proof: Suppose that a linear recursive specification has solutions p and g. By 6.5 we have that
Tn(p) = mn(q) for all n > 0. Then it follows from AIP that p=g¢q. O

We prove that the graph model for discrete time process algebra with recursion satisfies AIP.

Definition 6.8 (tree(G))
For a graph G € G, tree(G) is defined as follows:

1. tree(G) has a node for every finite path of G, that starts at the root of G. Such a node
has label | if the last node of the path does.

2. There is an edge labelled with a or o between p and p' if the path p’ is an extension of the
path p with an edge labelled a or o respectively.

3. The root of tree(G) is the node corresponding to the empty path in G.

Remark 6.9 Observe that tree(G) is not necessarily a process graph. If we extend the definition
of bisimulation to infinite graphs, then it is true that G & tree(G). O

Definition 6.10 (depth of a node in tree(G))
If G is a process graph then for each node p of tree (G) we define depth of p as being the length
of the path to which it corresponds. O

Definition 6.11 (7,(G))
Let G be a process graph. We obtain 7, (G) as follows:

1. Take tree(G)

2. Remove all edges leaving from a node at depth n.
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Lemma 6.12 (G /4, +¢ /"6 /ey Trelg s [cts(a)gle, [cts(d) gk, [(X|E)gle) satisfies AIP.

Proof: Consider G; and G2 such that m,(G1) € m,(G2) for all n € N. We have to prove
that G1 € G2. We will prove that tree(G1) € tree(G2). Consider the set of all bisimulation
relations between 7,(G1) and 7,(G2) for all n. We introduce a partial order relation on these
bisimulations. If R is a bisimulation between 7,(G1) and 7,(G2) and R’ a bisimulation between
Tnt1(G1) and 7,41(G2) then there is an edge between R and R’ if R C R'. We obtain an finitely
branching infinite tree having as labels bisimulation relations. Due to Konig’s lemma there is an
infinite path which starts from the root. Take the union of the bisimulation relation along this
path. This will yield a bisimulation relation between tree(G;) and tree(G2). Using Remark 6.9
we obtain that G1 € Gy. O

Theorem 6.13 (G /2, +6 /30 G/ Trelg, s [cts(a)gk, [cts(d)g =, [( X | E)gke) satisfies RSP.

Proof: It follows from 6.7 and previous lemma. O

6.2 Timed frame model for BPA7 Lin

Next we give an interpretation in F to the constants (X|E) for finite linear recursive specifica-
tions F.

Let X € V, let E = {X; = sx;,...,Xn = Sx,} be a linear recursive specification and let
e : V — Ny be an enumeration of the variables V. Then the interpretation of the constant
(X|E) with respect to e is given by the definition in Table 7. The specific enumeration used is

F(X|E) = (0@ @ Fe(Xi= Ex,) e(X),0)
where
Feo(Z = cts(8)) = (e(Z) = 0),

Fo(Z=F  cts(ai) - Xi + XL, cts(by)) =
D', (e(Z) 2 e(Xy) & D (e(Z2) 25 0),

-7:6(Z = Zf:1 Cts(ai) <X + 22:1 Cts(bi) + ZZZ1 Ovrel (YZ)) =
DL (e(Z) 25 e(X))) & D'_, (e(Z) 25 0) & DI, (e(Z) T e(V3))

Table 7: Interpretation of the constants (X|E)

not important.

Lemma 6.14 If E = E(V) is a finite linear recursive specification and e and €' are two enu-
merations of the variables in V then the frames F.({(X|E)) and Fo ({(X|E)) are o-bisimilar.
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Proof: Define f(e(X)) = €'(X) and f(0) = 0. It is easy to see that f is an isomorphism
between F.((X|E)) and F.((X|E)). According to 4.6 F.((X|E))< F.((X|E)). O

Lemma 6.15 If E = E(V) is a recursive specification and X € V and e and g are two arbitrary
enumeration then gr2fr ((X|E)g) & F.((X|E)).

Proof: Let Y be the node attached to a variable Y € V in the graph (X |E)g and let ¢ be the
node obtained in step (b) of gr2fr, when applied to (X|E)g. Abusing notation we will denote
by gr2fr,((X|E)) the frame which corresponds to the pointed frame gr2fr,((X|E)).

Define f : gr2fr ((X|E)g) — F((X|E)) by f(g(¢q)) = 0 and f(g(Y)) = e(Y). Obviously it is a
bijection between the states of the two frames. Observe that:

— [e(Y) % e(2)] £, ((x|p)) iff there is a summand of the form cts(a) - Z in Ey iff there
is an edge Y - Z in (X|E)¢ iff [9(Y) % g(Z)]grzfrg(<X‘E>g)

— [e(Y) % e(2)] 7. ((x|B)), iff there is a summand of the form oye(Z) in Ey iff there is
an edge Y 5 Z in (X|E)¢ iff [g(Y) 5 g(Z)]grzfrg(<X‘E>g).

— [e(Y) & 0]7.((x|p)) iff there is a summand of the form cts(b) in By iff in (X|E)g
there is an edge labelled with b from the node Y to a successful termination node iff
[g(V) > 9(@)]geatr (x| B)g)-

— [e(Y) = 0lx ((x|g)) iff By is cts(d) iff in (X|E)g the node Y is an unsuccessful
termination node iff [g(Y) - g(q)]gr2frg<X‘E>.

This indicates that f as defined above is an isomorphism between gr2fr, ((X|E)g) and F.((X|E)).
O

We define (X|E) r as F.((X|E)) for some enumeration e. According to 6.14, F.((X|E)) depends
on e only modulo o-bisimulation.

The given interpretation of constants (X|E) on frames is an algebraic re-formulation of the
construction of the corresponding process graphs.

Theorem 6.16
(G2 + /iy 6 e Treg s [ets(@)ales, [cts(@)ales, [(X| E)gles) s isomorphic o

(F/ &, 8 8 Tre ey [15(0) 7l g [ct5(0) 7, [(X|B) 5 )

Proof: It follows from 5.16 and the previous lemma that gr2fr is an isomorphism between these
models. O
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7

Conclusions and future work

Using the simple algebraic setting for timed frames, we have built a model of BPA3 ,-IDlin. This
model can be extended to include other features, such as propositions and conditions.
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