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Abstract. We present ACP®, a process algebra with conditional ex-
pressions in which the conditions are taken from a Boolean algebra, and
extensions of this process algebra with mechanisms for condition evalua-
tion. We confine ourselves to finitely branching processes. This restriction
makes it possible to present ACP¢ in a concise and intuitively clear way,
and to bring the notion of splitting bisimulation equivalence and the issue
of condition evaluation in process algebras with conditional expressions
to the forefront.

1 Introduction

It is not unusual that process algebras include conditional expressions of some
form. Several extensions of ACP [1,2] include conditional expressions of the
form ¢ :— p or p (> q (see e.g. [3-6]). What are considered to be conditions
differs from one extension to another. The set of conditions is usually one of
the following: (i) a two-valued set, usually called B; (ii) the set of all propo-
sitions with a given set of propositional variables and with finite conjunctions
and disjunctions; (iii) the domain of a free Boolean algebra over a given set of
generators. The third alternative generalizes the first two alternatives. In this
paper, we present ACP®, an extension of ACP with conditional expressions of
the form ¢ :— p in which the domain of a free Boolean algebra over a given set
of generators is taken as the set of conditions. We give the axioms of ACP€,
describe the structural operational semantics of ACP¢, and introduce a variant
of bisimulation equivalence, called splitting bisimulation equivalence, for which
the axiomatization is sound. In the title, the qualification “strong” is used to
indicate that splitting bisimulation equivalence does not provide for abstraction
from internal actions. Outside the title, we leave out this qualification.

How conditions are evaluated is usually not considered. The state operators
as introduced in [4] allow for a kind of condition evaluation. However, state
operators were not especially devised for that purpose. In this paper, we extend



ACP® with operators especially devised for condition evaluation and with the
state operators from [4]; and show how those extensions are related. Two kinds of
operators are devised for condition evaluation, one for the case where condition
evaluation is not dependent on process behaviour and the other for the case
where condition evaluation is dependent on process behaviour. We show how a
theory about the set of atomic conditions can be used for condition evaluation
with an operator of the former kind, that the operators of the former kind are
superseded by the operators of the latter kind and that those operators are in
their turn superseded by the state operators.

The work presented in this paper can easily be adapted to other process
algebras based on (strong) bisimulation models, such as the strong bisimulation
version of CCS [7]. Adaptation to CSP [8], which is not based on bisimulation
models, will be more difficult and in part perhaps even impossible. In some
extensions of ACP with conditional expressions, the conditions are propositions
of a three-, four- or five-valued propositional logic, see e.g. [9, 10]. Such conditions
will bring us outside the domain of Boolean algebras.

In [11], we investigated conditional expressions in the setting of ACP more
extensively. In that paper, we presented ACP® for the first time. We also pre-
sented its main models, called full splitting bisimulation models. We extended
ACP® with the above-mentioned operators especially devised for condition eval-
uation, the state operators from [4] and the signal emission operator from [6],
which like the state operators allows for a kind of condition evaluation. We also
showed how those extensions are related. On purpose to incorporate the past in
conditions, we also added a retrospection operator on conditions to ACP°.

All this fitted in with our intention at the time: to arrive at a well-considered
extension of ACP with conditional expressions in which retrospective conditions
can be used. Retrospective conditions allow for looking back on conditions under
which preceding actions have been performed. Their addition is considered to be
a basic way to increase expressiveness. In the full splitting bisimulation models
of ACP®, infinitely branching processes are taken into account. Because the
set of atomic conditions is not required to be finite, those models are rather
complicated. Moreover, the adaptation of the full splitting bisimulation models
to the retrospection operator on conditions is quite substantial. As a result, other
interesting matters are pushed to the background in [11].

The current paper can be viewed as an extended abstract of some parts
of [11]. Most importantly, the full splitting bisimulation models of ACP® and
the addition of the retrospection operator on conditions to ACP® are not cov-
ered. Moreover, because we confine ourselves to finitely branching processes, the
presentation of what is left over has been fairly simplified.

We do not give proofs of the theorems concerning congruence properties
of splitting bisimulation equivalence, soundness of axiomatizations for splitting
bisimulation equivalence, and uniqueness of solutions of guarded recursive spec-
ifications. Those theorems follow from the corresponding theorems in [11] be-
cause the structural operational semantics induces a model isomorphic to the
full bisimulation model that covers only finitely branching processes.



2 BPA with Conditions

BPA; is a subtheory of ACP that does not support parallelism and communica-
tion (see e.g. [2]). In this section, we present an extension of BPAs with guarded
commands, i.e. conditional expressions of the form (:— p. The extension is called
BPAS§. In the extension, just as in BPAg, it is assumed that a fixed but arbitrary
finite set of actions A, with § € A, has been given. Moreover it is assumed that
a fixed but arbitrary set of atomic conditions C,; has been given.

In BPA§, conditions are taken from the domain of the free Boolean algebra
over C,;. We denote this algebra by C. As usual, we identify Boolean algebras with
their domain. Thus, we also write C for the domain of C. It is well known that C
is isomorphic to the Boolean algebra of equivalence classes with respect to logical
equivalence of the set of all propositions with elements of C,; as propositional
variables and with finite conjunctions and disjunctions (see e.g. [12]).

The algebraic theory BPA§ has two sorts:

— the sort P of processes;
— the sort C of (finite) conditions.

The algebraic theory BPA§ has the following constants and operators to build
terms of sort C:

— the bottom constant 1 : C;

— the top constant T : C;

for each n € Cy¢, the atomic condition constant 7 : C;
the unary complement operator —: C — C;

the binary join operator U: C x C — C;

— the binary meet operator M: C x C — C.

The algebraic theory BPA§ has the following constants and operators to build
terms of sort P:

— the deadlock constant ¢ : P;

— for each a € A, the action constant a : P;

the binary alternative composition operator +: P x P — P;
the binary sequential composition operator -: P x P — P;
the binary guarded command operator :— : C x P — P.

We use infix notation for the binary operators. The following precedence con-
ventions are used to reduce the need for parentheses. The operators to build
terms of sort C bind stronger than the operators to build terms of sort P. The
operator - binds stronger than all other binary operators to build terms of sort
P and the operator + binds weaker than all other binary operators to build
terms of sort P.

The constants and operators of BPA§ to build terms of sort P are the con-
stants and operators of BPAs and additionally the guarded command operator.
Let p and ¢ be closed terms of sort P and ¢ be a closed term of sort C. Intu-
itively, the constants and operators to build terms of sort P can be explained as
follows:



Table 1. Axioms of Boolean algebras

pUL =6 BAl ¢NT=¢ BA5
dU—¢p=T BA2  $N—¢=1 BA6
pUY =L BA3 4Ny =4¢ne BA7

pU@WNx)=(@Uy)N(¢Ux) BAL oM (pUx)=(sNY)U(¢Tx) BAS

Table 2. Axioms of BPA§

r+y=y+uz Al Ti—max==x GC1
(z+y)+z=z+@Wy+2) A2 l:—»zx=94 GC2
r+r==1x A3 p:—d=9 GC3
(z+y) z=z-24+y-z A4 p:—(z+y)=¢:>xz+¢:—y GC4
(z-y)-z=x-(y-2) A5 p:—zx-y=(d:—x)y GC5
r+d==zx A6 o= (Y:—z)=(pMNY):—z GC6
d-x=4 A7 (pUY):—mz=¢:—zx+¢:—zx GC7

— 0 cannot perform any action;

— a first performs action a unconditionally and then terminates successfully;

— p + g behaves either as p or as ¢, but not both;

— p - q first behaves as p, but when p terminates successfully it continues by
behaving as ¢;

— (:— p behaves as p under condition (.

Some earlier extensions of ACP include conditional expressions of the form
p <1 > q; see e.g. [4]. This notation with triangles originates from [13]. We treat
conditional expressions of the form p <1{ > g, where p and ¢ are terms of sort
P and ( is a term of sort C, as abbreviations. That is, we write p <{ > ¢ for
C:—p+—C:i—gq.

The axioms of BPA§ are the axioms of Boolean Algebras (BA) given in
Table 1 and the additional axioms given in Table 2. Axioms A1-A7 are the
axioms of BPAs. So BPA§ imports the (equational) axioms of both BA and
BPA;. The axioms of BA given in Table 1 have been taken from [14]. Several
alternatives for this axiomatization can be found in the literature. If we use basic
laws of BA other than axioms BA1-BAS, such as ¢ ¢ = ¢ and —(¢ M) =
—¢ U —1, in a step of a derivation, we will refer to them as applications of BA
and not give their derivation from axioms BA1-BA8. Axioms GC1-GC7 have
been taken from [4], but with the axiom z -z <1¢>y -2 = (x QP> y) - 2z (COB)
replaced by ¢:—x -y = (¢p:— z) - y (GCH).

Ezxample 1. Consider a careful pedestrian who uses a crossing with traffic lights
to cross a road with busy traffic safely. When the pedestrian arrives at the
crossing and the light for pedestrians is green, he or she simply crosses the
street. However, when the pedestrian arrives at the crossing and the light for



Table 3. Transition rules for BPA§
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pedestrians is red, he or she first makes a request for green light (e.g. by pushing
a button) and then crosses the street when the light has changed. This behaviour
can be described in BPA§ as follows:

PED = arrive - (green :— cross + red :— (make-req - (green :— cross))) .

The careful pedestrian described above does not cross the street if the light for
pedestrians does not change from red to green after a request for green light.
Whether the change from red to green will ever happen is not described here.

Henceforth, we write 7p for the set of all closed terms of sort P and 7¢ for
the set of all closed terms of sort C. The terms of sort C are interpreted in C as
usual. Henceforth, we write C~ for C \ {L}.

We proceed to the presentation of the structural operational semantics of
BPAS§. The following transition relations on 7p are used:

— for each £ € C~ x A, a binary relation i>;
— for each £ € C~ x A, a unary relation - V.

[a] a

We write p —— ¢ instead of (p, q) €

(ev,a)

and p lofa / instead of p € {e.a), V-
The relations i>\/ and 5 can be explained as follows:
- p loda, /i p is capable of performing action a under condition « and then

terminating successfully;

-p HELN q: p is capable of performing action a under condition o and then

proceeding as q.

The structural operational semantics of BPA§ is described by the transition rules
given in Table 3.

Bisimilarity has to be adapted to the setting with guarded actions. In the
definition given below, we use a well-known notion from the field of Boolean
algebras: the partial order relation C on C defined by a & 8 iff alU g = 5.
Moreover, we use the notation | | A, where A = {a1,...,a,} C C, for agLl.. .Ua,.



A splitting bisimulation B between closed terms p, ¢ € 7p is a binary relation
on 7p such that B(p,q) and for all py, ¢ such that B(p1,q1):

— if py HCLN po, then there exists a finite set CT’ C C~ x 7Tp such that

a C | |dom(CT’) and for all (¢, q2) € CT', 1 Lofla, g2 and B(ps, ¢2);

[a]a

— if g —— qo, then there exists a finite set CT' C C~ x 7p such that
a C | |dom(CT") and for all (¢/,ps2) € CT', py lola, p2 and B(p2, g2);

— if py M\/, then there exists a finite set C’ C C~ such that a« C | |C” and
forall o/ € C', 1 m>\/,

—if qq HEICN \/, then there exists a finite set C’ C C~ such that a« T | |C” and
for all o’ € C’, py &\/

Two closed term p, ¢ € Tp are splitting bisimulation equivalent or splitting bisim-
ilar for short, written p = ¢, if there exists a splitting bisimulation B between
p and q. Let B be a splitting bisimulation between p and ¢q. Then we say that B
is a splitting bisimulation witnessing p < q.

The name splitting bisimulation is used because a transition of one of the
related processes may be simulated by a set of transitions of the other process.
Splitting bisimulation should not be confused with split bisimulation [15].

Splitting bisimilarity is a congruence with respect to alternative composition,
sequential composition and guarded command.

Proposition 1 (Congruence). For all p,p',q,q' € Tp and a € C, p = q and
peq impliesp+p Sq+¢,p-peq-¢d anda:—peSa:i—q.

The axioms of BPA§ constitute a sound and complete axiomatization of splitting
bisimilarity.

Theorem 1 (Soundness). For all p,q € Tp, BPA§ F p = q implies p & q.
Theorem 2 (Completeness). For all p,q € Tp, p = q implies BPA§ F p = q.

Proof. The proof follows the same line as the completeness proof for BPAs given
in [16]. O

3 ACP with Conditions

In order to support parallelism and communication, we add parallel composition
and encapsulation operators to BPAS, resulting in ACP°.

Like in BPAS, it is assumed that a fixed but arbitrary finite set of actions
A, with § € A, and a fixed but arbitrary set of atomic conditions C, has been
given. We write A; for AU {¢}. In ACP®, it is further assumed that a fixed but
arbitrary commutative and associative communication function |:As x As — Ag,
such that § |a = § for all @ € As, has been given. The function | is regarded
to give the result of synchronously performing any two actions for which this is
possible, and to be § otherwise.

The theory ACP€ is an extension of BPA§. It has the constants and operators
of BPA§ and in addition:



Table 4. Additional axioms for ACP¢ (a,b,c € As)

zlly=z||ly+yllz+z|y CMI1 Ou(a) =a ifag H D1
allzr=a -z CM2 Ou(a) =10 ifae H D2
a-z|y=a-(z|y) CM3  Ou(z+vy)=0u(x)+0u(y) D3
(z+y)lz==z|z+yllz CM4 Ou(z-y) = 0u(x) - Ou(y) D4
a-xz|b=(al|b) -z CM5

alb-z=(a|b)- x CM6 (p:—2)|ly=9¢:— (z]ly) GC8

a-x|b-y=(alb)-(z]y) CM7T (¢:=x)[y=d:=(x]y) GCI
(z+ylz=zlz+y|=z CM8  z|(¢p:—y)=¢:—(z]y) GCIO
z|ly+z)=z|y+ax|z CM9 Ou(¢p:— x) = ¢:— Ou(x) GCl11

alb=bla C1
(alb)|c=al(b]c) C2
dla=24 C3

the binary parallel composition operator || : P x P — P;

— the binary left merge operator || : P x P — P;

the binary commaunication merge operator | : P x P — P;

for each H C A, the unary encapsulation operator 0y : P — P.

We use infix notation for the additional binary operators as well.
The constants and operators of ACP to build terms of sort P are the con-
stants and operators of ACP and additionally the guarded command operator.
Let p and g be closed terms of ACPC. Intuitively, the additional operators
can be explained as follows:

p || ¢ behaves as the process that proceeds with p and ¢ in parallel;

— p || ¢ behaves the same as p || g, except that it starts with performing an
action of p;

— plg¢ behaves the same as p|| g, except that it starts with performing an action

of p and an action of ¢ synchronously;

Om (p) behaves the same as p, except that it does not perform actions in H.

The axioms of ACP® are the axioms of BPA§ and the additional axioms
given in Table 4. CM2-CM3, CM5-CM7, C1-C3 and D1-D2 are actually axiom
schemas in which a, b and ¢ stand for arbitrary constants of ACP® (i.e. a,b,c €
As). In D1-D4, H stands for an arbitrary subset of A. So, D3 and D4 are axiom
schemas as well.

Axioms A1-A7, CM1-CM9, C1-C3 and D1-D4 are the axioms of ACP. So
ACP® imports the axioms of ACP.

A well-known subtheory of ACP is PA, ACP without communication. Like-
wise, we have a subtheory of ACP€, to wit PA®. The theory PA€ is ACP® without
the communication merge operator, without axioms CM5-CM9 and C1-C3, and



Table 5. Additional transition rules for ACP¢
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with axiom CM1 replaced by z ||y =« || y + v || « (M1). In other words, the
possibility that actions are performed synchronously is not covered by PA°.
The structural operational semantics of ACP¢ is described by the transition
rules for BPA§ and the additional transition rules given in Table 5.
Splitting bisimilarity is a congruence with respect to parallel composition,
left merge, communication merge and encapsulation.

Proposition 2 (Congruence). For all p,p’,q,¢ € Tp, p © q and p' © ¢
implies p||p' = q| ¢, p L' =g d, plP =qlq and Ou(p) = Onu(q).

The axioms of ACP® constitute a sound and complete axiomatization of splitting
bisimilarity.

Theorem 3 (Soundness). For all p,q € Tp, ACP° b p = q implies p = q.
Theorem 4 (Completeness). For all p,q € Tp, p < q implies ACP° - p = q.
Proof. The proof follows the same line as the completeness proof for ACP given

in [16]. O

4 Guarded Recursion

In order to allow for the description of (potentially) non-terminating processes,
we add guarded recursion to ACP®.



Table 6. Axioms for recursion

(X|E) = (tx|E) #X=tx€c€E RDP
E=X=(X|E) fX€eV(E) RSP

Table 7. Transition rules for recursion

[¢]a Bla
tx|F) —— tx|F) —— x
7<X| ) \/X:tXGE 7<X| ) X=tx € E
<}(|E> [¢la \/ <)(|E> [¢la z!

A recursive specification over ACP€ is a set of equations F = {X =tx | X €
V'} where V is a set of variables and each tx is a term of ACP® that only contains
variables from V. We write V(E) for the set of all variables that occur on the left-
hand side of an equation in E. A solution of a recursive specification F is a set of
processes (in some model of ACP) {Px | X € V(E)} such that the equations of
E hold if, for all X € V(E), X stands for Px. Let t be a term of ACP® containing
a variable X. We call an occurrence of X in t guarded if t has a subterm of the
form a - t' containing this occurrence of X. A recursive specification over ACP®
is called a guarded recursive specification if all occurrences of variables in the
right-hand sides of its equations are guarded or it can be rewritten to such
a recursive specification using the axioms of ACP® and the equations of the
recursive specification.

For each guarded recursive specification E and each variable X € V(E), we
introduce a constant of sort P standing for the unique solution of E for X. This
constant is denoted by (X|E). We will also use the following notation. Let ¢ be
a term of ACP® and F be a guarded recursive specification over ACP€. Then we
write (t|E) for ¢ with, for all X € V(E), all occurrences of X in ¢ replaced by
(X|E).

The additional axioms for recursion are the equations given in Table 6. Both
RDP and RSP are axiom schemas. A side condition is added to restrict the
variables, terms and guarded recursive specifications for which X, tx and F
stand. The additional axioms for recursion are known as the recursive definition
principle (RDP) and the recursive specification principle (RSP). The equations
(X|E) = (tx|E) for a fixed E express that the constants (X|E) make up a
solution of E. The conditional equations E = X = (X|E) express that this
solution is the only one.

The structural operational semantics for the constants (X |E) is described by
the transition rules given in Table 7.

Guarded recursive specifications over ACP® have unique solutions in the
model induced by the structural operational semantics of ACP® extended with
guarded recursion.

Theorem 5 (Unique solutions). Let E be a guarded recursive specifications
over ACPC. If {px | X € V(E)} and {qx | X € V(E)} are solutions of E, then
px £ qx for all X € V(E).



Table 8. Axioms for condition evaluation (a € As, n € Cor, 7’ € Ct U{L, T})

CEn(a) =a CE1 CEn(L) =1 CE6
CEn(a-z) =a-CEn(x) CE2 CEL(T)=T CE7
CEn(z +y) = CEn(z) + CEn(y) CE3 CEn(n) =7’ if h(n) =n" CES8
CEn(¢:— x) = CEx(¢) :— CEp(x) CE4 CEn(—¢) = —CEn(0) CE9
CEL(CEy (x)) = CEpons () CE5 CEn(pU) = CEx(¢) UCEL(yp) CE10
CEn(¢M9) = CEn(¢) MCEx(y) CEll

5 Evaluation of Conditions

Guarded commands cannot always be eliminated from closed terms of ACP®
because conditions different from both 1 and T may be involved. The condition
evaluation operators introduced below, can be brought into action in such cases.

There are unary condition evaluation operators CE,:P — P and CE;:C — C
for each endomorphisms h of C.

These operators can be explained as follows: CEj(p) behaves as p with each
condition ¢ occurring in p replaced according to h. If the image of C under h is
B, i.e. the Boolean algebra with domain {1, T}, then guarded commands can
be eliminated from CEp(p). In the case where the image of C under h is not B,
CE}, can be regarded to evaluate the conditions only partially.

Henceforth, we write H for the set of all endomorphisms of C.

The additional axioms for CE;,, where h € H, are the axioms given in Table 8.

Ezample 2. We return to Example 1, which is concerned with a pedestrian who
uses a crossing with traffic lights to cross a road with busy traffic safely. Let hy be
such that hy(green) = T and hy(red) = L; and let h, be such that h,(green) = L
and h,(red) = T. Then we can derive the following:

CEn,(PED) = arrive - cross and CEy, (PED) = arrive - make-req - 6 .

So in a world where the traffic light for pedestrians is green he or she will cross
the street without making a request for green light; and in a world where the
traffic light for pedestrians is red he or she will become completely inactive after
making a request for green light. In reality, the request would cause a change
from red to green, but the condition evaluation operators CE; cannot deal with
that. We will return to this issue in Example 3.

The structural operational semantics of ACP¢ extended with condition eval-
uation is described by the transition rules for ACP® and the transition rules
given in Table 9.

The elements of C can be used to represent equivalence classes with respect
to logical equivalence of the set of all propositions with elements of C,; as propo-
sitional variables and with finite conjunctions and disjunctions. We write P for
this set of propositions. It is likely that there is a theory @ about the atomic



Table 9. Transition rules for condition evaluation

x m\/ o Lol o
M) # L — W) # L
CEj(x) ———— CE,(z')

CEy (2) @e,

conditions in the shape of a set of propositions. Let & C P, and let hg € H be
such that for all a, 8 € C:

Pk (ho(a)) < (o)) and he(a) =he(B) iff @+ (a) < (B) (1)

where ((@)) is a representative of the equivalence class of propositions isomorphic
to a. Then we have hg(a) = T iff (@) is derivable from @ and hg(a) = L iff
- {()) is derivable from @. The image of C under hg is B iff ¢ is a complete
theory. If @ is not a complete theory, then hg is not uniquely determined by (1).
However, the images of C under the different endomorphisms satisfying (1) are
isomorphic subalgebras of C. Moreover, if both h and h’ satisfy (1), then &
{(h()) < (W () for all a € C.

Below, we show that condition evaluation on the basis of a complete theory
can be viewed as substitution on the basis of the theory. That leads us to the
use of the following convention: for a € C, a stands for an arbitrary closed term
of sort C of which the value in C is «.

Proposition 3 (Condition evaluation on the basis of a theory). Let & C
P be a complete theory and let p be a closed term of ACPC. Then CEy,(p) =p’
where p' is p with, for all a € C, in all subterms of the form o :— q, « replaced

by T if @+ (o) and a replaced by L if @+ = ().

Proof. This result follows immediately from the definition of hg and the dis-
tributivity of CEy,, over all operators of ACP°. O

In uCRL [17], an extension of ACP which includes conditional expressions, we
find a formalization of the substitution-based alternative for CE,,,.

The substitution-based alternative works properly because condition evalu-
ation by means of a condition evaluation operator is not dependent on process
behaviour. Hence, the result of condition evaluation is globally valid. Below, we
will generalize the condition evaluation operators introduced above in such a
way that condition evaluation may be dependent on process behaviour. In that
case, the result of condition evaluation is in general not globally valid.

Remark 1. Let h € ‘H. Then h induces a theory @ C P such that h = he, viz.
the theory @ defined by

® = {(h)) & () [acCtu{(a) & (B) [ h(a)=h(B)}.

Consequently, condition evaluation by means of the condition evaluation oper-
ators introduced above is always condition evaluation of which the result can be
determined from a set of propositions.



Table 10. Axioms for generalized condition evaluation (a € As)

GCEp(a) = GCE1
GCEp(a - 1:) = a - GCEef(q,n) () GCE2
GCEp(x +y) = GCEp(z) + GCEL(y) GCE3
GCEp(¢:— x) = CEx(¢) :— GCEx(z) GCEA4

Table 11. Transition rules for generalized condition evaluation

[¢]a [¢la
Tz ——4/ T ——>
h(¢) # L

h(¢) # L

GCE, (z) L4202, GCEy () L%, GCE (g 1y ()

We proceed with generalizing the condition evaluation operators introduced
above. It is assumed that a fixed but arbitrary function eff: A x H — H has been
given.

There is a unary generalized condition evaluation operator GCEy : P — P for
each h € H; and there is again the unary operator CEj : C — C for each h € H.

The generalized condition evaluation operator GCE, allows, given the func-
tion eff, to evaluate conditions dependent of process behaviour. The function
eff gives, for each action a and endomorphism h, the endomorphism A’ that
represents the changed results of condition evaluation due to performing a. The
function eff is extended to As such that eff(d, h) = h for all h € H.

The additional axioms for GCEj, where h € H, are the axioms given in
Table 10 and axioms CE6—CE11 from Table 8.

Ezample 3. We return to Example 1, which is concerned with a pedestrian who
uses a crossing with traffic lights to cross a road with busy traffic safely. In
Example 2, we illustrated that the condition evaluation operators CE; cannot
deal with the change from red light to green light caused by a request for green
light. Here, we illustrate that the generalized condition evaluation operators
GCE}, can deal with such a change. Let h, and h, be as in Example 2; and let
eff be such that eff(make-req, h,) = hy and eff(a, h) = h otherwise. Then we can
derive the following:

GCEp,(PED) = arrive - cross ,

GCEy, (PED) = arrive - make-req - cross .

The change from red light to green light is due to interaction between the
pedestrian and the traffic lights.

The structural operational semantics of ACP® extended with generalized con-
dition evaluation is described by the transition rules for ACP® and the transition
rules given in Table 11.

We can add both the condition evaluation operators and the generalized
condition evaluation operators to ACP¢. However, Proposition 4 stated below
makes it clear that the latter operators supersede the former operators.



The equation CEj(CEp (x)) = CEpop/(z) is an axiom, but the equation
GCEp(GCEp/(z)) = GCEpop/(x) is not an axiom. The reason is that the lat-
ter equation is only valid if eff satisfies eff(a, h o h') = eff(a, h) o eff(a, h’) for all
a € Aand h,h € H.

As their name suggests, the generalized condition evaluation operators are
generalizations of the condition evaluation operators.

Proposition 4 (Generalization). We can fiz the function eff such that
GCEj,(x) = CEp(z) for all h € H.

Proof. Clearly, if eff(a,h’) = I/ for alla € A and b’ € H, then GCEp(z) = CEx(x)
for all h € H. =

The state operators that are added to ACP® in Sect. 6 are in their turn gener-
alizations of the generalized condition evaluation operators.

6 State Operators

The state operators make it easy to represent the execution of a process in a
state. The basic idea is that the execution of an action in a state has effect on
the state, i.e. it causes a change of state. Besides, there is an action left when
an action is executed in a state. The operators introduced here generalize the
state operators added to ACP in [18]. The main difference with those operators
is that guarded commands are taken into account.

It is assumed that a fixed but arbitrary set S of states has been given,
together with functions act: A x S — As, eff :Ax S — S and eval : C x S — C,
where, for each s € S, the function hs: C — C defined by hs(a) = eval(a, s) is
an endomorphism of C.

There are unary state operators As : P — P and A; : C — C for each s € S.

The state operator A; allows, given the above-mentioned functions, processes
to interact with a state. Let p be a process. Then A (p) is the process p executed
in state s. The function act gives, for each action a and state s, the action that
results from executing a in state s. The function eff gives, for each action a and
state s, the state that results from executing a in state s. The function eval gives,
for each condition v and state s, the condition that results from evaluating « in
state s. The functions act and eff are extended to As such that act(d, s) = § and
eff(4,s) = s for all s € S.

The additional axioms for As, where s € S, are the axioms given in Table 12.
Axioms SO1-SO3 are the axioms for the state operators added to ACP in [18].

The structural operational semantics of ACP¢ extended with state operators
is described by the transition rules for ACP® and the transition rules given in
Table 13.

We can add, in addition to the state operators, the condition evaluation
operators and/or the generalized condition evaluation operators from Sect. 5 to
ACP®.

The state operators are generalizations of the generalized condition evalua-
tion operators from Sect. 5.



Table 12. Axioms for state operators (a € As, n € Cot, 7' € Cue U{L, T})

As(a) = act(a, s) SO1 As(L) =1 SO5
As(a - x) = act(a, ) - Aefi(a,s) () SO2 A(T)=T SO6
As(z +y) = As() + As(y) SO3 As(n) =1’ if eval(n,s) =n' SO7
As(p:— x) = As(9) :— A () SO4 As(—@) = =Xs(9) SO8
As(pUth) = As() U As(9)) 509
As(@ M) = As(#) M As () 5010

Table 13. Transition rules for state operators

A (z) [eval(¢,s)] act(a,s) \/

act(a, s) # 0, eval(¢,s) # L

[¢] a ’

r—x

act(a, s) # 6, eval(¢,s) # L
eval(¢,s)] act(a,s
)\S(x) [eval(#,s)] act(a,s) /\efF(a,s) (CIZ,)

Proposition 5 (Generalization). We can fix S, act, eff and eval such that,
for some f:H — S, Appy(w) = GCEp(x) holds for all h € H.

Proof. Clearly, if S = H, f is the identity function on H, and act(a,s) = a,
eff(a,s) = eff(a, f71(s)) and eval(a, s) = f~1(s)(a) for all a € A, s € S and
a € C, then Ay () = GCEx(x) holds for all h € H. O

Notice that, in so far as condition evaluation is concerned, the state operators
do not add anything to the generalized condition evaluation operators.

7 Concluding Remarks

Conditional expressions of the form ¢ :— p are not new. They were added to
ACP for the first time in [3]. In [4], it was proposed to take the domain of a free
Boolean algebra over a given set of generators as the set of conditions. Splitting
bisimilarity is based on a variant of bisimilarity that was defined for the first
time in [4]. The formulation given here is closer to the one given in [5]. State
operators were added to ACP for the first time in [18]. The condition evaluation
operators and the generalized condition evaluation operators were introduced
for the first time in [11]. We are not aware of other work studying condition
evaluation in a process algebra with conditional expressions.

In ACPC, like in ACPps [6], conditional expressions give rise to the inclusion
of conditional transitions in the behaviour being described, whereas in most other
process algebraic formalisms that include conditional expressions, they concern
the conditional inclusion of unconditional transitions (see e.g. tCRL [19]). ACP®,
like ACPps, is a development following ideas from [4]. ACP® is based on a more
abstract view on conditions than ACPps, but it lacks signal emission — a mech-
anism from ACPps that allows for a kind of condition evaluation.
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