
Process Algebra with Timing:

Real Time and Discrete Time

J.C.M. Baeten1 and C.A. Middelburg1,2

1 Computing Science Department, Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, the Netherlands

2 Department of Philosophy, Utrecht University

P.O. Box 80126, 3508 TC Utrecht, the Netherlands

{josb,keesm}@win.tue.nl

Abstract

We present real time and discrete time versions of ACP with absolute timing
and relative timing. The starting-point is a new real time version with absolute
timing, called ACPsat, featuring urgent actions and a delay operator. The dis-
crete time versions are conservative extensions of the discrete time versions of
ACP being known as ACPdat and ACPdrt. The principal version is an extension
of ACPsat with integration and initial abstraction to allow for choices over an
interval of time and relative timing to be expressed. Its main virtue is that it
generalizes ACP without timing and most other versions of ACP with timing in
a smooth and natural way. This is shown for the real time version with relative
timing and the discrete time version with absolute timing.

Keywords & Phrases: process algebra, ACP, real time, discrete time, absolute
timing, relative timing, two-phase scheme, time-stamping scheme.

1994 CR Categories: D.1.3, D.3.1, F.1.2, F.3.1.

1 Introduction

Algebraic concurrency theories such as ACP [13, 11, 10], CCS [33, 34] and CSP [18, 28]
have been extended to deal with time-dependent behaviour in various ways. First of
all, timing is either absolute or relative and the time scale on which time is measured
is either continuous or discrete. Besides, execution of actions and passage of time
are either separated or combined. Separation corresponds to the two-phase scheme
of modeling time-dependent behaviour and combination corresponds to the time-
stamping scheme.

Absolute timing and relative timing have been studied in the framework of ACP
for both a continuous time scale and a discrete time scale. See e.g. [2] and [7]. The
versions of ACP with timing where time is measured on a continuous time scale are
usually called real time versions. In the remainder of this chapter, we adhere to this
terminology. In the principal real time versions of ACP, viz. ACPρ and ACPrρ, which
were both introduced in [2], and ACPρσ, which was introduced in [4], execution of
actions and passage of time are combined. On the contrary, they are separated in the
principal discrete time versions of ACP, viz. ACPdat and ACPdrt, which were both
introduced in [7]. A real time version where execution of actions and passage of time
are separated is ACPst, which was introduced in [6], and [8] focusses on discrete time
versions where they are combined.

Measuring time on a discrete time scale does not mean that the execution of
actions is restricted to discrete points in time. In the discrete time versions of ACP,
time is divided into time slices and timing of actions is done with respect to the time
slices in which they are performed – within a time slice there is only the order in which
actions are performed. Thus, the discrete time versions permit to consider systems
at a more abstract level than the real time case, a level where time is measured with
finite precision. This also occurs in practice: software components of a system are
executed on processors where the measure of time is provided by a discrete clock and,
in case a physical system is controlled, the state of the physical system is sampled and
adjusted at discrete points in time. In any case, the abstraction made in the discrete
time versions makes the time-dependent behaviour of programs better amenable to
analysis.

ACP can simply be embedded in the discrete time versions ACPdat and ACPdrt [7]
by projecting the untimed process a (for each action a) onto the delayable process
a – a delayable process a is capable of performing the action a in any time slice.
Similarly, ACP can be embedded in the real time versions ACPρ and ACPrρ [2]. In
other words, these discrete time and real time theories generalize the time free theory
smoothly. Furthermore, in the discrete time case as well as the real time case, the
relative time version can simply be embedded in the absolute time version extended
with an initial abstraction operator to deal with relative timing.

However, the real time versions do not generalize the discrete time versions as
smoothly as they generalize the time free theory. It turns out, as shown in [3],
that the discrete time processes correspond to the real time processes for which the
following holds: (1) if an action can be performed at some time p ∈ R such that
n < p < n + 1 (n ∈ N), it can also be performed at any other time p′ ∈ R such that

2

n < p′ < n + 1; (2) no actions can be performed at times p ∈ N. Clearly, such an
embedding seriously lacks naturalness. The real time versions ACPρ and ACPrρ as
well as the discrete time versions ACPdat and ACPdrt are generalizations of ACP by
intention. Since the real time versions were developed in advance of the discrete time
versions, the former versions were not intentionally developed as generalizations of
the latter versions. This explains at least partially the contrived embedding.

In this chapter, we present a new real time version of ACP with absolute timing
which originates from ACPsρ, a real time version introduced in [6]. In this version,
which features urgent actions and a delay operator, execution of actions and passage
of time are separated. We explain how execution of actions and passage of time can
be combined in this version. We further add an integration operator, with which a
choice over an interval of time can be expressed, and an initial abstraction operator,
with which relative timing can be expressed, to this version. We show how a real time
version of ACP with relative timing, which originates from ACPst [6], can be embed-
ded in the extended real time version with absolute timing. We also present discrete
time versions of ACP with absolute timing and relative timing which are conservative
extensions of ACPdat and ACPdrt [7]. We add an initial abstraction operator to the
discrete time version with absolute timing as well. Showing how the discrete time
version with relative timing can be embedded in the extended discrete time version
with absolute timing, can be done similarly to the real time case. We show that the
extended real time version generalizes the extended discrete time version smoothly.
In this case, the following holds for those real time processes that correspond to the
discrete time processes: if an action can be performed at some time p ∈ R such that
n ≤ p < n + 1 (n ∈ N), it can also be performed at any other time p′ ∈ R such that
n ≤ p′ < n+ 1.

The main virtue of the extended real time version of ACP presented here is that
it generalizes time free ACP as well as most other versions of ACP with timing
in a smooth and natural way. The lack of a real time version of ACP with these
characteristics was our main motivation to develop it. Different from the real time
versions of [2] and [4], this version does not exclude the possibility of two or more
actions to be performed consecutively at the same point in time. That is, it includes
urgent actions, similar to ATP [37] and the different versions of CCS with timing [19,
35, 44]. This is useful in practice when describing and analyzing systems in which
actions occur that are entirely independent. This is, for example, the case for actions
that happen at different locations in a distributed system. In [2] and [4], the main
idea was that it is difficult to imagine that actions are performed consecutively at
the same point in time. But yet, this way of representing things is perfectly in line
with modeling parallelism by interleaving. In point of fact it allows for independent
actions to be handled faithfully.

In [2] and [4], ways to deal with independent actions are proposed where such
actions take place at the same point in time by treating it as a special case of com-
munication. This is, however, a real burden in the description and the analysis of the
systems concerned. Of course, this does not limit the practical usefulness of ACPρ
and ACPrρ for systems in which no independent actions occur. The real time versions
ACPsρ and ACPst of [6] simply do not exclude the possibility of two or more actions

3

to be performed consecutively at the same point in time. Embedding in ACPρ and
ACPrρ, respectively, is obtained by extending the time domain to a domain that in-
cludes non-standard real numbers. We conjecture that the real time version presented
in this chapter, which originates from ACPsρ, can be embedded in ACPρ as well.

We do not intend to give in this chapter a comprehensive overview of existing alge-
braic concurrency theories that deal with time-dependent behaviour. As suggested by
the above, our aim is instead to present a coherent collection of algebraic concurrency
theories that deal with time-dependent behaviour in different ways.

The structure of this chapter is as follows. First of all, in Section 2, we present the
new real time version of ACP with absolute timing. We also explain how execution
of actions and passage of time can be combined in this version. Then, in Section 3,
we add integration and initial abstraction to this real time version of ACP. Next, in
Section 4, we first present a real time version of ACP with relative timing and then
show that it can be embedded in the real time version of ACP with absolute timing
presented in Sections 2 and 3. After that, in Section 5, we first present conservative
extensions of the discrete time versions ACPdat and ACPdrt of [7] and then show that
the presented discrete time version with absolute timing can be embedded in the real
time version with absolute timing presented in Sections 2 and 3. Finally, in Section 6,
we make some concluding remarks.

2 Real time process algebra: absolute timing

In this section, we give the signature, axioms and term model of ACPsat, a standard
real time process algebra with absolute timing. In this theory, the non-negative
standard real numbers (R≥0) are used as the time domain. ACPsat originates from
the theory ACPsρ, presented in [6]. Unlike ACPsρ, it separates execution of actions
and passage of time.

In case of ACPsat, it is assumed that a theory of the non-negative real numbers
has been given. Its signature has to include the constant 0 : → R≥0, the operator
+ : R≥0 × R≥0 → R≥0, and the predicates ≤ : R≥0 × R≥0 and = : R≥0 × R≥0. In
addition, this theory has to include axioms that characterize + as a commutative and
associative operation with 0 as a neutral element and ≤ as a total ordering that has
0 as its least element and that is preserved by +.

In ACPsat, as in the other versions of ACP with timing presented in this chapter,
it is assumed that a fixed but arbitrary set A of actions has been given. It is also
assumed that a fixed but arbitrary communication function, i.e. a partial commutative
and associative function γ : A × A → A, has been given. The function γ is regarded
to give the result of the synchronous execution of any two actions for which this is
possible, and to be undefined otherwise. The weak restrictions on γ allow many kinds
of communication between parallel processes to be modeled.

First, in Section 2.1, we treat BPAsat, basic standard real time process algebra
with absolute timing, in which parallelism and communication are not considered.
After that, in Section 2.2, BPAsat is extended to ACPsat to deal with parallelism and
communication as well. Finally, we demonstrate in Section 2.3 how one can combine
execution of actions and passage of time in ACPsat.

4

2.1 Basic process algebra

In BPAsat, we have the sort P of (absolute time) processes, the constants ã (one for
each a ∈ A), δ̃ and δ

·
, and the operators σabs (absolute delay), · (sequential com-

position) and + (alternative composition). The constants ã stand for a at time 0.
Similarly, the constant δ̃ stands for a deadlock at time 0. The constant δ

·
stands for an

immediate deadlock, a process that exhibits inconsistent timing at time 0. This means
that δ

·
, different from δ̃, is not existing at time 0. The process σpabs(x) is the process

x shifted in time by p. Thus, the process σpabs(ã) is capable of first idling from time 0
to time p and then upon reaching time p performing action a, immediately followed
by successful termination. The process σpabs(δ̃) is only capable of idling from time 0

to time p. Time p can be reached by σpabs(δ̃). This is the difference with the process

σpabs(δ
·
), which can only idle upto, but not including, time p. So σpabs(δ

·
) can not reach

time p. The process x · y is the process x followed upon successful termination by the
process y. The process x + y is the process that proceeds with either the process x
or the process y, but not both. As in the untimed case, the choice is resolved upon
execution of the first action, and not before. We also have the auxiliary operators
υabs (absolute time-out) and υabs (absolute initialization). The process υpabs(x) is the
part of x that starts to perform actions before time p. The process υpabs(x) is the part
of x that starts to perform actions at time p or later.

A real time version of ACP with absolute timing where the notation ã was used
earlier for urgent actions is ACPsρ [6], but there it always carries a time-stamp. The
binary operator σabs generalizes the unary operator σabs of ACPdat [7] in a real time
setting: for a real time process x that corresponds to a discrete time process x′, σ1

abs(x)
corresponds to σabs(x

′). In earlier papers, including [2], [3], [4] and [6], the notations
x� p and p� x were used instead of υpabs(x) and υpabs(x), respectively. Besides, the
time-out operator and the initialization operator were sometimes called the bounded
initialization operator and the time shift operator, respectively.

It can be proved, using the axioms of BPAsat, that each process expressed using
the auxiliary operators υabs and υabs is equal to a process expressed without them.
In other words, in BPAsat, all processes can be constructed from the constants using
absolute delay, alternative composition and sequential composition only.

Signature of BPAsat The signature of BPAsat consists of the urgent action constants
ã :→ P (for each a ∈ A), the urgent deadlock constant δ̃ :→ P, the immediate deadlock
constant δ

·
:→ P, the alternative composition operator + : P× P→ P, the sequential

composition operator · : P× P→ P, the absolute delay operator σabs : R≥0 × P→ P,
the absolute time-out operator υabs : R≥0 × P → P, and the absolute initialization
operator υabs : R≥0 × P→ P.

We assume that an infinite set of variables (of sort P) has been given. Given the
signature of BPAsat, terms of BPAsat, also referred to as process expressions, are
constructed in the usual way. We will in general use infix notation for binary oper-
ators. The need to use parentheses is further reduced by ranking the precedence of
the binary operators. Throughout this chapter we adhere to the following precedence
rules: (i) the operator · has the highest precedence amongst the binary operators,

5

(ii) the operator + has the lowest precedence amongst the binary operators, and (iii)
all other binary operators have the same precedence. We will also use the following
abbreviation. Let (ti)i∈I be an indexed set of terms of BPAsat where I = {i1, . . . , in}.
Then we write

∑
i∈I ti for ti1 + . . . + tin . We further use the convention that

∑
i∈I ti

stands for δ
·

if I = ∅.
We denote variables by x, x′, y, y′, An important convention is that we use

a, a′, b, b′, . . . to denote elements of A∪{δ} in the context of an equation, and elements
of A in the context of an operational semantics rule. Furthermore, we use H to denote
a subset of A. We denote elements of R≥0 by p, p′, q, q′ and elements of R>0 by r, r′.
We write Aδ for A ∪ {δ}.

Axioms of BPAsat The axiom system of BPAsat consists of the equations given in
Tables 1 and 2.

x + y = y + x A1

(x + y) + z = x + (y + z) A2

x + x = x A3

(x + y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x + δ
·

= x A6ID

δ
· · x = δ

·
A7ID

Table 1: Axioms of BPA with immediate deadlock

Axioms A1-A5 are common to ACP and all real and discrete time versions of ACP.
Axioms A6ID and A7ID are simple reformulations of the axioms A6 and A7 of ACP:
the constant δ has been replaced by the constant δ

·
– which is introduced because

the intended interpretation of δ in ACPsat differs from δ
·
. These axioms or similar

reformulations of A6 and A7 are found in all real and discrete time versions of ACP.
Axiom SAT1, and a few axioms treated later, become easier to understand by realizing
that in BPAsat, as well as in ACPsat, the equation υ0

abs(t) = t is derivable for all closed
terms t. This equation expresses that initialization at time 0 has no effect on processes
with absolute timing. To accommodate for the extension with initial abstraction in
Section 3.2, we have used υ0

abs(x) instead of x where the former is needed in the
extension. Axioms SAT1 and SAT2 point out that a time shift by 0 has no effect in
case of absolute timing and that consecutive time shifts add up. Axioms SAT3-SAT5
represent the interaction of absolute delay with alternative composition and sequential
composition. Axiom SAT3, called the time factorization axiom, shows that passage
of time by itself can not determine a choice. Axioms SAT4 and SAT5 express that
if a process terminates successfully at some point in time, it can only be followed by
the part of another process that starts to perform actions at the same time or later.
Axiom SAT6 is a generalization of axiom A7ID. Using axioms A6SAa and A6SAb,
the equation t + δ̃ = t can be derived for all closed terms t unless t = δ

·
– obviously

δ
·

+ δ̃ = δ̃. Axiom A7SA is another simple reformulation of axiom A7 of ACP.
Axioms SATO0-SATO5 and SAI0-SAI5 reflect the intended meaning of the time-out
and initialization operators clearly. Axioms SATO1 and SAI2 make precise what

6

σ0
abs(x) = υ0

abs(x) SAT1

σp
abs(σ

q
abs(x)) = σp+q

abs (x) SAT2

σp
abs(x) + σp

abs(y) = σp
abs(x + y) SAT3

σp
abs(x) · υpabs(y) = σp

abs(x · δ
·
) SAT4

σp
abs(x) · (υpabs(y) + σp

abs(z)) = σp
abs(x · υ

0
abs(z)) SAT5

σp
abs(δ

·
) · x = σp

abs(δ
·
) SAT6

ã + δ̃ = ã A6SAa

σr
abs(x) + δ̃ = σr

abs(x) A6SAb

δ̃ · x = δ̃ A7SA

υpabs(δ
·
) = δ

·
SATO0

υ0abs(x) = δ
·

SATO1

υrabs(ã) = ã SATO2

υp+q
abs (σp

abs(x)) = σp
abs(υ

q
abs(x)) SATO3

υpabs(x + y) = υpabs(x) + υpabs(y) SATO4

υpabs(x · y) = υpabs(x) · y SATO5

υ0
abs(δ

·
) = δ

·
SAI0a

υr
abs(δ

·
) = σr

abs(δ
·
) SAI0b

υ0
abs(ã) = ã SAI1

υr
abs(ã) = σr

abs(δ
·
) SAI2

υp+q
abs (σp

abs(x)) = σp
abs(υ

q
abs(υ

0
abs(x))) SAI3

υp
abs(x + y) = υp

abs(x) + υp
abs(y) SAI4

υp
abs(x · y) = υp

abs(x) · y SAI5

Table 2: Additional axioms for BPAsat (a ∈ Aδ, p, q ≥ 0, r > 0)

happens if a part that starts to perform actions before the time-out time and a part
that starts to perform actions at the initialization time or later, respectively, do not
exist. Equations SATO3′ and SAI3′ given in Table 3 are derivable from the axioms
of BPAsat. In BPAsat and ACPsat, and also in the further extension with initial

υpabs(σ
p+q
abs (x)) = σp

abs(δ
·
) SATO3′

υp
abs(σ

p+q
abs (x)) = σp+q

abs (x) SAI3′

υ0
abs(x) = x SAI1′′

υp+q
abs (σp

abs(x)) = σp
abs(υ

q
abs(x)) SAI3′′

Table 3: Some derivable equations and alternative axioms (p, q ≥ 0)

abstraction, axiom SATO1 can be replaced by equation SATO3′ just as well. In
BPAsat and ACPsat, but not in the further extension with initial abstraction, axioms
SAI0a, SAI1 and SAI3 together can be replaced by the equations SAI1′′ and SAI3′′

given in Table 3. The absolute initialization operator could have been added later
with the addition of the initial abstraction operator. However, having it available in
BPAsat and ACPsat makes it possible to express interesting properties of real time
processes with absolute timing such as the properties presented in Lemmas 1 and 3

7

below.
We can prove that the auxiliary operators υabs and υabs can be eliminated in closed

terms of BPAsat. We can also prove that sequential compositions in which the form of
the first operand is not ã (a ∈ A) and alternative compositions in which the form of the
first operand is σpabs(t) can be eliminated in closed terms of BPAsat. The terms that
remain after exhaustive elimination are called the basic terms over BPAsat. Because
of this elimination result, we are permitted to use induction on the structure of basic
terms over BPAsat to prove statements for all closed terms of BPAsat.

Examples We give some examples of a closed term of BPAsat and the corresponding
basic term:

σ5
abs(ã) · σ4.9

abs (b̃) = σ5
abs(ã · δ

·
)

σ5
abs(ã) · (σ4.9

abs (b̃) + σ5.1
abs (c̃)) = σ5

abs(ã · σ
0.1
abs (c̃))

υ5abs(σ
4.9
abs (ã) + σ5.1

abs (b̃)) = σ4.9
abs (ã + σ0.1

abs (δ
·
))

υ5
abs(σ

4.9
abs (ã) + σ5.1

abs (b̃)) = σ5.1
abs (b̃)

The following lemmas are also useful in proofs. They are, for example, used in the
proof of Theorem 12 (embedding of ACPdat√ in ACPsatI

√
). These lemmas, as most

other lemmas in this chapter, call for proofs by induction on the structure of basic
terms. The proofs are generally straightforward, but long and tedious. For that
reason, we will present for each such proof only one of the cases to be treated. The

selected case is usually typical of the proof and relatively hard. We write
IH
= to indicate

that the induction hypothesis of the proof is used.

Lemma 1 In BPAsat and ACPsat, as well as in the further extensions with restricted
integration and initial abstraction introduced in Section 3:

1. the equation t = υpabs(t) + υpabs(t) is derivable for all closed terms t such that

t = υ0
abs(t) and t = t + σpabs(δ

·
);

2. the equations t = υpabs(t) and υpabs(t) = σpabs(δ
·
) are derivable for all closed terms

t such that t = υ0
abs(t) and t 6= t + σpabs(δ

·
).

Proof. It is straightforward to prove both 1 and 2 by induction on the structure of t.

1. We present only the case that t is of the form σq
abs(t

′). The other cases are similar, but
simpler, and do not require case distinction.

Case p ≤ q : σq
abs(t

′) + σp
abs(δ

·
)

A1
= σp

abs(δ
·
) + σq

abs(t
′)

SATO3′,SAI3′
= υp

abs(σ
q
abs(t

′)) + υp
abs(σ

q
abs(t

′))

Case p > q : σq
abs(t

′) + σp
abs(δ

·
)

SAT2
= σq

abs(t
′) + σq

abs(σ
p−q
abs (δ

·
))

SAT3
= σq

abs(t
′ + σp−q

abs (δ
·
))

IH
=

σq
abs(υ

p−q
abs (t′) + υp−q

abs (t′))
SAT3
= σq

abs(υ
p−q
abs (t′)) + σq

abs(υ
p−q
abs (t′))

SATO3,SAI3
=

υp
abs(σ

q
abs(t

′)) + υp
abs(σ

q
abs(t

′))

In applying SAI3 we assume that t′ = υ0
abs(t

′). In case of BPAsat, ACPsat and ACPsat with
integration, this equation is derivable for all closed terms t′. The assumption is also justified
in case of extension with initial abstraction. In that case, we are permitted, because of
elimination results presented in Section 3.2, to consider here only closed terms of the form
σq
abs(t

′) where no initial abstraction occurs in t′.

2. Observe that υp
abs(t) = σp

abs(δ
·
) follows immediately from t = υp

abs(t) by axiom SI3. So

8

it suffices to prove only t = υp
abs(t). Again, we present only the case that t is of the form

σq
abs(t

′).

Case p ≤ q : σq
abs(t

′)
SAT2
= σp

abs(σ
q−p
abs (t′))

A6ID
= σp

abs(σ
q−p
abs (t′) + δ

·
)

SAT3
=

σp
abs(σ

q−p
abs (t′)) + σp

abs(δ
·
)

SAT2
= σq

abs(t
′) + σp

abs(δ
·
)

So σq
abs(t

′) 6= σq
abs(t

′) + σp
abs(δ

·
) does not hold in case p ≤ q

Case p > q : σq
abs(t

′) 6= σq
abs(t

′) + σp
abs(δ

·
)

SAT2,SAT3⇒ t′ 6= t′ + σp−q
abs (δ

·
)

By the induction hypothesis, σq
abs(t

′) = σq
abs(υ

p−q
abs (t′))

SATO3
= υp

abs(σ
q
abs(t

′)) 2

From Lemma 1 we readily conclude the following.

Corollary 2 In BPAsat and ACPsat, as well as in the further extensions with re-
stricted integration and initial abstraction introduced in Section 3, the equation σpabs(t)·
t′ = σpabs(t) · υ

p
abs(t

′) is derivable for all closed terms t and t′ such that t′ = υ0
abs(t

′).

Lemma 3 In BPAsat and ACPsat, as well as in the further extensions with restricted
integration and initial abstraction introduced in Section 3, for each p ∈ R≥0 and each
closed term t, there exists a closed term t′ such that υpabs(t) = σpabs(t

′) and t′ = υ0
abs(t

′).
In subsequent proofs, we write t[p] for a fixed but arbitrary closed term t′ that fulfills
these conditions.

Proof. It is straightforward to prove this by induction on the structure of t. We present
only the case that t is of the form σq

abs(t
′′). Again, the other cases are similar, but simpler,

and do not require case distinction.

Case p ≤ q : υp
abs(σ

q
abs(t

′′))
SAI3′
= σq

abs(t
′′)

SAT2
= σp

abs(σ
q−p
abs (t′′)) and

σq−p
abs (t′′)

SAT2
= σ0

abs(σ
q−p
abs (t′′))

SAT1
= υ0

abs(σ
q−p
abs (t′′))

Case p > q : υp
abs(σ

q
abs(t

′′))
SAI3
= σq

abs(υ
p−q
abs (t′′))

IH
= σq

abs(σ
p−q
abs (t′′[p−q]))

SAT2
= σp

abs(t
′′
[p−q]) and

t′′[p−q] = υ0
abs(t

′′
[p−q])

In applying SAI3 we assume that t′′ = υ0
abs(t

′′). As described in the previous proof, this
assumption is justified in all cases. 2

Lemma 1 indicates that a process that is able to reach time p can be regarded as being
the alternative composition of the part that starts to perform actions before p and
the part that starts to perform actions at p or later. Lemma 3 shows that the part of
a process that starts to perform actions at time p or later can always be regarded as
a process shifted in time by p.

Semantics of BPAsat A real time transition system over A consists of a set of states
S, a root state ρ ∈ S and four kinds of relations on states:

a binary relation 〈 , p〉 a−→ 〈 , p〉 for each a ∈ A, p ∈ R≥0,

a unary relation 〈 , p〉 a−→ 〈
√
, p〉 for each a ∈ A, p ∈ R≥0,

a binary relation 〈 , p〉 r7−→ 〈 , q〉 for each r ∈ R>0, p, q ∈ R≥0 where q = p+ r,
a unary relation ID(, p) for each p ∈ R≥0;

satisfying

1. if 〈s, p〉 r+r′7−−−→ 〈s′, q〉, r, r′ > 0, then there is a s′′ such that 〈s, p〉 r7−→ 〈s′′, p + r〉
and 〈s′′, p+ r〉 r′7−→ 〈s′, q〉;

9

2. if 〈s, p〉 r7−→ 〈s′′, p+ r〉 and 〈s′′, p+ r〉 r′7−→ 〈s′, q〉, then 〈s, p〉 r+r′7−−−→ 〈s′, q〉.

The four kinds of relations are called action step, action termination, time step and
immediate deadlock relations, respectively. We write RTTS(A) for the set of all real
time transition systems over A.

We shall associate a transition system TS(t) in RTTS(A) with a closed term t of
BPAsat by taking the set of closed terms of BPAsat as set of states, the closed term
t as root state, and the action step, action termination, time step and immediate
deadlock relations defined below using rules in the style of Plotkin [38]. A semantics
given in this way is called a structural operational semantics. On the basis of these
rules, the operators of BPAsat can also be directly defined on the set of real time
transition systems in a straightforward way. Note that, by taking closed terms as
states, the relations can be explained as follows:

〈t, p〉 a−→ 〈t′, p〉: process t is capable of first performing action a at time p
and then proceeding as process t′;

〈t, p〉 a−→ 〈
√
, p〉: process t is capable of first performing action a at time p

and then terminating successfully;

〈t, p〉 r7−→ 〈t′, q〉: process t is capable of first idling from time p to time q
and then proceeding as process t′;

ID(t, p): process t is not capable of reaching time p.

The rules for the operational semantics have the form
h1, . . . , hm, s
c1, . . . , cn , where s is

optional. They are to be read as “if h1 and . . . and hm then c1 and . . . and cn,
provided s”. As customary, h1, . . . , hm and c1, . . . , cn are called the premises and the
conclusions, respectively. The conclusions of a rule are positive formulas of the form
〈t, p〉 a−→ 〈t′, p〉, 〈t, p〉 a−→ 〈

√
, p〉, 〈t, p〉 r7−→ 〈t′, q〉 or ID(t, p), where t and t′ are open

terms of BPAsat. The premises of a rule are positive formulas of the above forms or
negative formulas of the form ¬ID(t, p). The rules are actually rule schemas. The
optional s is a side-condition restricting the actions over which a, b and c range and
the non-negative real numbers over which p, q and r range. Within the framework
of term deduction systems introduced in [9], the instances of the rule schemas that
satisfy the stated side-conditions should be taken as the rules under consideration.
For the rest, we continue to use the word rule in the broader sense.

The signature of BPAsat together with the rules that will be given constitute ac-
cording to the definitions of [43] a strictly stratifiable term deduction system. For a
term deduction system having rules with negative premises, it is not immediately clear
whether the term deduction system is meaningful. That is, it is not clear whether
there exist relations for which exactly those formulas hold that can be derived us-
ing the rules of the term deduction system (see e.g. [25] and [15]). However, if the
term deduction system is stratifiable then there exist such relations. If it is strictly
stratifiable then there exist unique such relations. The restriction to stratifiable term
deduction systems is essential for the congruence theorem mentioned below.

Term deduction systems support only unary and binary relations on closed terms
over some one-sorted signature. Generalization to the many-sorted case is harmless
if it is confined to unary and binary relations on closed terms of one of the sorts.

10

Therefore, we chose to have, for instance, many binary action step relations for each
action in A, viz. one for each element of R≥0, instead of one ternary or quaternary
relation.

For the operational semantics of BPAsat, as well as ACPsat and the further ex-
tensions described in Section 3, we will only define time step relations for which
〈t, p〉 r7−→ 〈t′, q〉 holds only if t ≡ t′. The given rules define relations for which ex-
actly those formulas hold that can be derived using the rules. Consequently, there
are no rules with conclusions of the form 〈x, p〉 r7−→ 〈x′, q〉 where x 6≡ x′. Hence, it

makes no difference if in a rule a premise of the form 〈x, p〉 r7−→ 〈x, q〉 is replaced by

〈x, p〉 r7−→ 〈x′, q〉 if x′ is a variable different from the variables occurring in the rule.

We prefer the premises of the form 〈x, p〉 r7−→ 〈x, q〉 because they are better suited
to a natural explanation of the rules. However, the replacements are usually needed
whenever general results about term deduction systems, e.g. results of [43], are used.
In the remainder of this chapter, we will refrain from making mention of the need for
the replacements because they are trivial and make no difference with respect to the
relations defined.

The structural operational semantics of BPAsat is described by the rules given in
Table 4.

These rules are easy to understand. We will only explain the rules for the absolute
delay operator (σabs). The first pair of rules expresses that the action related capa-
bilities of a process σ0

abs(x) at time p include those of process x at time p. The second
pair of rules expresses that the action related capabilities of a process σrabs(x) at time
p + r include those of process x at time p shifted in time by r (p ≥ 0, r > 0). The
third pair of rules expresses that the time related capabilities of a process σqabs(x) at
time p + q include those of process x at time p shifted in time by q (q ≥ 0). The
fourth pair of rules expresses that a process σrabs(x) can idle from any time p ≥ 0 to
any time q < r and that it can also idle to time r provided that process x can reach
time 0.

By identifying bisimilar processes we obtain our preferred model of BPAsat. One
process is (strongly) bisimilar to another process means that if one of the processes
is capable of doing a certain step, i.e. performing a certain action at a certain time
or idling from a certain time to another, and next going on as a certain subsequent
process then the other process is capable of doing the same step and next going on
as a process bisimilar to the subsequent process. More precisely, a bisimulation on
RTTS(A) is a symmetric binary relation R on the set of states S such that:

1. if R(s, t) and 〈s, p〉 a−→ 〈s′, p〉, then there is a t′ such that 〈t, p〉 a−→ 〈t′, p〉 and
R(s′, t′);

2. if R(s, t), then 〈s, p〉 a−→ 〈
√
, p〉 iff 〈t, p〉 a−→ 〈

√
, p〉;

3. if R(s, t) and 〈s, p〉 r7−→ 〈s′, q〉, then there is a t′ such that 〈t, p〉 r7−→ 〈t′, q〉 and
R(s′, t′);

4. if R(s, t), then ID(s, p) iff ID(t, p).

We say that two closed terms s and t are bisimilar , written s↔ t, if there exists a
bisimulation R such that R(s, t).

11

ID(δ
·
, p) ID(δ̃, r) 〈ã, 0〉 a−→ 〈

√
, 0〉 ID(ã, r)

〈x, p〉 a−→ 〈x′, p〉
〈σ0

abs(x), p〉 a−→ 〈x′, p〉
〈x, p〉 a−→ 〈

√
, p〉

〈σ0
abs(x), p〉 a−→ 〈

√
, p〉

〈x, p〉 a−→ 〈x′, p〉
〈σr

abs(x), p+ r〉 a−→ 〈σr
abs(x

′), p+ r〉
〈x, p〉 a−→ 〈

√
, p〉

〈σr
abs(x), p+ r〉 a−→ 〈

√
, p+ r〉

〈x, p〉 r7−→ 〈x, p+ r〉
〈σq

abs(x), p+ q〉 r7−→ 〈σq
abs(x), p+ q + r〉

ID(x, p)

ID(σq
abs(x), p+ q)

q > p

〈σq+r
abs (x), p〉 r7−→ 〈σq+r

abs (x), p+ r〉
¬ID(x, 0)

〈σq+r
abs (x), q〉 r7−→ 〈σq+r

abs (x), q + r〉

〈x, p〉 a−→ 〈x′, p〉
〈x + y, p〉 a−→ 〈x′, p〉,
〈y + x, p〉 a−→ 〈x′, p〉

〈x, p〉 a−→ 〈
√
, p〉

〈x + y, p〉 a−→ 〈
√
, p〉,

〈y + x, p〉 a−→ 〈
√
, p〉

〈x, p〉 r7−→ 〈x, p+ r〉
〈x + y, p〉 r7−→ 〈x + y, p+ r〉,
〈y + x, p〉 r7−→ 〈y + x, p+ r〉

ID(x, p), ID(y, p)

ID(x + y, p)

〈x, p〉 a−→ 〈x′, p〉
〈x · y, p〉 a−→ 〈x′ · y, p〉

〈x, p〉 a−→ 〈
√
, p〉

〈x · y, p〉 a−→ 〈y, p〉

〈x, p〉 r7−→ 〈x, p+ r〉
〈x · y, p〉 r7−→ 〈x · y, p+ r〉

ID(x, p)

ID(x · y, p)

〈x, p〉 a−→ 〈x′, p〉, q > p

〈υqabs(x), p〉 a−→ 〈x′, p〉
〈x, p〉 a−→ 〈

√
, p〉, q > p

〈υqabs(x), p〉 a−→ 〈
√
, p〉

〈x, p〉 r7−→ 〈x, p+ r〉, q > p+ r

〈υqabs(x), p〉 r7−→ 〈υqabs(x), p+ r〉
ID(x, p), q > p

ID(υqabs(x), p)

q ≤ p
ID(υqabs(x), p)

〈x, p〉 a−→ 〈x′, p〉, q ≤ p
〈υq

abs(x), p〉 a−→ 〈x′, p〉
〈x, p〉 a−→ 〈

√
, p〉, q ≤ p

〈υq
abs(x), p〉 a−→ 〈

√
, p〉

〈x, p〉 r7−→ 〈x, p+ r〉, q ≤ p+ r

〈υq
abs(x), p〉 r7−→ 〈υq

abs(x), p+ r〉
ID(x, p), q ≤ p
ID(υq

abs(x), p)

q > p

〈υq+r
abs (x), p〉 r7−→ 〈υq+r

abs (x), p+ r〉
¬ID(x, q + r)

〈υq+r
abs (x), q〉 r7−→ 〈υq+r

abs (x), q + r〉

Table 4: Rules for operational semantics of BPAsat (a ∈ A, r > 0, p, q ≥ 0)

It is known from [43] that if a stratifiable term deduction system is in panth
format, bisimulation equivalence as defined here is a congruence for the operators in
the signature concerned. This collection of constraints on the form of the rules of a
term deduction system is defined in [43] for the one-sorted case, but in case of the

12

real time and discrete time versions of ACP presented in this chapter we have in
addition to the sort of processes also the sort of non-negative real numbers or the
sort of natural numbers. In order to conform to the panth format as defined in [43],
the number of constants and operators in the first argument of a conclusion must be
either zero or one. In case of most term deduction systems given in this chapter, this
condition is only fulfilled if we disregard constants and operators that do not yield
processes. Careful checking of the proof of the congruence theorem for the panth
format given in [43], the only result about the panth format that we will use, shows
that the result goes through for the many-sorted case if the above-mentioned condition
is relaxed in such a way that only the number of constants and operators that yield
processes is restricted to zero or one. Therefore, we will refer to this panth-like format
in the remainder of this chapter as the panth format. We note here that checking of
the proof of the congruence theorem includes checking of the proofs of many related
lemmas and theorems given in [15] and [43]. For a comprehensive introduction to
rule formats guaranteeing that bisimulation equivalence is a congruence, the reader
is referred to [1].

The signature of BPAsat together with the rules for the operational semantics
of BPAsat constitute a stratifiable term deduction system in panth format. Conse-
quently, bisimulation equivalence is a congruence for the operators of BPAsat. For
this reason, the operators of BPAsat can be defined on the set of bisimulation equiva-
lence classes. We can prove that this results in a model for BPAsat, i.e. all equations
derivable in BPAsat hold. In other words, the axioms of BPAsat form a sound axiom-
atization for the model based on bisimulation equivalence classes. As in the case of
the other axiomatizations presented in this chapter, we leave it as an open problem
whether the axioms of BPAsat form a complete axiomatization for this model.

2.2 Algebra of communicating processes

In ACPsat, we have, in addition to sequential and alternative composition, parallel
composition of processes. The process x ‖ y is the process that proceeds with the
processes x and y in parallel. Furthermore, we have the encapsulation operators ∂H
(one for eachH ⊆ A) which turns all urgent actions ã, where a ∈ H, into δ̃. As in ACP,
we also have the auxiliary operators bb (left merge) and | (communication merge) to
get a finite axiomatization of the parallel composition operator. The processes x bb y
and x ‖ y are the same except that x bb y must start to perform actions by performing
an action of x. The processes x | y and x ‖ y are the same except that x | y must start
to perform actions by performing an action of x and an action of y synchronously. In
case of ACPsat, an additional auxiliary operator νabs (absolute urgent initialization)
is needed. The process νabs(x) is the part of process x that starts to perform actions
at time 0.

The operator νabs of ACPsat is simply the operator νabs of ACPτdat [5] lifted to the
real time setting.

Signature of ACPsat The signature of ACPsat is the signature of BPAsat extended
with the parallel composition operator ‖: P × P → P, the left merge operator bb:
P × P → P, the communication merge operator |: P × P → P, the encapsulation

13

operators ∂H : P → P (for each H ⊆ A), and the absolute urgent initialization
operator νabs : P→ P.

Axioms of ACPsat The axiom system of ACPsat consists of the axioms of BPAsat

and the equations given in Table 5.

ã | b̃ = c̃ if γ(a, b) = c CF1SA

ã | b̃ = δ̃ if γ(a, b) undefined CF2SA

x ‖ y = (x bb y + y bb x) + x | y CM1

δ
· bb x = δ

·
CMID1

x bb δ· = δ
·

CMID2

ã bb (x + δ̃) = ã · (x + δ̃) CM2SA

ã · x bb (y + δ̃) = ã · (x ‖ (y + δ̃)) CM3SA

σr
abs(x) bb (νabs(y) + δ̃) = δ̃ SACM1

σp
abs(x) bb (υpabs(y) + σp

abs(z)) = σp
abs(x bb z) SACM2

(x + y) bb z = x bb z + y bb z CM4

δ
· | x = δ

·
CMID3

x | δ· = δ
·

CMID4

ã · x | b̃ = (ã | b̃) · x CM5SA

ã | b̃ · x = (ã | b̃) · x CM6SA

ã · x | b̃ · y = (ã | b̃) · (x ‖ y) CM7SA

(νabs(x) + δ̃) | σr
abs(y) = δ̃ SACM3

σr
abs(x) | (νabs(y) + δ̃) = δ̃ SACM4

σp
abs(x) | σp

abs(y) = σp
abs(x | y) SACM5

(x + y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

∂H(δ
·
) = δ

·
D0

∂H(ã) = ã if a 6∈ H D1SA

∂H(ã) = δ̃ if a ∈ H D2SA

∂H(σp
abs(x)) = σp

abs(∂H(x)) SAD

∂H(x + y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

νabs(δ
·
) = δ

·
SAU0

νabs(ã) = ã SAU1

νabs(σ
r
abs(x)) = δ̃ SAU2

νabs(x + y) = νabs(x) + νabs(y) SAU3

νabs(x · y) = νabs(x) · y SAU4

Table 5: Additional axioms for ACPsat (a, b ∈ Aδ, c ∈ A, p ≥ 0, r > 0)

Axioms CM1, CM4, CM8, CM9, D3 and D4 are common to ACP and all real and
discrete time versions of ACP. Axioms CF1SA, CF2SA, CM2SA, CM3SA, CM5SA-
CM7SA, D1SA and D2SA are simple reformulations of the axioms CF1, CF2, CM2,
CM3, CM5-CM7, D1 and D2 of ACP: constants a (a ∈ Aδ) have been replaced by
constants ã, and in addition to that certain variables x have been replaced by x + δ̃ in

14

CM2SA and CM3SA. Recall that x + δ̃ = x if x 6= δ
·
, and δ

·
+ δ̃ = δ̃. This means that

x + δ̃ never stands for δ
·
. Axioms SACM1 and SACM2 represent the interaction of ab-

solute delay with left merge. Axiom SACM2 shows that if two parallel processes start
to perform actions by performing an action of one of them and that process starts to
perform actions at a certain time, only the part of the other process proceeds that
starts to perform actions at the same time or later. What happens if such a part does
not exist, is reflected more clearly by a generalization of axiom SACM1 than by that
axiom itself. This generalization, which is derivable from the axioms of ACPsat, is
equation SACM1′ given in Table 6. Note that a term of the form υpabs(y) stands for an
arbitrary process that starts to perform actions before time p; and that a term of the
form σpabs(νabs(z) + δ̃) stands for an arbitrary process that starts to perform actions
at time p or deadlocks at time p. So equation SACM1′ expresses that if the process
that would perform the first action can only do so after the ultimate time to start
performing actions or to deadlock for the other process, the result will be a deadlock
at this ultimate starting time. Note that in case of sequential processes, the process
that would first perform actions can always do so, irrespective of the ultimate starting
time for the other process. This difference is apparent from equation SAT4′, given in
Table 6, which is derivable from the axioms of ACPsat and the standard initializa-
tion axioms SI13 and SI16 (Table 14, page 24). Axioms SACM3-SACM5 represent
the interaction of absolute delay with communication merge. Axioms SACM4 and
SACM5 are similar to axioms SACM1 and SACM2. Axiom SACM3 is needed as well
because communication merge requires that both processes concerned start perform-
ing actions at the same time. Axiom SACM5 is simpler than axiom SACM2 just
because of the left distributivity of the communication merge (axiom CM9). Equa-
tions SACM3′ and SACM4′ given in Table 6 generalize axioms SACM3 and SACM4
like equation SACM1′ generalizes axiom SACM1. Axiom SAD represents the (lack
of) interaction of absolute delay with encapsulation. Axioms SAU0-SAU4 reflect the
intended meaning of the urgent initialization operator clearly.

σp+r
abs (x) · (υpabs(y) + σp

abs(νabs(z) + δ̃)) = σp+r
abs (x · δ·) SAT4′

σp+r
abs (x) bb (υpabs(y) + σp

abs(νabs(z) + δ̃)) = σp
abs(δ̃) SACM1′

σp
abs(νabs(x) + δ̃) | σp+r

abs (y) = σp
abs(δ̃) SACM3′

σp+r
abs (x) | σp

abs(νabs(y) + δ̃) = σp
abs(δ̃) SACM4′

Table 6: Some derivable equations (p ≥ 0, r > 0)

We can prove that the operators ‖, bb, |, ∂H and νabs can be eliminated in closed
terms of ACPsat. Because of the elimination result for BPAsat, we are permitted to
use induction on the structure of basic terms over BPAsat to prove statements for all
closed terms of ACPsat.

Examples We give some examples of a closed term of ACPsat and the corresponding
basic term (in case γ(a, b) and γ(a, c) are undefined):

15

σ5.1
abs (ã) ‖ σ5.1

abs (b̃) · σ4.9
abs (c̃) = σ5.1

abs (ã · b̃ · δ· + b̃ · δ·)
σ5.1
abs (ã) ‖ σ4.9

abs (b̃) · σ5.1
abs (c̃) = σ4.9

abs (b̃ · σ0.2
abs (ã · c̃ + c̃ · ã))

σ5
abs(ã) ‖ σ4.9

abs (b̃) · σ5.1
abs (c̃) = σ4.9

abs (b̃ · σ0.1
abs (ã · σ0.1

abs (c̃)))

νabs(σ
5.1
abs (ã) ‖ σ4.9

abs (b̃) · σ5.1
abs (c̃)) = δ̃

Semantics of ACPsat The structural operational semantics of ACPsat is described
by the rules for BPAsat and the rules given in Table 7.

〈x, p〉 a−→ 〈x′, p〉, ¬ID(y, p)

〈x ‖ y, p〉 a−→ 〈x′ ‖ y, p〉, 〈y ‖ x, p〉 a−→ 〈y ‖ x′, p〉, 〈x bb y, p〉 a−→ 〈x′ ‖ y, p〉

〈x, p〉 a−→ 〈
√
, p〉, ¬ID(y, p)

〈x ‖ y, p〉 a−→ 〈y, p〉, 〈y ‖ x, p〉 a−→ 〈y, p〉, 〈x bb y, p〉 a−→ 〈y, p〉

〈x, p〉 a−→ 〈x′, p〉, 〈y, p〉 b−→ 〈y′, p〉, γ(a, b) = c

〈x ‖ y, p〉 c−→ 〈x′ ‖ y′, p〉, 〈x | y, p〉 c−→ 〈x′ ‖ y′, p〉

〈x, p〉 a−→ 〈x′, p〉, 〈y, p〉 b−→ 〈
√
, p〉, γ(a, b) = c

〈x ‖ y, p〉 c−→ 〈x′, p〉, 〈y ‖ x, p〉 c−→ 〈x′, p〉,
〈x | y, p〉 c−→ 〈x′, p〉, 〈y | x, p〉 c−→ 〈x′, p〉

〈x, p〉 a−→ 〈
√
, p〉, 〈y, p〉 b−→ 〈

√
, p〉, γ(a, b) = c

〈x ‖ y, p〉 c−→ 〈
√
, p〉, 〈x | y, p〉 c−→ 〈

√
, p〉

〈x, p〉 r7−→ 〈x, p+ r〉, 〈y, p〉 r7−→ 〈y, p+ r〉
〈x ‖ y, p〉 r7−→ 〈x ‖ y, p+ r〉, 〈x bb y, p〉 r7−→ 〈x bb y, p+ r〉,

〈x | y, p〉 r7−→ 〈x | y, p+ r〉

ID(x, p)

ID(x ‖ y, p), ID(y ‖ x, p), ID(x bb y, p),
ID(y bb x, p), ID(x | y, p), ID(y | x, p)

〈x, p〉 a−→ 〈x′, p〉, a 6∈ H
〈∂H(x), p〉 a−→ 〈∂H(x′), p〉

〈x, p〉 a−→ 〈
√
, p〉, a 6∈ H

〈∂H(x), p〉 a−→ 〈
√
, p〉

〈x, p〉 r7−→ 〈x, p+ r〉
〈∂H(x), p〉 r7−→ 〈∂H(x), p+ r〉

ID(x, p)

ID(∂H(x), p)

〈x, 0〉 a−→ 〈x′, 0〉
〈νabs(x), 0〉 a−→ 〈x′, 0〉

〈x, 0〉 a−→ 〈
√
, 0〉

〈νabs(x), 0〉 a−→ 〈
√
, 0〉

ID(x, 0)

ID(νabs(x), 0) ID(νabs(x), r)

Table 7: Additional rules for ACPsat (a, b, c ∈ A, r > 0, p ≥ 0)

These rules are easy to understand. We will only mention that the first two rules
for the parallel composition operator (‖) express that a process x loses all its action
related capabilities at time p if it is put in parallel with a process y that can not reach
time p, and that the last rule for this operator expresses that in such cases the parallel
composition can not reach time p either. As in the case of BPAsat, we obtain a term

16

deduction system in panth format that is stratifiable, so bisimulation equivalence is
also a congruence for the additional operators of ACPsat. Therefore, these operators
can be defined on the set of bisimulation equivalence classes as well. As in the case
of BPAsat, we can prove that this results in a model for ACPsat.

2.3 Time-stamped actions

The real time versions ACPρ, ACPrρ and ACPρσ [2, 4] feature time-stamped actions
– and thus combine execution of actions and passage of time. The time-stamped
actions defined below are more closely related to the ones in ACPsρ [6], the real time
version of ACP from which ACPsat originates. This is because ACPsρ, like ACPsat

and unlike ACPρ, ACPrρ and ACPρσ, does not exclude the possibility of two or more
actions to be performed consecutively at the same point in time.

Time-stamped actions are defined in terms of urgent actions and the delay operator
in Table 8. We also define a time-stamped version of immediate deadlock. In ACPρ

ã(p) = σp
abs(ã)

δ
·
(p) = σp

abs(δ
·
)

Table 8: Definitions of time-stamped actions and immediate deadlock (a ∈ Aδ, p ≥ 0)

and ACPrρ, which exclude the possibility of two or more actions to be performed
consecutively at the same point in time, there is no reason to distinguish, for instance,
between the processes a(p+r) ·δ(p+r) and a(p+r) ·b(p) (r > 0). In ACPsat, unlike in
ACPsρ, distinction is made in comparable cases by introducing immediate deadlock
to deal with timing inconsistencies. Therefore, we have to introduce time-stamped
immediate deadlock here.

We now consider the signature of BPAsat with time-stamped actions, i.e. the
signature of BPAsat, but with the urgent action constants ã, the urgent deadlock
constant δ̃, the immediate deadlock constant δ

·
and the delay operator σabs replaced

by the time-stamped action constants ã(p) and the time-stamped deadlock constants
δ̃(p) and δ

·
(p). From the axioms of BPAsat and the definitions of time-stamped actions

and immediate deadlock, we can easily derive the equations given in Table 9 for closed
terms. Axioms A1-A5 from Table 1 and the equations from Table 9 together can be
considered to form the axioms of BPAsat with time-stamped actions. The differences
with the axioms of BPAsρδ in [6] are all due to the different treatment of timing
inconsistencies. Extension of this version to ACP is left to the reader.

3 Extension of ACPsat

In this section, we describe the extension of ACPsat with integration and initial ab-
straction. The extension with integration is needed to be able to embed discrete time
process algebras, as exemplified in Section 5.3. The extension with initial abstraction
is needed to be able to embed process algebras with relative timing, as illustrated in
Section 4.3.

17

x + δ
·
(0) = x A6TSIDa

δ̃(p) + δ
·
(p) = δ̃(p) A6TSIDb

δ
·
(p) · x = δ

·
(p) A7TSID

ã(p) · x = ã(p) · υp
abs(x) SATTS

ã(p) + δ̃(p) = ã(p) A6TSa

δ̃(p+ r) + δ̃(p) = δ̃(p+ r) A6TSb

δ̃(p) · x = δ̃(p) A7TS

υp
abs(δ

·
(p+ q)) = δ

·
(p+ q) SATSI1

υp+r
abs (δ

·
(p)) = δ

·
(p+ r) SATSI2

υp
abs(ã(p+ q)) = ã(p+ q) SATSI3

υp+r
abs (ã(p)) = δ

·
(p+ r) SATSI4

υp
abs(x + y) = υp

abs(x) + υp
abs(y) SATSI5

υp
abs(x · y) = υp

abs(x) · y SATSI6

Table 9: Additional axioms for time-stamped actions (a ∈ Aδ, p, q ≥ 0, r > 0)

Integration and initial abstraction are both variable binding operators. Following
e.g. [24], we will introduce variable binding operators by a declaration of the form
f : S11, . . . , S1k1 . S1 × . . . × Sn1, . . . , Snkn . Sn → S. Hereby is indicated that f
combines an operator f∗ : ((S11 × . . . × S1k1) → S1) × . . . × ((Sn1 × . . . × Snkn) →
Sn)→ S with λ-calculus-like functional abstraction, binding ki variables ranging over
Si1, . . . , Siki in the ith argument (0 ≤ i ≤ n). Applications of f have the following
form: f(x11, . . . , x1k1 . t1, . . . , xn1, . . . , xnkn . tn), where each xij is a variable of sort
Sij and each ti is a term of sort Si.

Integration requires a more extensive theory of the non-negative real numbers
than the minimal theory sketched at the beginning of Section 2 (page 4). In the first
place, it has to include a theory of sets of non-negative real numbers that makes it
possible to deal with set membership and set equality. Besides, the theory should
cover suprema of sets of non-negative real numbers.

First, in Section 3.1, ACPsat is extended with integration. After that, in Sec-
tion 3.2, initial abstraction is added. Finally, some useful additional axioms, derivable
for closed terms, are given in Section 3.3.

3.1 Integration

We add the integration operator
∫

to ACPsat. It provides for alternative composition
over a continuum of alternatives. That is,

∫
v∈V P , where v is a variable ranging over

R≥0, V ⊆ R≥0 and P is a term that may contain free variables, proceeds as one of
the alternatives P [p/v] for p ∈ V . The resulting theory is called ACPsatI. Obviously,
we could first have added integration to BPAsat, resulting in BPAsatI, and then have
extended BPAsatI to deal with parallelism and communication.

Signature of ACPsatI The signature of ACPsatI is the signature of ACPsat extended
with the integration (variable-binding) operator

∫
: P(R≥0)× R≥0 . P→ P.

18

We assume that an infinite set of time variables ranging over R≥0 has been given, and
denote them by v, w, Furthermore, we use V,W, . . . to denote subsets of R≥0. We
denote terms of ACPsatI by P,Q, We will use the following notational convention.
We write

∫
v∈V P for

∫
(V, v . P).

Axiom system of ACPsatI The axiom system of ACPsatI consists of the axioms of
ACPsat and the equations given in Table 10.

∫
w∈V R =

∫
v∈V R[v/w] INT1∫

v∈∅ P = δ
·

INT2∫
v∈{p} P = P [p/v] INT3∫
v∈V ∪W P =

∫
v∈V P +

∫
v∈W P INT4

V 6= ∅ ⇒
∫
v∈V R = R INT5

(∀p ∈ V • P [p/v] = Q[p/v]) ⇒
∫
v∈V P =

∫
v∈V Q INT6

V 6= ∅ ⇒
∫
v∈V σv

abs(δ
·
) = σsup V

abs (δ
·
) INT7

V 6= ∅, sup V 6∈ V ⇒
∫
v∈V σv

abs(δ̃) = σsup V
abs (δ

·
) INT8

sup V ∈ V ⇒
∫
v∈V σv

abs(δ̃) = σsup V
abs (δ̃) INT9∫

v∈V σp
abs(P) = σp

abs(
∫
v∈V P) if p 6= v INT10∫

v∈V (P + Q) =
∫
v∈V P +

∫
v∈V Q INT11∫

v∈V (P ·R) = (
∫
v∈V P) ·R INT12∫

v∈V (P bb R) = (
∫
v∈V P) bb R INT13∫

v∈V (P | R) = (
∫
v∈V P) | R INT14∫

v∈V (R | P) = R | (
∫
v∈V P) INT15∫

v∈V ∂H(P) = ∂H(
∫
v∈V P) INT16

υpabs(
∫
v∈V P) =

∫
v∈V υpabs(P) if p 6= v SATO6

υp
abs(

∫
v∈V P) =

∫
v∈V υp

abs(P) if p 6= v SAI6

νabs(
∫
v∈V P) =

∫
v∈V νabs(P) SAU5

Table 10: Axioms for integration (p ≥ 0, v not free in R)

Axiom INT1 is similar to the α-conversion rule of λ-calculus. Axioms INT2-INT6 are
the crucial axioms of integration. They reflect the informal explanation that

∫
v∈V P

proceeds as one of the alternatives P [p/v] for p ∈ V . The remaining axioms are all
easily understood by realizing that

∫
stands for an infinite alternative composition.

We can prove that the auxiliary operators υabs and υabs, as well as sequential
compositions in which the form of the first operand is not ã (a ∈ A) and alternative
compositions in which the form of the first operand is σpabs(t), can be eliminated in
closed terms of BPAsatI with a restricted form of integration. Basically, this restriction
means that in terms of the form

∫
v∈V P , V is an interval of which the bounds are given

by linear expressions over time variables and P is of the form σvabs(ã) or σvabs(ã) · t (a ∈
Aδ). This restricted form of integration is essentially the same as prefix integration
from [29] (see also [22, 23]). The terms that remain after exhaustive elimination are
called the basic terms over BPAsat with restricted integration. We can also prove that
the operators ‖, bb, |, ∂H and νabs can be eliminated in closed terms of ACPsat with
restricted integration. Because of these elimination results, we are permitted to use

19

induction on the structure of basic terms over BPAsat with restricted integration to
prove statements for all closed terms of ACPsat with restricted integration.

Examples We give some examples of a closed term of ACPsat with restricted integra-
tion and the corresponding basic term:∫

v∈[4.9,5.1) σ
v
abs(νabs(σ

0.9
abs (ã) ‖ σ1.8

abs (b̃) · σ2.7
abs (c̃))) = σ5.1

abs (δ
·
)∫

v∈[4.9,5.1) σ
v
abs(ã) +

∫
v∈[4.9,5.1) σ

v
abs(b̃) =

∫
v∈[4.9,5.1) σ

v
abs(ã + b̃)

(
∫
v∈[4.9,5.1) σ

v
abs(ã)) | (

∫
v∈[4.9,5.1) σ

v
abs(b̃)) =

∫
v∈[4.9,5.1) σ

v
abs(c̃) if γ(a, b) = c

(
∫
v∈[4.9,5.1) σ

v
abs(ã)) | (

∫
v∈[4.9,5.1) σ

v
abs(b̃)) =

∫
v∈[4.9,5.1) σ

v
abs(δ̃) if γ(a, b) undefined

Semantics of ACPsatI The structural operational semantics of ACPsatI is described
by the rules for ACPsat and the rules given in Table 11.

〈P [q/v], p〉 a−→ 〈P ′, p〉, q ∈ V
〈
∫
v∈V P, p〉 a−→ 〈P ′, p〉

〈P [q/v], p〉 a−→ 〈
√
, p〉, q ∈ V

〈
∫
v∈V P, p〉 a−→ 〈

√
, p〉

〈P [q/v], p〉 r7−→ 〈P [q/v], p+ r〉, q ∈ V
〈
∫
v∈V P, p〉 r7−→ 〈

∫
v∈V P, p+ r〉

ID(P [q/v], p) for all q ∈ V
ID(

∫
v∈V P, p)

Table 11: Rules for integration (a ∈ A, r > 0, p, q ≥ 0)

The rules for integration are simple generalizations of the rules for alternative com-
position to the infinite case.

The panth format does not cover variable binding operators such as integration.
The integration operator combines an ordinary operator

∫ ∗
: P(R≥0)× (R≥0 → P)→

P with λ-calculus-like functional abstraction, binding one variable ranging over R≥0
in the second argument. This implies that we have additional sorts here, including
the sort of functions from non-negative real numbers to processes. These functions,
denoted by closed terms of the form v . P , where v may occur free in P , cannot be
dealt with in the same way as the non-negative real numbers: (1) they are denoted
using open terms of the sort of processes and (2) their application is syntactically
represented by means of substitution. As for (1), we can define bisimulation equiva-
lence on closed terms v . P and w .Q as well as on open terms P and Q in such a way
that it corresponds to the pointwise extension of the original bisimulation equivalence:
v . P ↔ w . Q iff P [p/v] ↔ Q[p/w] for all p ∈ R≥0; P ↔ Q iff σ(P) ↔ σ(Q) for all
substitutions σ of non-negative real numbers for time variables. As for (2), we have to
make a clear distinction between variables that range over a semantic domain, such as
v in the rules for integration, and meta-variables that range over a syntactic domain,
such as P and P ′ in the rules for integration. In [24], the former variables are called
actual variables and the latter ones formal variables. Careful checking of the proof
of the congruence theorem for the panth format given in [43] shows that the result
goes through for the case with variable binding operators if the condition about the
number of constants and operators in the first argument of a conclusion is as in the
many-sorted case without variable binding operators: the number of constants and
operators that yield processes is restricted to zero or one.

20

The signature of ACPsatI together with the rules for the operational semantics
of ACPsatI constitute a stratifiable term deduction system in this generalized panth
format, so bisimulation equivalence is also a congruence for the integration operator.
Hence, this operator can be defined on the set of bisimulation equivalence classes as
well. As in the case of BPAsat and ACPsat, we can prove that this results in a model
for ACPsatI. We will call this model MA.

3.2 Initial abstraction

We add the initial abstraction operator
√
s to ACPsatI. It provides for (simple) para-

metric timing:
√
s v . F , where v is a variable ranging over R≥0 and F is a term that

may contain free variables, proceeds as F [p/v] if initialized at time p ∈ R≥0. This
means that

√
s v .F denotes a function f : R≥0 → P that satisfies f(p) = υpabs(f(p)) for

all p ∈ R≥0. In the resulting theory, called ACPsatI
√

, the sort P of (absolute time)
processes is replaced by the sort P∗ of parametric time processes. Of course, it is
also possible to add the initial abstraction operator to ACPsat, resulting in a theory
ACPsat√.

Signature of ACPsatI
√

The signature of ACPsatI
√

is the signature of ACPsatI
extended with the initial abstraction (variable-binding) operator

√
s : R≥0 . P∗ → P∗.

We now use x, y, . . . to denote variables of sort P∗. Terms of ACPsatI
√

are denoted
by F,G, We will use the following notational convention. We write

√
s v . F for√

s(v . F).

Axiom system of ACPsatI
√

The axiom system of ACPsatI
√

consists of the axioms
of ACPsatI and the equations given in Table 12.

Axioms SIA1 and SIA2 are similar to the α- and β-conversion rules of λ-calculus.
Axiom SIA3 points out that multiple initial abstractions can simply be replaced by
one. Axiom SIA4 shows that processes with absolute timing can be treated as special
cases of processes with parametric timing: they do not vary with different initialization
times. Axiom SIA5 is an extensionality axiom. Axiom SIA6 expresses that in case
a process performs an action and then proceeds as another process, the initialization
time of the latter process is the time at which the action is performed. Notice that
the equation ã · x = ã · υ0

abs(x) is a special case of axiom SIA6. The related equation
σpabs(x) = σpabs(υ

0
abs(x)) follows immediately from axioms SAT1 and SAT2 (Table 2,

page 7). Axioms SIA7-SIA17 become easier to understand by realizing that
√
s v . F

denotes a function f : R≥0 → P such that f(p) = υpabs(f(p)) for all p ∈ R≥0. This is
reflected by the equation

√
s v . F =

√
s v . υ

v
abs(F) SIAI

which can be derived using axioms SIA2 and SIA5 and a useful special case of standard
initialization axiom SI2 presented in Section 3.3, viz. υpabs(υ

p
abs(x)) = υpabs(x).

The elimination results for ACPsatI
√

with the restricted form of integration men-
tioned in Section 3.1 are essentially the same as the ones for ACPsatI with the re-
stricted form of integration. Besides, all closed terms of ACPsatI

√
with this restricted

21

√
s w . G =

√
s v . G[v/w] SIA1

υp
abs(
√
s v . F) = υp

abs(F [p/v]) SIA2
√
s v . (

√
s w . F) =

√
s v . F [v/w] SIA3

G =
√
s v . G SIA4

(∀p ∈ R≥0 • υ
p
abs(x) = υp

abs(y)) ⇒ x = y SIA5

σp
abs(ã) · x = σp

abs(ã) · υp
abs(x) SIA6

σp
abs(
√
s v . F) = σp

abs(F [0/v]) SIA7

(
√
s v . F) + G =

√
s v . (F + υv

abs(G)) SIA8

(
√
s v . F) ·G =

√
s v . (F ·G) SIA9

υpabs(
√
s v . F) =

√
s v . υ

p
abs(F) if p 6= v SIA10

(
√
s v . F) bb G =

√
s v . (F bb υv

abs(G)) SIA11

G bb (
√
s v . F) =

√
s v . (υ

v
abs(G) bb F) SIA12

(
√
s v . F) | G =

√
s v . (F | υv

abs(G)) SIA13

G | (
√
s v . F) =

√
s v . (υ

v
abs(G) | F) SIA14

∂H(
√
s v . F) =

√
s v . ∂H(F) SIA15

νabs(
√
s v . F) =

√
s v . νabs(F) SIA16∫

v∈V (
√
s w . F) =

√
s w . (

∫
v∈V F) if v 6= w SIA17

Table 12: Axioms for standard initial abstraction (p ≥ 0, v not free in G)

form of integration can be written in the form
√
s v . F where F is a basic term over

BPAsat with restricted integration.

Examples We give some examples of a closed term of ACPsatI
√

with restricted inte-
gration, the corresponding term of the form

√
s v . F where F is a basic term and, if

possible, the corresponding basic term without initial abstraction:

√
s v . υ

v+2.3
abs (

√
s w . σ

w
abs(ã)) =

√
s v . σ

v
abs(ã)

√
s v . υ

v+2.3
abs (

√
s w . σ

w
abs(ã)) =

√
s v . σ

v+2.3
abs (ã)

υ3.9
abs (
√
s v . υ

v+2.3
abs (

∫
w∈[6,6.1) σ

w
abs(ã))) =

√
s v . σ

6.2
abs (δ

·
) = σ6.2

abs (δ
·
)

υ3.6
abs (
√
s v . υ

v+2.3
abs (

∫
w∈[6,6.1) σ

w
abs(ã))) =

√
s v .

∫
w∈[6,6.1) σ

w
abs(ã) =

∫
w∈[6,6.1) σ

w
abs(ã)

On the basis of the rules for its operational semantics, the operators of ACPsatI
can also be directly defined on real time transition systems in a straightforward way.
In the following, we will describe a model of ACPsatI

√
in terms of these operators.

Semantics of ACPsatI
√

We have to extend RTTS(A) to the function space

RTTS∗(A) = {f : R≥0 → RTTS(A) | ∀p ∈ R≥0 • f(p) = υpabs(f(p))}

of real time transition systems with parametric timing. We use f, g, . . . to denote
elements of RTTS∗(A). In Table 13, the constants and operators of ACPsatI

√
are

defined on RTTS∗(A). We use λ-notation for functions – here t is a variable ranging
over R≥0. We write f(t) ∗ g for the real time transition system obtained from f(t)
by replacing 〈s, p〉 a−→ 〈

√
, p〉 by 〈s, p〉 a−→ 〈s′, p〉, where s′ is the root state of g(p),

whenever s is reachable from the root state of f(t).

22

δ
·

= λt . δ
·

ã = λt . υt
abs(ã)

σp
abs(f) = λt . υt

abs(σ
p
abs(f(0)))

f + g = λt . (f(t) + g(t))

f · g = λt . (f(t) ∗ g)
υpabs(f) = λt . υt

abs(υ
p
abs(f(t)))

υp
abs(f) = f(p)

f ‖ g = λt . (f(t) ‖ g(t))
f bb g = λt . (f(t) bb g(t))
f | g = λt . (f(t) | g(t))
∂H(f) = λt . ∂H(f(t))

νabs(f) = λt . υt
abs(νabs(f(t)))∫

v∈V (f) = λt .
∫
v∈V (f(t))

√∗
s ϕ = λt . υt

abs(ϕ(t))

Table 13: Definition of operators on RTTS∗ (ϕ : R≥0 → RTTS∗(A), a ∈ Aδ, p ∈ R≥0)

We say that f, g ∈ RTTS∗(A) are bisimilar if for all p ∈ R≥0, there exists a bisim-
ulation R such that R(f(p), g(p)). It is easy to see that bisimulation equivalence as
defined here is a congruence for the operators of ACPsatI

√
. We obtain a model of

ACPsatI
√

by defining all operators on the set of bisimulation equivalence classes. We
will call this model M∗A. Notice that f ∈ RTTS∗(A) corresponds to a process that can
be written with the constants and operators of ACPsatI only iff υ0

abs(f) = f . In fact,
MA is isomorphic to a subalgebra of M∗A.

3.3 Standard initialization axioms

In Table 14, some equations concerning initialization and time-out are given that hold
in the model M∗A, and that are derivable for closed terms of ACPsatI

√
. We will use

these axioms in proofs in subsequent sections. Notice that the very useful equation
υpabs(υ

p
abs(x)) = υpabs(x) is a special case of axiom SI2. We can easily prove by means of

the standard initialization axioms, using axioms SIA2 and SIA5 (Table 12, page 22),
that initial abstraction distributes over +, ‖, bb and |:

(
√
s v . F) 2 (

√
s v . F

′) =
√
s v . (F 2 F ′) DISTR2

for 2 = +, ‖, bb, |. Using this fact shortens many of the calculations needed in the
proof of Theorem 6 (embedding of ACPsrt in ACPsat√).

4 Real time process algebra: relative timing

In this section, we give the signature, axioms and term model of ACPsrt, a standard
real time process algebra with relative timing. ACPsrt originates from the theory
ACPst, presented in [6]. Like ACPst, it separates execution of actions and passage of
time.

23

υp
abs(υ

p+r
abs (x)) = υp+r

abs (υp
abs(x)) SI1

υp
abs(υ

p+q
abs (x)) = υp+q

abs (x) SI2

υp+q
abs (υpabs(x)) = σp+q

abs (δ
·
) SI3

υpabs(υ
p+q
abs (x)) = σp

abs(δ
·
) SI4

σp
abs(δ

·
) + υp

abs(x) = υp
abs(x) SI5

σp
abs(δ̃) + υp

abs(x + δ̃) = υp
abs(x + δ̃) SI6

υr
abs(x) + δ̃ = υr

abs(x) SI7

υpabs(υ
q
abs(x)) = υ

min(p,q)
abs (x) SI8

υp
abs(υ

q
abs(υ

q′

abs(x))) = υ
max(p,q)
abs (υq′

abs(x)) SI9

υp
abs(x bb y) = υp

abs(x) bb υp
abs(y) SI10

υp
abs(x | y) = υp

abs(x) | υp
abs(y) SI11

υp
abs(∂H(x)) = ∂H(υp

abs(x)) SI12

υ0
abs(νabs(x)) = νabs(υ

0
abs(x)) SI13

υr
abs(νabs(x)) = σr

abs(δ
·
) SI14

νabs(υ
r
abs(x)) = δ̃ SI15

υrabs(νabs(x)) = νabs(x) SI16

νabs(υ
r
abs(x)) = νabs(x) SI17

Table 14: Standard initialization axioms (p, q, q′ ≥ 0, r > 0)

First, in Section 4.1, we treat BPAsrt, basic standard real time process algebra
with relative timing, in which parallelism and communication are not considered.
After that, in Section 4.2, BPAsrt is extended to ACPsrt to deal with parallelism and
communication as well. Finally, we show in Section 4.3 how ACPsrt can be embedded
in ACPsat√.

4.1 Basic process algebra

In BPAsrt, we have the constants ˜̃a and ˜̃δ instead of ã and δ̃, and the operator σrel
(relative delay) instead of σabs (absolute delay). The constants ˜̃a and ˜̃δ stand for a
without any delay and a deadlock without any delay, respectively. The process σprel(x)
is the process x delayed for a period of time p. We also have relative counterparts
of the absolute time-out and initialization operators: υrel (relative time-out) and υrel
(relative initialization). The process υprel(x) is the part of x that starts to perform
actions after a period of time shorter than p. The process υprel(x) is the part of x
that starts to perform actions after a period of time longer than or equal to p. In
BPAsrt, the sort P of (absolute time) processes is replaced by the sort Pr of relative
time processes.

The notation ˜̃a for urgent actions in case of relative timing was also used in
ACPst [6], the theory from which ACPsrt originates.

Signature of BPAsrt The signature of BPAsrt consists of the urgent action constants
˜̃a : → Pr (for each a ∈ A), the urgent deadlock constant ˜̃δ : → Pr, the immediate
deadlock constant δ

·
: → Pr, the alternative composition operator + : Pr × Pr → Pr,

the sequential composition operator · : Pr × Pr → Pr, the relative delay operator
σrel : R≥0 × Pr → Pr, the relative time-out operator υrel : R≥0 × Pr → Pr, and the

24

relative initialization operator υrel : R≥0 × Pr → Pr.

Axioms of BPAsrt The axiom system of BPAsrt consists of the equations given in
Tables 1 and 15.

σ0
rel(x) = x SRT1

σp
rel(σ

q
rel(x)) = σp+q

rel (x) SRT2

σp
rel(x) + σp

rel(y) = σp
rel(x + y) SRT3

σp
rel(x) · y = σp

rel(x · y) SRT4

˜̃a + ˜̃δ = ˜̃a A6SRa

σr
rel(x) + ˜̃δ = σr

rel(x) A6SRb
˜̃δ · x = ˜̃δ A7SR

υprel(δ
·
) = δ

·
SRTO0

υ0rel(x) = δ
·

SRTO1

υrrel(
˜̃a) = ˜̃a SRTO2

υp+q
rel (σp

rel(x)) = σp
rel(υ

q
rel(x)) SRTO3

υprel(x + y) = υprel(x) + υprel(y) SRTO4

υprel(x · y) = υprel(x) · y SRTO5

υp
rel(δ

·
) = σp

rel(δ
·
) SRI0

υ0
rel(x) = x SRI1

υr
rel(

˜̃a) = σr
rel(δ

·
) SRI2

υp+q
rel (σp

rel(x)) = σp
rel(υ

q
rel(x)) SRI3

υp
rel(x + y) = υp

rel(x) + υp
rel(y) SRI4

υp
rel(x · y) = υp

rel(x) · y SRI5

Table 15: Additional axioms for BPAsrt (a ∈ Aδ, p, q ≥ 0, r > 0)

The axioms of BPAsrt are to a large extent simple reformulations of the axioms of
BPAsat. That is, constants ã (a ∈ Aδ) have been replaced by constants ˜̃a, and the
operators σabs, υabs and υabs have been replaced by σrel, υrel and υrel, respectively.
Striking is the replacement of the axioms SAT4, SAT5 and SAT6 by the simple
axiom SRT4. This axiom reflects that timing is relative to the most recent execution
of an action. Axioms SRI0-SRI5 are reformulations, in the above-mentioned way, of
alternative axioms for axioms SAI0-SAI5 – which, unlike axioms SAI0-SAI5, do not
accommodate the addition of initial abstraction (see also Section 2.1).

Similar to the case of BPAsat, we can prove that the auxiliary operators υrel and
υrel, as well as sequential compositions in which the form of the first operand is not ˜̃a
(a ∈ A) and alternative compositions in which the form of the first operand is σprel(t),
can be eliminated in closed terms of BPAsrt. The terms that remain after exhaustive
elimination are called the basic terms over BPAsrt. Because of this elimination result,
we are permitted to use induction on the structure of basic terms over BPAsrt to
prove statements for all closed terms of BPAsrt.

Examples We give some examples of a closed term of BPAsrt and the corresponding
basic term:

25

σ5
rel(

˜̃a) · σ4.9
rel (˜̃b) = σ5

rel(
˜̃a · σ4.9

rel (˜̃b))

σ5
rel(

˜̃a) · (σ4.9
rel (˜̃b) + σ5.1

rel (˜̃c)) = σ5
rel(

˜̃a · σ4.9
rel (˜̃b + σ0.2

rel (˜̃c)))

υ5rel(σ
4.9
rel (˜̃a) + σ5.1

rel (˜̃b)) = σ4.9
rel (˜̃a + σ0.1

rel (δ
·
))

υ5
rel(σ

4.9
rel (˜̃a) + σ5.1

rel (˜̃b)) = σ5.1
rel (˜̃b)

Semantics of BPAsrt In case of relative timing, we can use a simple kind of real time
transition system. A real time transition system with relative timing over A consists
of a set of states S, a root state ρ ∈ S and four kinds of relations on states:

a binary relation a−→ for each a ∈ A,

a unary relation
a−→
√

for each a ∈ A,

a binary relation
r7−→ for each r ∈ R>0,

a unary relation ID();

satisfying

1. if s
r+r′7−−−→ s′, r, r′ > 0, then there is a s′′ such that s

r7−→ s′′ and s′′
r′7−→ s′;

2. if s
r7−→ s′′ and s′′

r′7−→ s′, then s
r+r′7−−−→ s′.

We write RTTSr(A) for the set of all real time transition systems with relative timing
over A.

We shall associate a transition system TSr(t) in RTTSr(A) with a closed term t
of BPAsrt like before in the case of absolute timing. In case of relative timing, the
action step, action termination, time step and immediate deadlock relations can be
explained as follows:

t a−→ t′: process t is capable of first performing action a without the least delay
and then proceeding as process t′;

t a−→
√

: process t is capable of first performing action a without the least delay
and then terminating successfully;

t
r7−→ t′: process t is capable of first idling for a time period r

and then proceeding as process t′;
ID(t): process t is not capable of reaching the present time.

The structural operational semantics of BPAsrt is described by the rules given in
Table 16. In one of the rules for the alternative composition operator, a negative
formula of the form t 6 r7−→ is used as a premise. A negative formula t 6 r7−→ means that
for all closed terms t′ of BPAsrt not t

r7−→ t′. Hence, t 6 r7−→ is to be read as “process t is
not capable of idling for a time period r”.

Clearly, changing from absolute timing to relative timing leads to a significant simpli-
fication of the operational semantics. However, note that there are two rules now for
the alternative composition operator concerning time related capabilities of a process
x + y. These rules have complementary premises. Together they enforce that the
choice between two idling processes is postponed till at least one of the processes
cannot idle any longer.

Also the notion of bisimulation becomes simpler in case of relative timing. A
bisimulation on RTTSr(A) is a symmetric binary relation R on the set of states S
such that:

26

ID(δ
·
) ˜̃a

a−→
√

x
a−→ x′

σ0
rel(x)

a−→ x′
x

a−→
√

σ0
rel(x)

a−→
√

ID(x)

ID(σ0
rel(x))

x
r7−→ x′

σp
rel(x)

p+r7−−−→ x′

p > 0

σp+r
rel (x)

r7−→ σp
rel(x)

¬ID(x)

σr
rel(x)

r7−→ x

x
a−→ x′

x + y
a−→ x′, y + x

a−→ x′
x

a−→
√

x + y
a−→
√
, y + x

a−→
√

x
r7−→ x′, y 6 r7−→

x + y
r7−→ x′, y + x

r7−→ x′
x

r7−→ x′, y
r7−→ y′

x + y
r7−→ x′ + y′

ID(x), ID(y)

ID(x + y)

x
a−→ x′

x · y a−→ x′ · y
x

a−→
√

x · y a−→ y

x
r7−→ x′

x · y r7−→ x′ · y
ID(x)

ID(x · y)

x
a−→ x′

υrrel(x)
a−→ x′

x
a−→
√

υrrel(x)
a−→
√

x
r7−→ x′, p > 0

υp+r
rel (x)

r7−→ υprel(x
′)

ID(x)

ID(υrrel(x))

ID(υ0rel(x))

x
a−→ x′

υ0
rel(x)

a−→ x′
x

a−→
√

υ0
rel(x)

a−→
√

x
r7−→ x′, p ≤ r

υp
rel(x)

r7−→ x′
x

r7−→ x′, p > 0

υp+r
rel (x)

r7−→ υp
rel(x

′)

x 6 r7−→, p > 0

υp+r
rel (x)

r7−→ υp
rel(δ

·
)

ID(x)

ID(υ0
rel(x))

Table 16: Rules for operational semantics of BPAsrt (a ∈ A, r > 0, p ≥ 0)

1. if R(s, t) and s a−→ s′, then there is a t′ such that t a−→ t′ and R(s′, t′);

2. if R(s, t), then s
a−→
√

iff t
a−→
√

;

3. if R(s, t) and s
r7−→ s′, then there is a t′ such that t

r7−→ t′ and R(s′, t′);

4. if R(s, t), then ID(s) iff ID(t).

As in the case of absolute timing, we obtain a model for BPAsrt by identifying bisimilar

27

processes.

4.2 Algebra of communicating processes

In ACPsrt, we have a relative counterpart of the absolute urgent initialization oper-
ator: νrel (relative urgent initialization). The process νrel(x) is the part of process x
that starts to perform actions without any delay. Like before in the case of absolute
timing, we use the relative urgent initialization operator to axiomatize the parallel
composition operator.

Signature of ACPsrt The signature of ACPsrt is the signature of BPAsrt extended
with the parallel composition operator ‖: Pr × Pr → Pr, the left merge operator
bb: Pr×Pr → Pr, the communication merge operator |: Pr×Pr → Pr, the encapsulation
operators ∂H : Pr → Pr (for each H ⊆ A), and the relative urgent initialization
operator νrel : Pr → Pr.

Axioms of ACPsrt The axiom system of ACPsrt consists of the axioms of BPAsrt

and the equations given in Table 17.

The additional axioms of ACPsrt are just simple reformulations of the additional
axioms of ACPsat. That is, constants ã (a ∈ Aδ) have been replaced by constants
˜̃a, and the operators σabs, υabs and νabs have been replaced by σrel, υrel and νrel,
respectively.

Similar to the case of ACPsat, we can prove that the operators ‖, bb, |, ∂H and
νrel can be eliminated in closed terms of ACPsrt. Because of the elimination result
for BPAsrt, we are permitted to use induction on the structure of basic terms over
BPAsrt to prove statements for all closed terms of ACPsrt.

Examples We give some examples of a closed term of ACPsrt and the corresponding
basic term (in case γ(a, c) is undefined):

σ5
rel(

˜̃a) ‖ σ5.1
rel (˜̃b) · σ0.3

rel (˜̃c) = σ5
rel(

˜̃a · σ0.1
rel (˜̃b · σ0.3

rel (˜̃c)))

σ5.1
rel (˜̃a) ‖ σ5

rel(
˜̃b) · σ0.3

rel (˜̃c) = σ5
rel(

˜̃b · σ0.1
rel (˜̃a · σ0.2

rel (˜̃c)))

σ5.1
rel (˜̃a) ‖ σ4.8

rel (˜̃b) · σ0.3
rel (˜̃c) = σ4.8

rel (˜̃b · σ0.3
rel (˜̃a · ˜̃c + ˜̃c · ˜̃a))

Semantics of ACPsrt The structural operational semantics of ACPsrt is described
by the rules for BPAsrt and the rules given in Table 18.

Changing from absolute timing to relative timing also leads to a simplification of the
additional rules for parallel composition, left merge, etc. As in the previous cases, we
obtain a model for ACPsrt by identifying bisimilar processes.

4.3 Embedding ACPsrt in ACPsat√

Consider two theories T and T ′. An embedding of T in T ′ is a term structure preserv-
ing injective mapping ε from the terms of T to the terms of T ′ such that for all closed
terms s, t of T , s = t is derivable in T implies ε(s) = ε(t) is derivable in T ′. If there ex-
ists an embedding of T in T ′, we say that T can be embedded in T ′. It roughly means

28

˜̃a | ˜̃b = ˜̃c if γ(a, b) = c CF1SR

˜̃a | ˜̃b = ˜̃δ if γ(a, b) undefined CF2SR

x ‖ y = (x bb y + y bb x) + x | y CM1

δ
· bb x = δ

·
CMID1

x bb δ· = δ
·

CMID2

˜̃a bb (x + ˜̃δ) = ˜̃a · (x + ˜̃δ) CM2SRID

˜̃a · x bb (y + ˜̃δ) = ˜̃a · (x ‖ (y + ˜̃δ)) CM3SRID

σr
rel(x) bb (νrel(y) + ˜̃δ) = ˜̃δ SRCM1ID

σp
rel(x) bb (υprel(y) + σp

rel(z)) = σp
rel(x bb z) SRCM2ID

(x + y) bb z = x bb z + y bb z CM4

δ
· | x = δ

·
CMID3

x | δ· = δ
·

CMID4

˜̃a · x | ˜̃b = (˜̃a | ˜̃b) · x CM5SR

˜̃a | ˜̃b · x = (˜̃a | ˜̃b) · x CM6SR

˜̃a · x | ˜̃b · y = (˜̃a | ˜̃b) · (x ‖ y) CM7SR

(νrel(x) + ˜̃δ) | σr
rel(y) = ˜̃δ SRCM3ID

σr
rel(x) | (νrel(y) + ˜̃δ) = ˜̃δ SRCM4ID

σp
rel(x) | σp

rel(y) = σp
rel(x | y) SRCM5

(x + y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

∂H(δ
·
) = δ

·
D0

∂H(˜̃a) = ˜̃a if a 6∈ H D1SR

∂H(˜̃a) = ˜̃δ if a ∈ H D2SR

∂H(σp
rel(x)) = σp

rel(∂H(x)) SRD

∂H(x + y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

νrel(δ
·
) = δ

·
SRU0

νrel(˜̃a) = ˜̃a SRU1

νrel(σ
r
rel(x)) = ˜̃δ SRU2

νrel(x + y) = νrel(x) + νrel(y) SRU3

νrel(x · y) = νrel(x) · y SRU4

Table 17: Additional axioms for ACPsrt (a, b ∈ Aδ, c ∈ A, p ≥ 0, r > 0)

that what is expressible in T remains expressible in T ′ and what is derivable in T re-
mains derivable in T ′. The requirement that ε is term structure preserving means that,
for all terms t of T with free variables among x1, . . . , xn and all closed terms t1, . . . , tn
of T of appropriate sorts, ε(t[t1, . . . , tn/x1, . . . , xn]) = ε(t)[ε(t1), . . . , ε(tn)/x1, . . . , xn].

Let f be an operator that is not in the signature of theory T . An explicit definition
of f in T is an equation f(x1, . . . , xn) = t where t is a term of T that does not contain
other free variables than x1, . . . , xn. An extension of theory T with constants and
operators defined by explicit definitions in T is called a definitional extension of T .

Consider again two theories T and T ′. Suppose that the constants and operators
in the signature of T that are not in the signature of T ′ can be defined in T ′ by explicit

29

x
a−→ x′, ¬ID(y)

x ‖ y a−→ x′ ‖ y, y ‖ x a−→ y ‖ x′, x bb y a−→ x′ ‖ y

x
a−→
√
, ¬ID(y)

x ‖ y a−→ y, y ‖ x a−→ y, x bb y a−→ y

x
a−→ x′, y

b−→ y′, γ(a, b) = c

x ‖ y c−→ x′ ‖ y′, x | y c−→ x′ ‖ y′
x

a−→
√
, y

b−→
√
, γ(a, b) = c

x ‖ y c−→
√
, x | y c−→

√

x
a−→ x′, y

b−→
√
, γ(a, b) = c

x ‖ y c−→ x′, y ‖ x c−→ x′, x | y c−→ x′, y | x c−→ x′

x
r7−→ x′, y

r7−→ y′

x ‖ y r7−→ x′ ‖ y′, x bb y r7−→ x′ bb y′, x | y r7−→ x′ | y′

ID(x)

ID(x ‖ y), ID(y ‖ x), ID(x bb y),

ID(y bb x), ID(x | y), ID(y | x)

x
a−→ x′, a 6∈ H

∂H(x)
a−→ ∂H(x′)

x
a−→
√
, a 6∈ H

∂H(x)
a−→
√

x
r7−→ x′

∂H(x)
r7−→ ∂H(x′)

ID(x)

ID(∂H(x))

x
a−→ x′

νrel(x)
a−→ x′

x
a−→
√

νrel(x)
a−→
√

ID(x)

ID(νrel(x))

Table 18: Additional rules for ACPsrt (a, b, c ∈ A, r > 0)

definitions. Let T ′′ be the resulting definitional extension of T ′. Suppose further that
the axioms of T are derivable for closed terms in T ′′. Then T can be embedded in
T ′. The explicit definitions induce the following embedding:

ε(x) = x
ε(f(t1, . . . , tn)) = f(ε(t1), . . . , ε(tn)) if f in the signature of T ′;
ε(f(t1, . . . , tn)) = t[ε(t1), . . . , ε(tn)/x1, . . . , xn] if the explicit definition of

f is f(x1, . . . , xn) = t.

In this chapter, we will show the existence of embeddings in the way outlined above.
The explicit definitions needed to show that ACPsrt can be embedded in ACPsat√

are given in Table 19. The following lemma presents an interesting property of pro-

˜̃a =
√
s v . σ

v
abs(ã)

σp
rel(x) =

√
s v . υ

v+p
abs (x)

υprel(x) =
√
s v . υ

v+p
abs (υv

abs(x))

υp
rel(x) =

√
s v . υ

v+p
abs (υv

abs(x))

νrel(x) =
√
s v . σ

v
abs(νabs(x))

Table 19: Definitions of relative time operators (a ∈ Aδ)

30

cesses with relative timing.

Lemma 4 For each closed term t of ACPsat√ generated by the embedded constants
and operators of ACPsrt, υpabs(t) = σpabs(t).

Proof. It is straightforward to prove this by induction on the structure of t. We present
only the case that t is of the form ˜̃a · t′. The other cases are similar, but simpler.

υp
abs(˜̃a · t

′) = υp
abs((
√
s v . σ

v
abs(ã)) · t′) SAI5

= υp
abs((
√
s v . σ

v
abs(ã))) · t′ SIA2

=

υp
abs(σ

p
abs(ã)) · t′ SAI3′

= σp
abs(ã) · t′ SIA6

= σp
abs(ã) · υp

abs(t
′)

IH
= σp

abs(ã) · σp
abs(t

′)
SAT5
=

σp
abs(ã · υ

0
abs(t

′))
SAT1,2

= σp
abs(υ

0
abs(σ

0
abs(ã · υ0

abs(t
′))))

SIA2
=

σp
abs(υ

0
abs(
√
s v . σ

v
abs(ã · υ0

abs(t
′))))

SAT1,2
= σp

abs(
√
s v . σ

v
abs(ã · υ0

abs(t
′)))

SAT5,IH
=

σp
abs(
√
s v . (σ

v
abs(ã) · υv

abs(t
′)))

SIA6,9
= σp

abs((
√
s v . σ

v
abs(ã)) · t′) = σp

abs(˜̃a · t
′) 2

Lemma 4 expresses that, for a process with relative timing, absolute initialization of
the process at time p is the same as shifting the process in time from time 0 to time p
– which implies preceding absolute initialization at time 0. It follows from Lemma 4
and axiom SAI5 that for each pair of closed terms t, t′ of ACPsat√ generated by the
embedded constants and operators of ACPsrt, σpabs(t · t′) = σpabs(t) · t′. The condition
that t is a term generated by the embedded constants and operators of ACPsrt can not
be dropped here. However, Lemma 5 points out that this condition is not a necessary
one, since νabs(t) is not equal to a term generated by the embedded constants and
operators of ACPsrt – unless t = δ

·
. Lemma 5 is needed in the proof of Theorem 6.

Lemma 5 For each pair of closed terms t, t′ of ACPsat√ generated by the embedded
constants and operators of ACPsrt, σpabs(νabs(t) · t′) = σpabs(νabs(t)) · t′.

Proof. It is straightforward to prove this by induction on the structure of t. The proof is
extremely long. We present only the case that t is of the form σq

rel(t
′′). The other cases are

similar, but simpler, and do not require case distinction.

Case q = 0 : σp
abs(νabs(σ

q
rel(t
′′)) · t′) see I

= σp
abs(νabs(σ

q
abs(t

′′)) · t′) SAT1
=

σp
abs(νabs(υ

q
abs(t

′′)) · t′) SI13
= σp

abs(υ
q
abs(νabs(t

′′)) · t′) SAI5
=

σp
abs(υ

q
abs(νabs(t

′′) · t′)) SAT1,2
= σp

abs(νabs(t
′′) · t′) IH

= σp
abs(νabs(t

′′)) · t′ SAT1,2
=

σp
abs(υ

q
abs(νabs(t

′′))) · t′ SI13
= σp

abs(νabs(υ
q
abs(t

′′))) · t′ SAT1
=

σp
abs(νabs(σ

q
abs(t

′′))) · t′ see II
= σp

abs(νabs(σ
q
rel(t
′′))) · t′

Case q > 0 : σp
abs(νabs(σ

q
rel(t
′′)) · t′) see I

= σp
abs(νabs(σ

q
abs(t

′′)) · t′) SAU2
= σp

abs(δ̃ · t
′)

SAU1
=

σp
abs(νabs(δ̃) · t

′)
see III

= σp
abs(νabs(

˜̃δ) · t′) IH
= σp

abs(νabs(
˜̃δ)) · t′ see IV

=

σp
abs(νabs(δ̃)) · t

′ SAU1
= σp

abs(δ̃) · t
′ SAU2

= σp
abs(νabs(σ

q
abs(t

′′))) · t′ see II
=

σp
abs(νabs(σ

q
rel(t
′′))) · t′

I. σp
abs(νabs(σ

q
rel(t
′′)) · t′) = σp

abs(νabs(
√
s v . υ

v+q
abs (t′′)) · t′) SIA16

=

σp
abs((
√
s v . νabs(υ

v+q
abs (t′′))) · t′) SIA9

= σp
abs(
√
s v . (νabs(υ

v+q
abs (t′′)) · t′)) SIA7

=

σp
abs(νabs(υ

q
abs(t

′′)) · t′) Lemma 4
= σp

abs(νabs(σ
q
abs(t

′′)) · t′)
II, III and IV: The proofs are similar to the proof of I – axioms SAT1 and SAI1 are used in
addition in III and IV. 2

The existence of an embedding of ACPsrt in ACPsat√ is established by proving
the following theorem.

31

Theorem 6 (Embedding ACPsrt in ACPsat√) For closed terms, the axioms of
ACPsrt are derivable from the axioms of ACPsat√ and the explicit definitions of the
constants and operators ˜̃a, σrel, υrel, υrel, and νrel in Table 19.

Proof. The proof of this theorem is given in Appendix A.1. The proof is a matter of
straightforward calculations. Equations SIAI (page 21) and DISTR2 (page 23), the
standard initialization axioms (Table 14, page 24), and Lemmas 4 and 5 (page 31-31)
are very useful in the proof. 2

5 Discrete time process algebra

In this section, we present ACPdat and ACPdrt, discrete time process algebras with
absolute timing and relative timing, respectively. ACPdat and ACPdrt are conservative
extensions of ACPdat and ACPdrt [7], respectively. First, in Section 5.1, we present
ACPdat and ACPdat√, the extension of ACPdat with initial abstraction. After that,
in Section 5.2, we present ACPdrt. Finally, we show in Section 5.3 how ACPdat√ can
be embedded in ACPsatI

√
.

5.1 Discrete time process algebra: absolute timing

In this subsection, we give the signature, axioms and term model of ACPdat, a discrete
time process algebra with absolute timing. ACPdat is a conservative extension of the
theory ACPdat, presented in [7]. Like ACPsat, it separates execution of actions and
passage of time. In ACPdat, time is measured on a discrete time scale. The discrete
time points divide time into time slices and timing of actions is done with respect to
the time slices in which they are performed – “in time slice n + 1” means “at some
time point p such that n ≤ p < n+ 1”.

First, we treat BPAdat, basic discrete time process algebra with absolute timing,
in which parallelism and communication are not considered. After that, BPAdat is
extended to ACPdat to deal with parallelism and communication as well. Finally,
initial abstraction is added.

Basic process algebra

In BPAdat, we have the constants a and δ instead of ã and δ̃. The constants a and δ
stand for a in time slice 1 and a deadlock in time slice 1, respectively. The operators
σabs, υabs and υabs have a natural number instead of a non-negative real number as
their first argument. The process σnabs(x) is the process x shifted in time by n on
the discrete time scale. The process υnabs(x) is the part of x that starts to perform
actions before time slice n + 1. The process υnabs(x) is the part of x that starts to
perform actions in time slice n + 1 or a later time slice. Recall that time point n is
the starting-point of time slice n+ 1.

In ACPdat [7], the notation fts(a) was used for actions in the first time slice. A
discrete time version of ACP with absolute timing where the notation a was used
earlier for actions in a time slice is ACPdρ [3], but there it always carries a time-
stamp.

32

Signature of BPAdat The signature of BPAdat consists of the undelayable action
constants a : → P (for each a ∈ A), the undelayable deadlock constant δ : → P,
the immediate deadlock constant δ

·
: → P, the alternative composition operator + :

P × P → P, the sequential composition operator · : P × P → P, the absolute delay
operator σabs : N× P→ P, the absolute time-out operator υabs : N× P→ P, and the
absolute initialization operator υabs : N× P→ P.

We denote elements of N by m,m′, n, n′.

Axioms of BPAdat The axiom system of BPAdat consists of the equations given in
Tables 1 and 20.

σ0
abs(x) = υ0

abs(x) DAT1

σm
abs(σ

n
abs(x)) = σm+n

abs (x) DAT2

σn
abs(x) + σn

abs(y) = σn
abs(x + y) DAT3

σn
abs(x) · υnabs(y) = σn

abs(x · δ
·
) DAT4

σn
abs(x) · (υnabs(y) + σn

abs(z)) = σn
abs(x · υ

0
abs(z)) DAT5

σn
abs(δ

·
) · x = σn

abs(δ
·
) DAT6

σ1
abs(δ

·
) = δ DAT7

a + δ = a A6DAa

υnabs(δ
·
) = δ

·
DATO0

υ0abs(x) = δ
·

DATO1

υn+1
abs (a) = a DATO2

υm+n
abs (σn

abs(x)) = σn
abs(υ

m
abs(x)) DATO3

υnabs(x + y) = υnabs(x) + υnabs(y) DATO4

υnabs(x · y) = υnabs(x) · y DATO5

υ0
abs(δ

·
) = δ

·
DAI0a

υn+1
abs (δ

·
) = σn+1

abs (δ
·
) DAI0b

υ0
abs(a) = a DAI1

υn+1
abs (a) = σn+1

abs (δ
·
) DAI2

υm+n
abs (σn

abs(x)) = σn
abs(υ

m
abs(υ

0
abs(x))) DAI3

υn
abs(x + y) = υn

abs(x) + υn
abs(y) DAI4

υn
abs(x · y) = υn

abs(x) · y DAI5

Table 20: Additional axioms for BPAdat (a ∈ Aδ)

The axioms of BPAdat are to a large extent simple reformulations of the axioms of
BPAsat. That is, constants ã (a ∈ Aδ) have been replaced by constants a, and the
first argument of the operators σabs, υabs and υabs has been restricted to elements of
N. Striking is the new axiom DAT7. This axiom makes the reformulations of axioms
A6SAb and A7SA, i.e. σn+1

abs (x) + δ = σn+1
abs (x) and δ · x = δ, derivable. Axiom

DAT7 expresses that an immediate deadlock shifted in time by 1 is identified with an
undelayable deadlock in the first time slice.

Like in the case of BPAsat, we can prove that the auxiliary operators υabs and
υabs, as well as sequential compositions in which the form of the first operand is not a

33

(a ∈ A) and alternative compositions in which the form of the first operand is σnabs(t),
can be eliminated in closed terms of BPAdat. The terms that remain after exhaustive
elimination are called the basic terms over BPAdat. Because of this elimination result,
we are permitted to use induction on the structure of basic terms over BPAdat to prove
statements for all closed terms of BPAdat.

Examples We give some examples of a closed term of BPAdat and the corresponding
basic term:

σ1
abs(a) · b = σ1

abs(a · δ
·
)

υ3abs(σ
2
abs(a) + σ5

abs(b)) = σ2
abs(a)

υ3
abs(σ

2
abs(a) + σ5

abs(b)) = σ5
abs(b)

Semantics of BPAdat In case a discrete time scale is used, we use a variant of real
time transition systems. A discrete time transition system over A consists of a set of
states S, a root state ρ ∈ S and four kinds of relations on states:

a binary relation 〈 , n〉 a−→ 〈 , n〉 for each a ∈ A, n ∈ N,

a unary relation 〈 , n〉 a−→ 〈
√
, n〉 for each a ∈ A, n ∈ N,

a binary relation 〈 , n〉 m7−→ 〈 , n′〉 for each m ∈ N>0, n, n
′ ∈ N where n′ = n+m,

a unary relation ID(, n) for each n ∈ N;

satisfying

1. if 〈s, n〉 m+m′

7−−−−→ 〈s′, n′〉, m,m′ > 0, then there is a s′′ such that 〈s, n〉 m7−→
〈s′′, n+m〉 and 〈s′′, n+m〉 m′

7−−→ 〈s′, n′〉;

2. if 〈s, n〉 m7−→ 〈s′′, n+m〉 and 〈s′′, n+m〉 m′

7−−→ 〈s′, n′〉, then 〈s, n〉 m+m′

7−−−−→ 〈s′, n′〉.

We write DTTS(A) for the set of all discrete time transition systems. Associating a
transition system in DTTS(A) with a closed term t of BPAdat proceeds in essentially
the same way as associating a transition system in RTTS(A) with a closed term t
of BPAsat. The only difference is that in the rules for the operational semantics of
BPAdat all numbers involved are restricted to N. Therefore, we refrain from giving
the rules.

Bisimulation on DTTS(A) is defined as on RTTS(A). As in the real time cases, we
obtain a model for BPAdat by identifying bisimilar processes.

Algebra of communicating processes

In ACPdat, we do not have a discrete time counterpart of νabs. Unlike before in the
case of real time, we can use υ1abs instead.

Signature of ACPdat The signature of ACPdat is the signature of BPAdat extended
with the parallel composition operator ‖: P×P→ P, the left merge operator bb: P×P→
P, the communication merge operator |: P× P→ P, and the encapsulation operators
∂H : P→ P (for each H ⊆ A).

34

a | b = c if γ(a, b) = c CF1DA

a | b = δ if γ(a, b) undefined CF2DA

x ‖ y = (x bb y + y bb x) + x | y CM1

δ
· bb x = δ

·
CMID1

x bb δ· = δ
·

CMID2

a bb (x + δ) = a · (x + δ) CM2DA

a · x bb (y + δ) = a · (x ‖ (y + δ)) CM3DA

σn
abs(x) bb (υnabs(y) + σn

abs(z)) = σn
abs(x bb z) DACM2

(x + y) bb z = x bb z + y bb z CM4

δ
· | x = δ

·
CMID3

x | δ· = δ
·

CMID4

a · x | b = (a | b) · x CM5DA

a | b · x = (a | b) · x CM6DA

a · x | b · y = (a | b) · (x ‖ y) CM7DA

(υ1abs(x) + δ) | σn+1
abs (y) = δ DACM3

σn+1
abs (x) | (υ1abs(y) + δ) = δ DACM4

σn
abs(x) | σn

abs(y) = σn
abs(x | y) DACM5

(x + y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

∂H(δ
·
) = δ

·
D0

∂H(a) = a if a 6∈ H D1DA

∂H(a) = δ if a ∈ H D2DA

∂H(σn
abs(x)) = σn

abs(∂H(x)) DAD

∂H(x + y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

Table 21: Additional axioms for ACPdat (a, b ∈ Aδ, c ∈ A)

Axioms of ACPdat The axiom system of ACPdat consists of the axioms of BPAdat

and the equations given in Table 21.

The additional axioms of ACPdat are to a large extent simple reformulations of the
additional axioms of ACPsat. That is, constants ã (a ∈ Aδ) have been replaced by
constants a, the first argument of the operators σabs and υabs has been restricted
to N, and the operator νabs has been replaced by υ1abs. A counterpart of SACM1 is
missing. However, axiom DAT7 makes the simple reformulation of axiom SACM1,
i.e. σnabs(x) bb (υ1abs(y) + δ) = δ, derivable.

As in the case of ACPsat, we can prove that the operators ‖, bb, | and ∂H can be
eliminated in closed terms of ACPdat. Because of the elimination result for BPAdat,
we are permitted to use induction on the structure of basic terms over BPAdat to
prove statements for all closed terms of ACPdat.

Examples We give some examples of a closed term of ACPdat and the corresponding
basic term (in case γ(a, b) is undefined):

35

σ3
abs(a) · (σ5

abs(b) ‖ σ
2
abs(c)) = σ3

abs(a · δ
·
)

σ3
abs(a) · σ5

abs(b) ‖ σ
2
abs(c) = σ2

abs(c · σ
1
abs(a · σ

2
abs(b)))

(a · σ2
abs(b)) ‖ (b · σ2

abs(a)) = a · (b · σ2
abs(a · b + b · a)) + b · (a · σ2

abs(a · b + b · a))

Semantics of ACPdat Like for the rules for the operational semantics of BPAdat,
the additional rules for ACPdat differ from the corresponding rules for the real time
case only in that all numbers involved are restricted to N. Therefore, we refrain again
from giving the rules.

Again, we obtain a model for ACPdat by identifying bisimilar processes.

Initial abstraction

We add the initial abstraction operator
√
d to ACPdat. This operator is the discrete

counterpart of
√
s. This means that

√
d i .F , where i is a variable ranging over N and F

is a term that may contain free variables, denotes a function f : N→ P that satisfies
f(n) = υnabs(f(n)) for all n ∈ N. In the resulting theory, called ACPdat√, the sort P
of (absolute time) processes is replaced by the sort P∗ of parametric time processes.

Signature of ACPdat√ The signature of ACPdat√ is the signature of ACPdat ex-
tended with the initial abstraction (variable-binding) operator

√
d : N . P∗ → P∗.

We assume that an infinite set of variables ranging over N has been given, and denote
them by i, j, We denote terms of ACPdat√ by F,G,

Axiom system of ACPdat√ The axiom system of ACPdat√ consists of the axioms
of ACPdat and the equations given in Table 22.

√
d j . G =

√
d i . G[i/j] DIA1

υn
abs(
√
d i . F) = υn

abs(F [n/i]) DIA2
√
d i . (

√
d j . F) =

√
d i . F [i/j] DIA3

G =
√
d i . G DIA4

(∀n ∈ N • υn
abs(x) = υn

abs(y)) ⇒ x = y DIA5

σn
abs(a) · x = σn

abs(a) · υn
abs(x) DIA6

σn
abs(
√
d i . F) = σn

abs(F [0/i]) DIA7

(
√
d i . F) + G =

√
d i . (F + υi

abs(G)) DIA8

(
√
d i . F) ·G =

√
d i . (F ·G) DIA9

υnabs(
√
d i . F) =

√
d i . υ

n
abs(F) if n 6= i DIA10

(
√
d i . F) bb G =

√
d i . (F bb υi

abs(G)) DIA11

G bb (
√
d i . F) =

√
d i . (υ

i
abs(G) bb F) DIA12

(
√
d i . F) | G =

√
d i . (F | υi

abs(G)) DIA13

G | (
√
d i . F) =

√
d i . (υ

i
abs(G) | F) DIA14

∂H(
√
d i . F) =

√
d i . ∂H(F) DIA15

Table 22: Axioms for discrete initial abstraction (i not free in G)

36

The axioms for discrete initial abstraction are simple reformulations of the axioms for
standard initial abstraction. That is, the operator

√
s has been replaced by

√
d, and

the variables ranging over R≥0 have been replaced by variables ranging over N.
As in the case of ACPsat√, all closed terms of ACPdat√ can be written in the form√

d i . F where F is a basic term over BPAdat.

Examples We give some examples of a closed term of ACPdat√, the corresponding
term of the form

√
d i . F where F is a basic term and, if possible, the corresponding

basic term without initial abstraction:

σ2
abs(
√
d i . σ

i+3
abs (a)) =

√
d i . σ

5
abs(a) = σ5

abs(a)

υ2abs(
√
d i . σ

i+3
abs (a)) =

√
d i . σ

2
abs(δ

·
) = σ2

abs(δ
·
)

√
d i . (

√
d j . σ

i+j+3
abs (a)) =

√
d i . σ

2i+3
abs (a)

Semantics of ACPdat√ We have to extend DTTS(A) to the function space

DTTS∗(A) = {f : N→ DTTS(A) | ∀n ∈ N • f(n) = υnabs(f(n))}

The constants and operators of ACPdat√ can be defined on DTTS∗(A) in the same
way as for the real time case.

We say that f, g ∈ DTTS∗(A) are bisimilar if for all n ∈ N, there exists a bisimulation
R such that R(f(n), g(n)). Like before, we obtain a model of ACPdat√ by defining
all operators on the set of bisimulation equivalence classes.

5.2 Discrete time process algebra: relative timing

In this subsection, we give the signature, axioms and term model of ACPdrt, a discrete
time process algebra with relative timing. ACPdrt is a conservative extension of the
theory ACPdrt, presented in [7]. Like ACPdrt, it separates execution of actions and
passage of time.

First, we treat BPAdrt, basic discrete time process algebra with relative timing,
in which parallelism and communication are not considered. After that, BPAdrt is
extended to ACPdrt to deal with parallelism and communication as well.

Basic process algebra

In BPAdrt, we have the constants a and δ instead of a and δ, and the operator σrel
instead of σabs. The constants a and δ stand for a in the current time slice and a
deadlock in the current time slice, respectively. The process σnrel(x) is the process
x delayed for a period of time n on the discrete time scale, i.e. till the n-th next
time slice. We have relative counterparts of the absolute time-out and initialization
operators as well: υrel and υrel. The process υnrel(x) is the part of x that starts to
perform actions before the n-th next time slice. The process υnrel(x) is the part of x
that starts to perform actions in the n-th next time slice or a later time slice. As in
Section 4, we use Pr for the sort of relative time processes.

In some presentations of ACPdrt, including [7], the notation cts(a) was used in-
stead of a. The notation a for actions in the current time slice was first used in
ACPdt [3].

37

Signature of BPAdrt The signature of BPAdrt consists of the undelayable action
constants a : → Pr (for each a ∈ A), the undelayable deadlock constant δ : → Pr,

the immediate deadlock constant δ
·

: → Pr, the alternative composition operator + :
Pr × Pr → Pr, the sequential composition operator · : Pr × Pr → Pr, the relative delay
operator σrel : N× Pr → Pr, the relative time-out operator υrel : N× Pr → Pr, and the
relative initialization operator υrel : N× Pr → Pr.

Axioms of BPAdrt The axiom system of BPAdrt consists of the equations given in
Tables 1 and 23.

σ0
rel(x) = x DRT1

σm
rel(σ

n
rel(x)) = σm+n

rel (x) DRT2

σn
rel(x) + σn

rel(y) = σn
rel(x + y) DRT3

σn
rel(x) · y = σn

rel(x · y) DRT4

σ1
rel(δ

·
) = δ DRT7

a + δ = a A6DRa

υnrel(δ
·
) = δ

·
DRTO0

υ0rel(x) = δ
·

DRTO1

υn+1
rel (a) = a DRTO2

υm+n
rel (σn

rel(x)) = σn
rel(υ

m
rel(x)) DRTO3

υnrel(x + y) = υnrel(x) + υnrel(y) DRTO4

υnrel(x · y) = υnrel(x) · y DRTO5

υn
rel(δ

·
) = σn

rel(δ
·
) DRI0

υ0
rel(x) = x DRI1

υn+1
rel (a) = σn

rel(δ) DRI2

υm+n
rel (σn

rel(x)) = σn
rel(υ

m
rel(x)) DRI3

υn
rel(x + y) = υn

rel(x) + υn
rel(y) DRI4

υn
rel(x · y) = υn

rel(x) · y DRI5

Table 23: Additional axioms for BPAdrt (a ∈ Aδ)

The axioms of BPAdrt are to a large extent simple reformulations of the axioms of
BPAdat. That is, constants a (a ∈ Aδ) have been replaced by constants a, and the
operators σabs, υabs and υabs have been replaced by σrel, υrel and υrel, respectively.
The replacement of the axioms DAT4, DAT5 and DAT6 by the simple axiom DRT4
as well as the replacement of the axioms DAI0-DAI5 by the axioms DRI0-DRI5 are
strongly reminiscent of the real time case.

Similar to the case of BPAdat, we can prove that the auxiliary operators υrel and
υrel, as well as sequential compositions in which the form of the first operand is not a
(a ∈ A) and alternative compositions in which the form of the first operand is σnrel(t),
can be eliminated in closed terms of BPAdrt. The terms that remain after exhaustive
elimination are called the basic terms over BPAdrt.

Semantics of BPAdrt In case of relative timing, we can use a simple kind of discrete
time transition system. A discrete time transition system with relative timing over A
consists of a set of states S, a root state ρ ∈ S and four kinds of relations on states:

38

a binary relation a−→ for each a ∈ A,

a unary relation a−→
√

for each a ∈ A,

a binary relation
n7−→ for each n ∈ N>0,

a unary relation ID();

satisfying

1. if s
n+n′

7−−−→ s′, n, n′ > 0, then there is a s′′ such that s
n7−→ s′′ and s′′

n′

7−→ s′;

2. if s
n7−→ s′′ and s′′

n′

7−→ s′, then s
n+n′

7−−−→ s′.

We write DTTSr(A) for the set of all discrete time transition systems with relative
timing over A. Associating a transition system in DTTSr(A) with a closed term t
of BPAdrt proceeds in essentially the same way as associating a transition system in
RTTSr(A) with a closed term t of BPAsrt. The only difference is that in the rules
for the operational semantics of BPAdrt all numbers involved are restricted to N.
Therefore, we refrain from giving the rules.

Bisimulation on DTTSr(A) is defined as on RTTSr(A). As in the real time cases, we
obtain a model for BPAdrt by identifying bisimilar processes.

Algebra of communicating processes

Like in ACPdat, we do not have a discrete time counterpart of νrel in ACPdrt. We can
use υ1rel instead.

Signature of ACPdrt The signature of ACPdrt is the signature of BPAdrt extended
with the parallel composition operator ‖: Pr × Pr → Pr, the left merge operator bb:
Pr×Pr → Pr, the communication merge operator |: Pr×Pr → Pr, and the encapsulation
operators ∂H : Pr → Pr (for each H ⊆ A).

Axioms of ACPdrt The axiom system of ACPdrt consists of the axioms of BPAdrt

and the equations given in Table 24.

The additional axioms of ACPdrt are just simple reformulations of the additional
axioms of ACPdat. That is, constants a (a ∈ Aδ) have been replaced by constants a,
and the operators σabs and υabs have been replaced by σrel and υrel, respectively.

As in the case of ACPdat, we can prove that the operators ‖, bb, | and ∂H can be
eliminated in closed terms of ACPdrt.

Semantics of ACPdrt Like for the rules for the operational semantics of BPAdrt,
the additional rules for ACPdrt differ from the corresponding rules for the real time
case only in that all numbers involved are restricted to N. Therefore, we refrain again
from giving the rules.

Again, we obtain a model for ACPdrt by identifying bisimilar processes.

39

a | b = c if γ(a, b) = c CF1DR

a | b = δ if γ(a, b) undefined CF2DR

x ‖ y = (x bb y + y bb x) + x | y CM1

δ
· bb x = δ

·
CMID1

x bb δ· = δ
·

CMID2

a bb (x + δ) = a · (x + δ) CM2DRID

a · x bb (y + δ) = a · (x ‖ (y + δ)) CM3DRID

σn+1
rel (x) bb (υn+1

rel (y) + σn+1
rel (z)) = σn+1

rel (x bb z) DRCM2

(x + y) bb z = x bb z + y bb z CM4

δ
· | x = δ

·
CMID3

x | δ· = δ
·

CMID4

a · x | b = (a | b) · x CM5DR

a | b · x = (a | b) · x CM6DR

a · x | b · y = (a | b) · (x ‖ y) CM7DR

(υ1rel(x) + δ) | σn+1
rel (y) = δ DRCM3ID

σn+1
rel (x) | (υ1rel(y) + δ) = δ DRCM4ID

σn+1
rel (x) | σn+1

rel (y) = σn+1
rel (x | y) DRCM5

(x + y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

∂H(δ
·
) = δ

·
D0

∂H(a) = a if a 6∈ H D1DR

∂H(a) = δ if a ∈ H D2DR

∂H(σn
rel(x)) = σn

rel(∂H(x)) DRD

∂H(x + y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

Table 24: Additional axioms for ACPdrt (a, b ∈ Aδ, c ∈ A)

a =
∫
v∈[0,1) σ

v
abs(ã)

σn
abs(x) = σn

abs(x)

υnabs(x) = υnabs(x)

υn
abs(x) = υn

abs(x)
√
d i . F =

√
s v . F [bvc/i]

Table 25: Definitions of discrete time operators (a ∈ Aδ)

5.3 Embedding ACPdat√ in ACPsatI
√

In this subsection, we will show that ACPdat√ can be embedded in ACPsatI
√

. We will
do so in the way outlined in Section 4.3. The explicit definitions needed are given in
Table 25. Notice that the operators σabs, υabs and υabs of ACPdat√ are simply defined
as the operators σabs, υabs and υabs of ACPsatI

√
restricted in their first argument to

N. We will establish the existence of an embedding by proving that for closed terms
the axioms of ACPdat√ are derivable from the axioms of ACPsatI

√
and the explicit

definitions given in Table 25. However, we first take another look at the connection

40

between ACPsatI
√

and ACPdat√ by introducing the notions of a discretized real time
process and a discretely initialized real time process.

In Section 3.2, we have introduced the model M∗A of ACPsatI
√

. The model of
ACPdat√ outlined in Section 5.1 is isomorphic to the subalgebra of M∗A generated
by the embedded constants and operators of ACPdat√. The domain of this subal-
gebra consists of those real time processes, i.e. elements of the domain of M∗A, that
are discretized. We define the notion of a discretized real time process in terms of
the auxiliary discretization operator D : P∗ → P∗ of which the defining axioms are
given in Table 26. A real time process x is a discretized real time process, written

D(δ
·
) = δ

·

D(ã) = a

D(σp
abs(x)) = σ

bpc
abs (D(x))

D(x + y) = D(x) + D(y)

D(x · y) = D(x) · D(y)

D(
∫
v∈V F) =

∫
v∈V D(F)

D(
√
s v . F) =

√
s v .D(F)

Table 26: Definition of discretization (a ∈ Aδ)

x ∈ DIS, if x = D(x). The properties given in Table 27 express that the set of all
discretized real time processes is closed under the operators of ACPdat√, integration
and discretization.

δ
·
, a ∈ DIS

x ∈ DIS ⇒ σn
abs(x), υnabs(x), υn

abs(x), ∂H(x) ∈ DIS

x, y ∈ DIS ⇒ x + y, x · y, x ‖ y, x bb y, x | y ∈ DIS

(∀n ∈ N • F [n/i] ∈ DIS) ⇒
√
d i . F ∈ DIS

(∀p ∈ V • F [p/v] ∈ DIS) ⇒
∫
v∈V F ∈ DIS

x ∈ DIS ⇒ D(x) ∈ DIS

Table 27: Properties of discretized processes (a ∈ Aδ)

For elements f of RTTS∗(A), the discretization of f , D(f), is obtained as follows
(t ∈ R≥0, q = p+ r and q′ = p+ r′):

1. for each t, if 〈s, p〉 a−→ 〈s′, p〉 in f(t), then 〈s, p′〉 a−→ 〈s′, p′〉 in D(f)(t) for each
p′ ∈ [bpc, bp+ 1c);

2. for each t, if 〈s, p〉 a−→ 〈
√
, p〉 in f(t), then 〈s, p′〉 a−→ 〈

√
, p′〉 in D(f)(t) for each

p′ ∈ [bpc, bp+ 1c);

3. for each t, if 〈s, p〉 r7−→ 〈s, q〉 in f(t), then 〈s, p〉 r′7−→ 〈s, q′〉 in D(f)(t) for each
q′ ∈ [q, bq + 1c);

4. for each t, if ID(s, p) in f(t), then ID(s, p) in D(f)(t);

5. for each t, if neither ID(s, p) in f(t) nor either 〈s, p〉 a−→ 〈s′, p〉 in f(t) for some

a, s′ or 〈s, p〉 r7−→ 〈s, q〉 in f(t) for some r, then 〈s, p〉 r′7−→ 〈s, q′〉 in D(f)(t) for

41

each q′ ∈ (p, bp+ 1c).

Hence, for real time processes corresponding to discrete time processes, the following
holds: if an action can be performed at some time p such that n ≤ p < n+ 1, it can
also be performed at any other time p′ such that n ≤ p′ < n+ 1.

A real time process x is a discretely initialized real time process, written x ∈ DIP,

if x =
√
d i . υ

i
abs(x). It follows immediately that x ∈ DIP ⇔ x =

√
s v . υ

bvc
abs (x). It

is easy to show by induction on the term structure that all discretized processes are
discretely initialized, i.e. x ∈ DIS ⇒ x ∈ DIP. Not all discretely initialized processes

are discretized, e.g.
√
s v . σ

bv+1c
abs (ã) ∈ DIP and

√
s v . σ

bv+1c
abs (ã) 6∈ DIS. This means that

for real time processes corresponding to discrete time processes, the initialization
time can always be taken to be a discrete point in time; and that there are real time
processes not corresponding to discrete time processes for which the initialization time
can always be taken to be a discrete point in time.

Lemma 7 For each closed term t of ACPsatI
√

generated by the embedded constants

and operators of ACPdat√, t =
√
s v . υ

bvc
abs (t).

Proof. From the properties given in Table 27, we know that each process x generated
by the embedded constants and operators of ACPdat√ is discretized, i.e. x ∈ DIS.

Because x ∈ DIS ⇒ x ∈ DIP and x ∈ DIP ⇔ x =
√
s v.υ

bvc
abs (x), the result immediately

follows. 2

The following lemmas present other useful properties of discrete time processes.

Lemma 8 For each closed term t of ACPsatI
√

generated by the embedded constants
and operators of ACPdat√, there exists a term t′ containing no other free variable
than v such that for each p ∈ R≥0: υpabs(t) = σpabs(t

′[p/v]), t′[p/v] = υ0
abs(t

′[p/v]), and

if p ∈ [0, 1) and t 6= δ
·
, t′[p/v] = t′[p/v] + σ1−p

abs (δ
·
) and υpabs(t + δ) = σpabs(t

′[p/v] + δ̃).
In subsequent proofs, we write t[v] for a fixed but arbitrary term t′ that fulfills these
conditions.

Proof. Observe that, if p ∈ [0, 1) and t 6= δ
·
, υp

abs(t + δ) = σp
abs(t

′[p/v] + δ̃) follows directly

from υp
abs(t) = σp

abs(t
′[p/v]) and t′[p/v] = t′[p/v] + σ1−p

abs (δ
·
). Observe further that, if t′ is

a term that fulfills all above-mentioned conditions but t′[p/v] = υ0
abs(t

′[p/v]), υ0
abs(t

′) is a
term that fulfills all conditions. Consequently, it suffices to prove that there exists a t′ such
that υp

abs(t) = σp
abs(t

′[p/v]) and, if p ∈ [0, 1) and t 6= δ
·
, t′[p/v] = t′[p/v] + σ1−p

abs (δ
·
). It is

straightforward to prove this by induction on the structure of t. We present only the case
that t is of the form a. The other cases are simpler or similar to corresponding cases in the
proof of Lemma 3.

42

υp
abs(a) = υp

abs(
∫
w∈[0,1) σ

w
abs(ã))

SAI6
=

∫
w∈[0,1) υ

p
abs(σ

w
abs(ã))

INT4
=∫

w∈[0,p) υ
p
abs(σ

w
abs(ã)) +

∫
w∈[p,1) υ

p
abs(σ

w
abs(ã))

SAI1,2,3,SAI3′
=∫

w∈[0,p) σ
p
abs(δ

·
) +

∫
w∈[p,1) σ

w
abs(ã)

INT5
= σp

abs(δ
·
) +

∫
w∈[p,1) σ

w
abs(ã)

INT5
=∫

w∈[p,1) σ
p
abs(δ

·
) +

∫
w∈[p,1) σ

w
abs(ã)

INT11
=

∫
w∈[p,1)(σ

p
abs(δ

·
) + σw

abs(ã))
SAT2
=∫

w∈[p,1)(σ
p
abs(δ

·
) + σp

abs(σ
w−p
abs (ã)))

SAT3
=

∫
w∈[p,1) σ

p
abs(δ

·
+ σw−p

abs (ã))
A6ID
=∫

w∈[p,1) σ
p
abs(σ

w−p
abs (ã))

INT10
= σp

abs(
∫
w∈[p,1) σ

w−p
abs (ã)) = σp

abs(
∫
w∈[0,1−p)

σw
abs(ã)) =

σp
abs((

∫
w∈[0,1−v)

σw
abs(ã))[p/v]) and∫

w∈[0,1−p)
σw
abs(ã)

A6SAa
=

∫
w∈[0,1−p)

σw
abs(ã + δ̃)

SAT3
=

∫
w∈[0,1−p)

(σw
abs(ã) + σw

abs(δ̃))
INT11

=∫
w∈[0,1−p)

σw
abs(ã) +

∫
w∈[0,1−p)

σw
abs(δ̃)

INT8
=

∫
w∈[0,1−p)

σw
abs(ã) + σ1−p

abs (δ
·
) 2

Lemma 9 For each p ∈ R≥0 and closed term t of ACPsatI
√

generated by the em-
bedded constants and operators of ACPdat√, there exists a closed term t′ such that
υpabs(t) = σpabs(t

′), t′ = υ0
abs(t

′), and if p ∈ [0, 1) and t 6= δ
·
, t′ = t′ + σ1−p

abs (δ
·
) and

υpabs(t + δ) = σpabs(t
′ + δ̃). In subsequent proofs, we write t[p] for a fixed but arbitrary

closed term t′ that fulfills these conditions – like in case of applications of Lemma 3.

Proof. This follows immediately from Lemma 8. 2

Lemma 10 For each closed term t of ACPsatI
√

generated by the embedded constants
and operators of ACPdat√, there exists a closed term t′ such that υ1abs(t + δ) =∫
v∈[0,1) σ

v
abs(νabs(t

′) + δ̃). In subsequent proofs we write t◦ for a fixed but arbitrary

closed term t′ that fulfills this condition.

Proof. It is straightforward to prove this by induction on the structure of t. We present
only the case that t is of the form a · t′′. The other cases are simpler.

υ1
abs(a · t′′ + δ) = υ1

abs((
∫
v∈[0,1) σ

v
abs(ã)) · t′′ +

∫
v∈[0,1) σ

v
abs(δ̃))

SATO4,5
=

υ1
abs(

∫
v∈[0,1) σ

v
abs(ã)) · t′′ + υ1

abs(
∫
v∈[0,1) σ

v
abs(δ̃))

SATO2,3,6
=

(
∫
v∈[0,1) σ

v
abs(ã)) · t′′ +

∫
v∈[0,1) σ

v
abs(δ̃)

INT12
=

∫
v∈[0,1)(σ

v
abs(ã) · t′′) +

∫
v∈[0,1) σ

v
abs(δ̃)

SIA6
=∫

v∈[0,1)(σ
v
abs(ã) · υv

abs(t
′′)) +

∫
v∈[0,1) σ

v
abs(δ̃)

INT6,Lemma 8
=∫

v∈[0,1)(σ
v
abs(ã) · σv

abs(t
′′
[v])) +

∫
v∈[0,1) σ

v
abs(δ̃)

SAT5
=∫

v∈[0,1) σ
v
abs(ã · υ0

abs(t
′′
[v])) +

∫
v∈[0,1) σ

v
abs(δ̃)

INT11
=∫

v∈[0,1)(σ
v
abs(ã · υ0

abs(t
′′
[v])) + σv

abs(δ̃))
SAT3
=

∫
v∈[0,1) σ

v
abs(ã · υ0

abs(t
′′
[v]) + δ̃)

SAU1
=∫

v∈[0,1) σ
v
abs(νabs(ã) · υ0

abs(t
′′
[v]) + δ̃)

SAU4
=

∫
v∈[0,1) σ

v
abs(νabs(ã · υ0

abs(t
′′
[v])) + δ̃) 2

Lemmas 7-10 are used to shorten the calculations in the proof of Theorem 12. The
following lemma is also used in the proof of that theorem.

Lemma 11 For p ∈ [0, 1), the equation υpabs(δ) = σ1
abs(δ

·
) is derivable from the axioms

of ACPsatI
√

and the explicit definition of the constants and operators in Table 25.

Proof.

43

υp
abs(δ) = υp

abs(
∫
v∈[0,1) σ

v
abs(δ̃))

SAI6
=

∫
v∈[0,1) υ

p
abs(σ

v
abs(δ̃))

INT4
=∫

v∈[0,p) υ
p
abs(σ

v
abs(δ̃)) +

∫
v∈[p,1) υ

p
abs(σ

v
abs(δ̃))

SAI3,SAI3′
=∫

v∈[0,p) σ
v
abs(υ

p−v
abs (υ0

abs(δ̃))) +
∫
v∈[p,1) σ

v
abs(δ̃)

SAI1,SAI2
=∫

v∈[0,p) σ
v
abs(σ

p−v
abs (δ

·
)) +

∫
v∈[p,1) σ

v
abs(δ̃)

SAT2
=

∫
v∈[0,p) σ

p
abs(δ

·
) +

∫
v∈[p,1) σ

v
abs(δ̃)

INT5,8
=

σp
abs(δ

·
) + σ1

abs(δ
·
)

SAT2,3,A6ID
= σ1

abs(δ
·
) 2

The existence of an embedding of ACPdat√ in ACPsatI
√

is now established by
proving the following theorem.

Theorem 12 (Embedding ACPdat√ in ACPsatI
√
) For closed terms, the axioms

of ACPdat√ are derivable from the axioms of ACPsatI
√

and the explicit definitions
of the constants and operators a, σabs, υabs, υabs and

√
d in Table 25.

Proof. The proof of this theorem is given in Appendix A.2. The proof is a matter of
straightforward calculations. Lemmas 1 and 3 (pages 8-9) and Lemmas 7-11 (page 42-
43) are very useful in the proof. 2

6 Concluding remarks

We presented real time and discrete time versions of ACP with both absolute timing
and relative timing, starting with a new real time version of ACP with absolute
timing called ACPsat. We demonstrated that ACPsat extended with integration and
initial abstraction generalizes the presented real time version with relative timing and
the presented discrete time version with absolute timing. We focussed on versions
of ACP with timing where execution of actions and passage of time are separated,
but explained how they can be combined in these versions. The material resulted
from a systematic study of some of the most important issues relevant to dealing with
time-dependent behaviour of processes – viz. absolute vs relative timing, continuous
vs discrete time scale, and separation vs combination of execution of actions and
passage of time – in the setting of ACP.

All real time and discrete time versions of ACP presented in this chapter include
the immediate deadlock constant δ

·
. This constant enables us to distinguish timing

inconsistencies from incapabilities of performing actions as well as idling. This is
certainly relevant to versions with absolute timing because timing inconsistencies
readily arise. The usefulness of the immediate deadlock constant in practice is not
yet clear for versions with relative timing. Minor adaptations of the versions of ACP
with relative timing presented in this chapter are needed to obtain versions without
the immediate deadlock constant.

The discrete time versions of ACP presented in this chapter are conservative ex-
tensions of the discrete time versions of [7]. The real time versions presented in this
chapter, unlike the real time versions of [2] and [4], do not exclude the possibility of
two or more actions to be performed consecutively at the same point in time. This
feature seems to be essential to obtain simple and natural embeddings of discrete
time versions as well as useful in practice when describing and analyzing distributed
systems where entirely independent actions happen at different locations.

44

We did not extend the different versions of ACP with timing presented in this
chapter with recursion, abstraction, and other features that are important to make
these versions suitable for being applied. This has been done for the earlier versions
of ACP with timing referred to in this chapter. Some of those versions have been
successfully used for describing and analyzing systems and protocols of various kinds,
see e.g. [16], [27], [31], [32], [40], [41] and [45], as well as for defining semantics of
programming and specification languages, see e.g. [12], [14] and [17].

We did not give explicit consideration to other algebraic concurrency theories that
deal with time-dependent behaviour. In general, they have urgent actions and relative
timing. This is, for example, the case with ATP [37], the different versions of CCS with
timing [19, 35, 44] and TIC [39] – TIC is rooted in LOTOS [46]. We claim, on the basis
of the connections described in [6], that there are indeed close connections between
these theories and the versions of ACP with relative timing presented in this chapter,
i.e. ACPsrt and ACPdrt. We also claim that there is a close connection between
TPL [26] and ACPdrt, only TPL is based on testing equivalence instead of bisimulation
equivalence. Timed CSP [21], which is based on timed traces and timed failures, has
urgent actions and relative timing as well. In [20], the CCS-like process algebras
with timing of [26], [35], [36] and [44] are compared. For comprehensive overviews
of existing algebraic concurrency theories that deal with time-dependent behaviour,
having their roots in ACP, CCS, CSP, LOTOS or others, the reader is referred to
Chapter 12 of [30] and Chapter 8 of [42]. These overviews include discussions of
interesting connections with the versions of ACP with timing presented in earlier
chapters of [30] and [42], respectively.

References

[1] L. Aceto, W.J. Fokkink, and C. Verhoef. Structural operational semantics. Chap-
ter 1.3 in this issue.

[2] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects of
Computing, 3(2):142–188, 1991.

[3] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra (extended ab-
stract). In W.R. Cleaveland, editor, CONCUR’92, pages 401–420. LNCS 630,
Springer-Verlag, 1992. Full version: Report P9208b, Programming Research
Group, University of Amsterdam.

[4] J.C.M. Baeten and J.A. Bergstra. Real space process algebra. Formal Aspects
of Computing, 5(6):481–529, 1993.

[5] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra with abstrac-
tion. In H. Reichel, editor, Fundamentals of Computation Theory, pages 1–15.
LNCS 965, Springer-Verlag, 1995.

[6] J.C.M. Baeten and J.A. Bergstra. Real time process algebra with infinitesi-
mals. In A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, editors, Algebra of

45

Communicating Processes 1994, pages 148–187. Workshop in Computing Series,
Springer-Verlag, 1995.

[7] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra. Formal Aspects
of Computing, 8(2):188–208, 1996.

[8] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra: Absolute time,
relative time and parametric time. Fundamenta Informaticae, 29(1/2):51–76,
1997.

[9] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational
semantics with predicates. In E. Best, editor, CONCUR’93, pages 477–492.
LNCS 715, Springer-Verlag, 1993.

[10] J.C.M. Baeten and C. Verhoef. Concrete process algebra. In S. Abramsky,
D. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Sci-
ence, Volume IV, pages 149–268. Oxford University Press, 1995.

[11] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theo-
retical Computer Science 18, Cambridge University Press, 1990.

[12] J.A. Bergstra and P. Klint. The discrete time ToolBus – A software coordina-
tion architecture. Science of Computer Programming, 31:205–229, 1998.

[13] J.A. Bergstra and J.W. Klop. The algebra of recursively defined processes and the
algebra of regular processes. In Proceedings 11th ICALP, pages 82–95. LNCS 172,
Springer Verlag, 1984.

[14] J.A. Bergstra, C.A. Middelburg, and Y.S. Usenko. Discrete time process algebra
and the semantics of SDL. Chapter 6.2 of this issue.

[15] R.N. Bol and J.F. Groote. The meaning of negative premises in transition system
specifications. Journal of the ACM, 43:863–914, 1996.

[16] S.H.J. Bos and M.A. Reniers. The I2C-bus in discrete-time process algebra.
Science of Computer Programming, 29:235–258, 1997.

[17] J. van den Brink and W.O.D. Griffioen. Formal semantics of discrete absolute
timed interworkings. In A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, editors,
Algebra of Communicating Processes 1994, pages 106–123. Workshop in Com-
puting Series, Springer-Verlag, 1995.

[18] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating
sequential processes. Journal of the ACM, 31:560–599, 1984.

[19] L. Chen. An interleaving model for real-time systems. In A. Nerode and M. Tait-
slin, editors, Symposium on Logical Foundations of Computer Science, pages
81–92. LNCS 620, Springer-Verlag, 1992.

[20] F. Corradini, D. D’Ortenzio, and P. Inverardi. On the relationships among four
timed process algebras. Fundamenta Informaticae, 38(4):377–395, 1999.

46

[21] J. Davies et al. Timed CSP: Theory and practice. In J.W. de Bakker, C. Huizing,
W.P. de Roever, and G. Rozenberg, editors, Real Time: Theory and Practice,
pages 640–675. LNCS 600, Springer-Verlag, 1992.

[22] W.J. Fokkink. An elimination theorem for regular behaviours with integration.
In E. Best, editor, CONCUR’93, pages 432–446. LNCS 715, Springer-Verlag,
1993.

[23] W.J. Fokkink and A.S. Klusener. An effective axiomatization for real time ACP.
Information and Computation, 122:286–299, 1995.

[24] W.J. Fokkink and C. Verhoef. A conservative look at operational semantics with
variable binding. Information and Computation, 146:24–54, 1998.

[25] J.F. Groote. Transition system specifications with negative premises. Theoretical
Computer Science, 118:263–299, 1993.

[26] M. Hennessy and T. Regan. A process algebra for timed systems. Information
and Computation, 117:221–239, 1995.

[27] J.A. Hillebrand. The ABP and CABP – a comparison of performances in real
time process algebra. In A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, ed-
itors, Algebra of Communicating Processes 1994, pages 124–147. Workshop in
Computing Series, Springer-Verlag, 1995.

[28] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[29] A.S. Klusener. Completeness in real-time process algebra. In J.C.M. Baeten and
J.F. Groote, editors, CONCUR’91, pages 376–392. LNCS 527, Springer-Verlag,
1991.

[30] A.S. Klusener. Models and Axioms for a Fragment of Real Time Process Alge-
bra. PhD thesis, Eindhoven University of Technology, Department of Computing
Science, 1993.

[31] M.J. Koens and L.H. Oei. A real time µCRL specification of a system for traf-
fic regulation at signalized intersections. In A. Ponse, C. Verhoef, and S.F.M.
van Vlijmen, editors, Algebra of Communicating Processes 1994, pages 252–279.
Workshop in Computing Series, Springer-Verlag, 1995.

[32] J.M.S. van den Meerendonk. Specification and verification of a circuit in
ACPdrt–ID. M.Sc. Thesis, Eindhoven University of Technology, Department of
Mathematics and Computing Science, 1996.

[33] R. Milner. A Calculus of Communicating Systems. LNCS 92, Springer-Verlag,
1980.

[34] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

47

[35] F. Moller and C. Tofts. A temporal calculus of communicating systems. In
J.C.M. Baeten and J.W. Klop, editors, CONCUR’90, pages 401–415. LNCS 458,
Springer-Verlag, 1990.

[36] F. Moller and C. Tofts. Relating processes with respect to speed. In J.C.M.
Baeten and J.F. Groote, editors, CONCUR’91, pages 424–438. LNCS 527,
Springer-Verlag, 1991.

[37] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and
application. Information and Computation, 114:131–178, 1994.

[38] G.D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, University of Aarhus, Department of Computer Science, 1981.

[39] J. Quemada, D. de Frutos, and A. Azcorra. TIC: A timed calculus. Formal
Aspects of Computing, 5(3):224–252, 1993.

[40] A. Stins and A. Schoneveld. Specification of a bank account with process algebra.
Report P9307, University of Amsterdam, Programming Research Group, 1993.

[41] J.J. Vereijken. Fischer’s protocol in timed process algebra. In A. Ponse, C. Ver-
hoef, and S.F.M. van Vlijmen, editors, Algebra of Communicating Processes 1995,
pages 245–284. Report 95-14, Eindhoven University of Technology, Department
of Computing Science, 1995.

[42] J.J. Vereijken. Discrete Time Process Algebra. PhD thesis, Eindhoven University
of Technology, Department of Computing Science, 1997.

[43] C. Verhoef. A congruence theorem for structured operational semantics with
predicates and negative premises. Nordic Journal of Computing, 2:274–302, 1995.

[44] Wang Yi. Real-time behaviour of asynchronous agents. In J.C.M. Baeten and
J.W. Klop, editors, CONCUR’90, pages 502–520. LNCS 458, Springer-Verlag,
1990.

[45] A. van Waveren. Specification of remote sensing mechanisms in real space process
algebra. Report P9220, University of Amsterdam, Programming Research Group,
1992.

[46] LOTOS - a formal description technique based on the temporal ordering of ob-
servational behaviour. International Standard ISO 8807, 1989.

A Proofs of theorems

A.1 Theorem 6

Theorem 6 (Embedding ACPsrt in ACPsat√) For closed terms, the axioms of
ACPsrt are derivable from the axioms of ACPsat√ and the explicit definitions of the
constants and operators ˜̃a, σrel, υrel, υrel, and νrel in Table 19.

48

Proof.

To begin with, we show that the axioms of BPAsrt are derivable for closed terms. Throughout
this proof we do not expound the trivial cases.

SRT1 : σ0
rel(t) =

√
s v . υ

v
abs(t)

SIAI
=
√
s v . t

SIA4
= t

SRT2 : σp
rel(σ

q
rel(t)) =

√
s v . υ

v+p
abs (
√
s w . υ

w+q
abs (t))

SIA2
=
√
s v . υ

v+p
abs (υv+p+q

abs (t))
SI2
=√

s v . υ
v+p+q
abs (t) = σp+q

rel (t)

SRT3 : σp
rel(t) + σp

rel(t
′) = (

√
s v . υ

v+p
abs (t)) + (

√
s w . υ

w+p
abs (t′))

SIA8
=

√
s v . (υ

v+p
abs (t) + υv

abs(
√
s w . υ

w+p
abs (t′)))

SIA2
=
√
s v . (υ

v+p
abs (t) + υv

abs(υ
v+p
abs (t′)))

SI2
=

√
s v . (υ

v+p
abs (t) + υv+p

abs (t′))
SAI4
=
√
s v . υ

v+p
abs (t + t′) = σp

rel(t + t′)

SRT4 : σp
rel(t) · t

′ = (
√
s v . υ

v+p
abs (t)) · t′ SIA9

=
√
s v . (υ

v+p
abs (t) · t′) SAI5

=
√
s v . υ

v+p
abs (t · t′) =

σp
rel(t · t

′)

A6SRa : ˜̃a + ˜̃δ = (
√
s v . σ

v
abs(ã)) + (

√
s w . σ

w
abs(δ̃))

SIA8
=

√
s v . (σ

v
abs(ã) + υv

abs(
√
s w . σ

w
abs(δ̃)))

SIA2
=
√
s v . (σ

v
abs(ã) + υv

abs(σ
v
abs(δ̃)))

SAI3′
=

√
s v . (σ

v
abs(ã) + σv

abs(δ̃))
SAT3
=
√
s v . σ

v
abs(ã + δ̃)

A6SAa
=
√
s v . σ

v
abs(ã) = ˜̃a

A6SRb : σr
rel(t) + ˜̃δ = (

√
s v . υ

v+r
abs (t)) + (

√
s w . σ

w
abs(δ̃))

SIA8
=

√
s v . (υ

v+r
abs (t) + υv

abs(
√
s w . σ

w
abs(δ̃)))

SIA2
=
√
s v . (υ

v+r
abs (t) + υv

abs(σ
v
abs(δ̃)))

SAI3′
=

√
s v . (υ

v+r
abs (t) + σv

abs(δ̃))
Lemma 4

=
√
s v . (σ

v+r
abs (t) + σv

abs(δ̃))
SAT2
=

√
s v . (σ

v
abs(σ

r
abs(t)) + σv

abs(δ̃))
SAT3
=
√
s v . σ

v
abs(σ

r
abs(t) + δ̃)

A6SAb
=

√
s v . σ

v
abs(σ

r
abs(t))

SAT2
=
√
s v . σ

v+r
abs (t)

Lemma 4
=

√
s v . υ

v+r
abs (t) = σr

rel(t)

A7SR : ˜̃δ · t = (
√
s v . σ

v
abs(δ̃)) · t

SIA9
=
√
s v . (σ

v
abs(δ̃) · t)

SIA6
=
√
s v . (σ

v
abs(δ̃) · υv

abs(t))
Lemma 4

=
√
s v . (σ

v
abs(δ̃) · σv

abs(t))
SAT5
=
√
s v . σ

v
abs(δ̃ · υ0

abs(t))
A7SA
=
√
s v . σ

v
abs(δ̃) = ˜̃δ

49

SRTO0 : υp
rel(δ

·
) =
√
s v . υ

v+p
abs (υv

abs(δ
·
))

SAI0
=
√
s v . υ

v+p
abs (σv

abs(δ
·
))

SATO3
=

√
s v . σ

v
abs(υ

p
abs(δ

·
))

SATO0
=
√
s v . σ

v
abs(δ

·
)

SAI0
=
√
s v . υ

v
abs(δ

·
)

SIAI
=
√
s v . δ

· SIA4
= δ

·

SRTO1 : υ0
rel(t) =

√
s v . υ

v
abs(υ

v
abs(t))

SI4
=
√
s v . σ

v
abs(δ

·
)

SAI0
=
√
s v . υ

v
abs(δ

·
)

SIAI
=
√
s v . δ

· SIA4
= δ

·

SRTO2 : υr
rel(˜̃a) =

√
s v . υ

v+r
abs (υv

abs(
√
s w . σ

w
abs(ã)))

SIA2
=
√
s v . υ

v+r
abs (υv

abs(σ
v
abs(ã)))

SAI3′
=

√
s v . υ

v+r
abs (σv

abs(ã))
SATO3

=
√
s v . σ

v
abs(υ

r
abs(ã))

SATO2
=
√
s v . σ

v
abs(ã) = ˜̃a

SRTO3 : υp+q
rel (σp

rel(t)) =
√
s v . υ

v+p+q
abs (υv

abs(
√
s w . υ

w+p
abs (t)))

SIA2
=

√
s v . υ

v+p+q
abs (υv

abs(υ
v+p
abs (t)))

SI2
=
√
s v . υ

v+p+q
abs (υv+p

abs (t)) =

Case q = 0 :
SI4
=
√
s v . σ

v+p
abs (δ

·
)

SAI0
=
√
s v . υ

v+p
abs (δ

·
) = σp

rel(δ
·
)

SRTO1
= σp

rel(υ
q
rel(t))

Case q > 0 :
SI2
=
√
s v . υ

v+p+q
abs (υv+p

abs (υv+p
abs (t)))

SI1
=

√
s v . υ

v+p
abs (υv+p+q

abs (υv+p
abs (t)))

SIA2
=
√
s v . υ

v+p
abs (
√
s w . υ

w+q
abs (υw

abs(t))) =
σp
rel(υ

q
rel(t))

SRTO4 : υp
rel(t + t′) =

√
s v . υ

v+p
abs (υv

abs(t + t′))
SAI4
=
√
s v . υ

v+p
abs (υv

abs(t) + υv
abs(t

′))
SATO4

=√
s v . (υ

v+p
abs (υv

abs(t)) + υv+p
abs (υv

abs(t
′))) =

Case p = 0 :
SI4,A3

=
√
s v . σ

v
abs(δ

·
)

SAI0,SIAI,SIA4
= δ

· A3
= δ

·
+ δ

· SRTO1
= υp

rel(t) + υp
rel(t
′)

Case p > 0 :
SI2
=
√
s v . (υ

v+p
abs (υv

abs(t)) + υv+p
abs (υv

abs(υ
v
abs(t

′))))
SI1
=

√
s v . (υ

v+p
abs (υv

abs(t)) + υv
abs(υ

v+p
abs (υv

abs(t
′))))

SIA2
=

√
s v . (υ

v+p
abs (υv

abs(t)) + υv
abs(
√
s w . υ

w+p
abs (υw

abs(t
′))))

SIA8
=

(
√
s v . υ

v+p
abs (υv

abs(t))) + (
√
s w . υ

w+p
abs (υw

abs(t
′))) = υp

rel(t) + υp
rel(t
′)

SRTO5 : υp
rel(t · t

′) =
√
s v . υ

v+p
abs (υv

abs(t · t′))
SAI5
=
√
s v . υ

v+p
abs (υv

abs(t) · t′)
SATO5

=
√
s v . (υ

v+p
abs (υv

abs(t)) · t′)
SIA9
= (
√
s v . υ

v+p
abs (υv

abs(t))) · t′ = υp
rel(t) · t

′

SRI0 : υp
rel(δ

·
) =
√
s v . υ

v+p
abs (υv

abs(δ
·
))

SAI0a
=
√
s v . υ

v+p
abs (υv

abs(υ
0
abs(δ

·
)))

SI9
=

√
s v . υ

v+p
abs (υ0

abs(δ
·
))

SAI0a
=
√
s v . υ

v+p
abs (δ

·
) = σp

rel(δ
·
)

SRI1 : υ0
rel(t) =

√
s v . υ

v
abs(υ

v
abs(t))

SI2
=
√
s v . υ

v
abs(t)

SIAI
=
√
s v . t

SIA4
= t

SRI2 : υr
rel(˜̃a) =

√
s v . υ

v+r
abs (υv

abs(
√
s w . σ

w
abs(ã)))

SIA2
=
√
s v . υ

v+r
abs (υv

abs(σ
v
abs(ã)))

SAI3′
=

√
s v . υ

v+r
abs (σv

abs(ã))
SAI3
=
√
s v . σ

v
abs(υ

r
abs(υ

0
abs(ã)))

SAI1
=
√
s v . σ

v
abs(υ

r
abs(ã))

SAI2
=

√
s v . σ

v
abs(σ

r
abs(δ

·
))

SAT2
=
√
s v . σ

v+r
abs (δ

·
)

SAI0
=
√
s v . υ

v+r
abs (δ

·
) = σr

rel(δ
·
)

SRI3 : υp+q
rel (σp

rel(t)) =
√
s v . υ

v+p+q
abs (υv

abs(
√
s w . υ

w+p
abs (t)))

SIA2
=

√
s v . υ

v+p+q
abs (υv

abs(υ
v+p
abs (t)))

SI2
=
√
s v . υ

v+p
abs (υv+p+q

abs (υv+p
abs (t)))

SIA2
=√

s v . υ
v+p
abs (
√
s w . υ

w+q
abs (υw

abs(t))) = σp
rel(υ

q
rel(t))

SRI4 : υp
rel(t + t′) =

√
s v . υ

v+p
abs (υv

abs(t + t′))
SAI4
=

√
s v . (υ

v+p
abs (υv

abs(t)) + υv+p
abs (υv

abs(t
′)))

SI2
=

√
s v . (υ

v+p
abs (υv

abs(t)) + υv
abs(υ

v+p
abs (υv

abs(t
′))))

SIA2
=

√
s v . (υ

v+p
abs (υv

abs(t)) + υv
abs(
√
s w . υ

w+p
abs (υw

abs(t
′))))

SIA8
=

(
√
s v . υ

v+p
abs (υv

abs(t))) + (
√
s w . υ

w+p
abs (υw

abs(t
′))) = υp

rel(t) + υp
rel(t
′)

SRI5 : υp
rel(t · t

′) =
√
s v . υ

v+p
abs (υv

abs(t · t′))
SAI5
=
√
s v . (υ

v+p
abs (υv

abs(t)) · t′)
SIA9
=

(
√
s v . υ

v+p
abs (υv

abs(t))) · t′ = υp
rel(t) · t

′

Next, we show that the additional axioms for ACPsrt are derivable for closed terms.

CF1SR : ˜̃a | ˜̃b = (
√
s v . σ

v
abs(ã)) | (

√
s v . σ

v
abs(b̃))

DISTR|,SACM5
=

√
s v . σ

v
abs(ã | b̃)

CF1SA
=√

s v . σ
v
abs(c̃) = ˜̃c if γ(a, b) = c

50

CF2SR : The proof is similar to the proof of axiom CF1SR – axiom CF2SA is
used instead of axiom CF1SA.

CM2SRID : ˜̃a bb (t + ˜̃δ) = (
√
s v . σ

v
abs(ã)) bb (t + (

√
s v . σ

v
abs(δ̃)))

SIA8,DISTRbb
=

√
s v . (σ

v
abs(ã) bb (υv

abs(t) + σv
abs(δ̃)))

Lemma 4
=

√
s v . (σ

v
abs(ã) bb (σv

abs(t) + σv
abs(δ̃)))

SAT3,SACM2
=

√
s v . σ

v
abs(ã bb (t + δ̃))

CM2SA
=
√
s v . σ

v
abs(ã · (t + δ̃))

SAI1,SAT1,SIA6
=

√
s v . σ

v
abs(ã · υ0

abs(t + δ̃))
SAT5
=
√
s v . (σ

v
abs(ã) · σv

abs(t + δ̃))
SAT3,Lemma 4

=
√
s v . (σ

v
abs(ã) · (υv

abs(t) + σv
abs(δ̃)))

SAI3′
=

√
s v . (σ

v
abs(ã) · (υv

abs(t) + υv
abs(σ

v
abs(δ̃))))

SIA2
=

√
s v . (σ

v
abs(ã) · (υv

abs(t) + υv
abs(
√
s w . σ

w
abs(δ̃))))

SAI4
=

√
s v . (σ

v
abs(ã) · υv

abs(t +
√
s w . σ

w
abs(δ̃)))

SIA6
=

√
s v . (σ

v
abs(ã) · (t +

√
s w . σ

w
abs(δ̃)))

SIA9
=

(
√
s v . σ

v
abs(ã)) · (t +

√
s w . σ

w
abs(δ̃)) = ˜̃a · (t + ˜̃δ)

CM3SRID : The proof is similar to the proof of axiom CM2SRID – axiom CM3SA
is used instead of axiom CM2SA.

SRCM1ID : σr
rel(t) bb (νrel(t

′) + ˜̃δ) =

(
√
s v . υ

v+r
abs (t)) bb ((

√
s v . σ

v
abs(νabs(t

′))) + (
√
s v . σ

v
abs(δ̃)))

DISTR
=

√
s v . (υ

v+r
abs (t) bb (σv

abs(νabs(t
′)) + σv

abs(δ̃)))
Lemma 4,SAT3

=
√
s v . (σ

v+r
abs (t) bb σv

abs(νabs(t
′) + δ̃))

SACM1′
=

√
s v . σ

v
abs(δ̃) = ˜̃δ

SRCM2ID : σp
rel(t) bb (υp

rel(t
′) + σp

rel(t
′′)) =

(
√
s v . υ

v+p
abs (t)) bb ((

√
s v . υ

v+p
abs (υv

abs(t
′))) + (

√
s v . υ

v+p
abs (t′′)))

DISTR
=

√
s v . (υ

v+p
abs (t) bb (υv+p

abs (υv
abs(t

′)) + υv+p
abs (t′′)))

Lemma 4
=

√
s v . (σ

v+p
abs (t) bb (υv+p

abs (υv
abs(t

′)) + σv+p
abs (t′′)))

SACM2
=

√
s v . σ

v+p
abs (t bb t′′) Lemma 4

=
√
s v . υ

v+p
abs (t bb t′′) = σp

rel(t bb t
′′)

CM5SR : ˜̃a · t | ˜̃b = ((
√
s v . σ

v
abs(ã)) · t) | (

√
s v . σ

v
abs(b̃))

SIA9,DISTR|
=

√
s v . ((σ

v
abs(ã) · t) | σv

abs(b̃))
SIA6,Lemma 4

=
√
s v . ((σ

v
abs(ã) · σv

abs(t)) | σv
abs(b̃))

SAT5
=

√
s v . (σ

v
abs(ã · υ0

abs(t)) | σv
abs(b̃))

SACM5
=
√
s v . σ

v
abs(ã · υ0

abs(t) | b̃)
CM5SA

=
√
s v . σ

v
abs((ã | b̃) · υ0

abs(t))
SAT5
=
√
s v . (σ

v
abs(ã | b̃) · σv

abs(t))
Lemma 4,SIA6

=
√
s v . (σ

v
abs(ã | b̃) · t)

SIA9
= (
√
s v . σ

v
abs(ã | b̃)) · t

SACM5,DISTR|
=

((
√
s v . σ

v
abs(ã)) | (

√
s v . σ

v
abs(b̃))) · t = (˜̃a | ˜̃b) · t

CM6SR and CM7SR :
The proofs are similar to the proof of axiom CM5SR – axioms CM6SA
and CM7SA are used instead of axiom CM5SA.

SRCM3ID : (νrel(t) + ˜̃δ) | σr
rel(t
′) =

((
√
s v . σ

v
abs(νabs(t))) + (

√
s v . σ

v
abs(δ̃))) | (

√
s v . υ

v+r
abs (t))

DISTR
=

√
s v . ((σ

v
abs(νabs(t)) + σv

abs(δ̃)) | υv+r
abs (t))

SAT3,Lemma 4
=

√
s v . (σ

v
abs(νabs(t) + δ̃) | σv+r

abs (t))
SACM3′

=
√
s v . σ

v
abs(δ̃) = ˜̃δ

SRCM4ID : The proof is similar to the proof of axiom SRCM3ID – axiom SACM4′

is used instead of axiom SACM3′.

51

SRCM5 : σp
rel(t) | σ

p
rel(t
′) = (

√
s v . υ

v+p
abs (t)) | (

√
s v . υ

v+p
abs (t′))

DISTR|,SI11
=√

s v . υ
v+p
abs (t | t′) = σp

rel(t | t
′)

D1SR : ∂H(˜̃a) = ∂H(
√
s v . σ

v
abs(ã))

SIA15,SAD
=

√
s v . σ

v
abs(∂H(ã))

D1SA
=√

s v . σ
v
abs(ã) = ˜̃a if a 6∈ H

D2SR : The proof is similar to the proof of axiom D1SR – axiom D2SA is
used instead of axioms D1SA.

SRD : ∂H(σp
rel(t)) = ∂H(

√
s v . υ

v+p
abs (t))

SIA15,Lemma 4,SAD
=

√
s v . υ

v+p
abs (∂H(t)) =

σp
rel(∂H(t))

SRU0 : νrel(δ
·
) =
√
s v . σ

v
abs(νabs(δ

·
))

SAU0,SAI0
=

√
s v . υ

v
abs(δ

·
)

SIAI,SIA4
= δ

·

SRU1 : νrel(˜̃a) =
√
s v . σ

v
abs(νabs(

√
s w . σ

w
abs(ã)))

SIA16
=

√
s v . σ

v
abs(
√
s w . νabs(σ

w
abs(ã)))

SIA7
=
√
s v . σ

v
abs(νabs(σ

0
abs(ã)))

SAT1,SAI1
=

√
s v . σ

v
abs(νabs(ã))

SAU1
=
√
s v . σ

v
abs(ã) = ˜̃a

SRU2 : νrel(σ
r
rel(t)) =

√
s v . σ

v
abs(νabs(

√
s w . υ

w+r
abs (t)))

SIA16
=

√
s v . σ

v
abs(
√
s w . νabs(υ

w+r
abs (t)))

SIA7
=
√
s v . σ

v
abs(νabs(υ

r
abs(t)))

Lemma 4
=

√
s v . σ

v
abs(νabs(σ

r
abs(t)))

SAU2
=
√
s v . σ

v
abs(δ̃) = ˜̃δ

SRU3 : νrel(t + t′) =
√
s v . σ

v
abs(νabs(t + t′))

SAU3,SAT3
=

√
s v . (σ

v
abs(νabs(t)) + σv

abs(νabs(t
′)))

SAI3′
=

√
s v . (σ

v
abs(νabs(t)) + υv

abs(σ
v
abs(νabs(t

′))))
SIA2
=

√
s v . (σ

v
abs(νabs(t)) + υv

abs(
√
s w . σ

w
abs(νabs(t

′))))
SIA8
=

(
√
s v . σ

v
abs(νabs(t))) + (

√
s w . σ

w
abs(νabs(t

′))) = νrel(t) + νrel(t
′)

SRU4 : νrel(t · t′) =
√
s v . σ

v
abs(νabs(t · t′))

SAU4
=
√
s v . σ

v
abs(νabs(t) · t′)

Lemma 5
=

√
s v . (σ

v
abs(νabs(t)) · t′)

SIA9
= (
√
s v . σ

v
abs(νabs(t))) · t′ = νrel(t) · t′

2

A.2 Theorem 12

Theorem 12 (Embedding ACPdat√ in ACPsatI
√
) For closed terms, the axioms

of ACPdat√ are derivable from the axioms of ACPsatI
√

and the explicit definitions
of the constants and operators a, σabs, υabs, υabs and

√
d in Table 25.

Proof.

To begin with, we show that the axioms of BPAdat are derivable for closed terms. Throughout
this proof we do not expound the trivial cases.

52

DAT7 : σ1
abs(δ

·
)

INT8
=

∫
v∈[0,1) σ

v
abs(δ̃) = δ

A6DAa : a + δ =
∫
v∈[0,1) σ

v
abs(ã) +

∫
v∈[0,1) σ

v
abs(δ̃)

INT11
=

∫
v∈[0,1)(σ

v
abs(ã) + σv

abs(δ̃))
SAT3
=∫

v∈[0,1) σ
v
abs(ã + δ̃)

A6SAa
=

∫
v∈[0,1) σ

v
abs(ã) = a

DATO2 : υn+1
abs (a) = υn+1

abs (
∫
v∈[0,1) σ

v
abs(ã))

SATO6
=

∫
v∈[0,1) υ

n+1
abs (σv

abs(ã))
SATO3

=∫
v∈[0,1) σ

v
abs(υ

n+1−v
abs (ã))

SATO2
=

∫
v∈[0,1) σ

v
abs(ã) = a

DAI1 : υ0
abs(a) = υ0

abs(
∫
v∈[0,1) σ

v
abs(ã))

SAI6
=

∫
v∈[0,1) υ

0
abs(σ

v
abs(ã))

SAI3′
=∫

v∈[0,1) σ
v
abs(ã) = a

DAI2 : υn+1
abs (a) = υn+1

abs (
∫
v∈[0,1) σ

v
abs(ã))

SAI6
=

∫
v∈[0,1) υ

n+1
abs (σv

abs(ã))
SAI3
=∫

v∈[0,1) σ
v
abs(υ

n+1−v
abs (υ0

abs(ã)))
SAI1
=

∫
v∈[0,1) σ

v
abs(υ

n+1−v
abs (ã))

SAI2
=∫

v∈[0,1) σ
v
abs(σ

n+1−v
abs (δ

·
))

SAT2
=

∫
v∈[0,1) σ

n+1
abs (δ

·
)

INT5
= σn+1

abs (δ
·
)

Next, we show that the additional axioms for ACPdat are derivable for closed terms.

CF1DA : a | b = (
∫
v∈[0,1) σ

v
abs(ã)) | (

∫
v∈[0,1) σ

v
abs(b̃))

INT14,15
=∫

v∈[0,1)

∫
w∈[0,1)(σ

v
abs(ã) | σw

abs(b̃))
INT3,4,11

=∫
v∈[0,1)

∫
w∈[0,v)(σ

v
abs(ã) | σw

abs(b̃)) +
∫
v∈[0,1)(σ

v
abs(ã) | σv

abs(b̃)) +∫
v∈[0,1)

∫
w∈(v,1)(σ

v
abs(ã) | σw

abs(b̃))
see I,II,III

=∫
v∈[0,1) σ

v
abs(δ

·
) +

∫
v∈[0,1) σ

v
abs(ã | b̃) +

∫
v∈[0,1) σ

v
abs(δ̃)

INT11,SAT3
=∫

v∈[0,1) σ
v
abs(δ

·
+ ã | b̃ + δ̃)

A6ID,A6SAa
=

∫
v∈[0,1) σ

v
abs(ã | b̃)

CF1SA
=∫

v∈[0,1) σ
v
abs(c̃) = c if γ(a, b) = c

I. Suppose p ∈ [0, 1), q ∈ [0, p).

Then σp
abs(ã) | σq

abs(b̃)
SAU1,A6SAa

= σp
abs(ã) | σq

abs(νabs(b̃) + δ̃)
SACM4′

= σq
abs(δ̃).

By INT6,
∫
w∈[0,p)(σ

p
abs(ã) | σw

abs(b̃)) =
∫
w∈[0,p) σ

w
abs(δ̃)

INT8
= σp

abs(δ
·
).

By INT6,
∫
v∈[0,1)

∫
w∈[0,v)(σ

v
abs(ã) | σw

abs(b̃)) =
∫
v∈[0,1) σ

v
abs(δ

·
).

II. Suppose p ∈ [0, 1), q = p.

Then σp
abs(ã) | σp

abs(b̃)
SACM5

= σp
abs(ã | b̃).

By INT6,
∫
v∈[0,1)(σ

v
abs(ã) | σv

abs(b̃)) =
∫
v∈[0,1) σ

v
abs(ã | b̃).

III. Suppose p ∈ [0, 1), q ∈ (p, 1).

Then σp
abs(ã) | σq

abs(b̃)
SAU1,A6SAa

= σp
abs(νabs(ã) + δ̃) | σq

abs(b̃)
SACM3′

= σp
abs(δ̃).

By INT6,
∫
w∈(p,1)(σ

p
abs(ã) | σw

abs(b̃)) =
∫
w∈(p,1) σ

p
abs(δ̃)

INT5
= σp

abs(δ̃).

By INT6,
∫
v∈[0,1)

∫
w∈(v,1)(σ

v
abs(ã) | σw

abs(b̃)) =
∫
v∈[0,1) σ

v
abs(δ̃).

CF2DA : The proof is similar to the proof of axiom CF1DA – axiom CF2SA is
used instead of axiom CF1SA.

CM2DA : For p ∈ [0,∞), q ∈ [0, 1),

υp
abs(σ

q
abs(ã)) bb υp

abs(t + δ)
see I,II,III

= υp
abs(σ

q
abs(ã)) · (t + δ).

By INT6,∫
v∈[0,1)(υ

p
abs(σ

v
abs(ã)) bb υp

abs(t + δ)) =
∫
v∈[0,1)(υ

p
abs(σ

v
abs(ã)) · (t + δ)).

By SI10, SAI5, 6, INT12, 13, υp
abs(a bb (t + δ)) = υp

abs(a · (t + δ)).
By SIA5, a bb (t + δ) = a · (t + δ).

53

I. Suppose p ∈ [0, q], q ∈ [0, 1), t 6= δ
·
.

Then υp
abs(σ

q
abs(ã)) bb υp

abs(t + δ)
Lemma 9

= υp
abs(σ

q
abs(ã)) bb σp

abs(t[p] + δ̃)
SAI3′
=

σq
abs(ã) bb σp

abs(t[p] + δ̃)
SAT2,SACM2

= σp
abs(σ

q−p
abs (ã) bb (t[p] + δ̃))

Lemma 1,SI6
=

σp
abs(σ

q−p
abs (ã) bb (υq−p

abs (t[p] + δ̃) + υq−p
abs (t[p] + δ̃) + σq−p

abs (δ̃)))
Lemma 3

=

σp
abs(σ

q−p
abs (ã) bb (υq−p

abs (t[p] + δ̃) + σq−p
abs ((t[p] + δ̃)[q−p]) + σq−p

abs (δ̃)))
SAT3,SACM2

=

σp
abs(σ

q−p
abs (ã bb ((t[p] + δ̃)[q−p] + δ̃)))

CM2SA
=

σp
abs(σ

q−p
abs (ã · ((t[p] + δ̃)[q−p] + δ̃)))

SAT1,SAI1,SIA6
=

σp
abs(σ

q−p
abs (ã · υ0

abs((t[p] + δ̃)[q−p] + δ̃)))
SAT3,5

=

σp
abs(σ

q−p
abs (ã) · (σq−p

abs ((t[p] + δ̃)[q−p]) + σq−p
abs (δ̃))) =

σp
abs(σ

q−p
abs (ã) · (υq−p

abs (t[p] + δ̃) + σq−p
abs (δ̃)))

SI6,SIA6
=

σp
abs(σ

q−p
abs (ã) · (t[p] + δ̃))

SAT5
= σp

abs(σ
q−p
abs (ã)) · σp

abs(t[p] + δ̃) =

σp
abs(σ

q−p
abs (ã)) · υp

abs(t + δ)
SIA6,SAT2,SAI3′

= υp
abs(σ

q
abs(ã)) · (t + δ)

II. Suppose p ∈ [0, q], q ∈ [0, 1), t = δ
·
.

Then υp
abs(σ

q
abs(ã)) bb υp

abs(t + δ)
SAI3′,A6ID

= σq
abs(ã) bb υp

abs(δ)
Lemma 11

=

σq
abs(ã) bb σ1

abs(δ
·
)

SAT2,SACM2
= σq

abs(ã bb σ
1−q
abs (δ

·
))

CM2SA
= σq

abs(ã · σ
1−q
abs (δ

·
))

SAI3′,SAT2,5
=

σq
abs(ã) · σ1

abs(δ
·
)

INT8,A6ID
= σq

abs(ã) · (t + δ)
SAI3′
= υp

abs(σ
q
abs(ã)) · (t + δ)

III. Suppose p ∈ (q,∞), q ∈ [0, 1).

Then υp
abs(σ

q
abs(ã)) bb υp

abs(t + δ)
Lemma 9

= υp
abs(σ

q
abs(ã)) bb σp

abs(t[p] + δ̃)
SAI1,2,3

=

σq
abs(σ

p−q
abs (δ

·
)) bb σp

abs(t[p] + δ̃)
SAT2,SACM2,CMID1

= σp
abs(δ

·
)

SAT6
=

σp
abs(δ

·
) · (t + δ)

SAT2
= σq

abs(σ
p−q
abs (δ

·
)) · (t + δ)

SAI1,2,3
= υp

abs(σ
q
abs(ã)) · (t + δ)

CM3DA : The proof is similar to the proof of axiom CM2DA – axiom CM3SA is
used instead of axiom CM2SA.

CM5DA, CM6DA and CM7DA :
The proofs are similar to the proof of axiom CF1DA – axiom SIA6 is
used in addition and axioms CM5SA, CM6SA and CM7SA are used
instead of axiom CF1SA.

DACM3 : (υ1
abs(t) + δ) | σn+1

abs (t′)
SATO2,3,6

= (υ1
abs(t) + υ1

abs(δ)) | σn+1
abs (t′)

SATO4
=

υ1
abs(t + δ) | σn+1

abs (t′)
Lemma 10

= (
∫
v∈[0,1) σ

v
abs(νabs(t

◦) + δ̃)) | σn+1
abs (t′)

INT5,11,14
=∫

v∈[0,1)(σ
v
abs(νabs(t

◦) + δ̃) | σn+1
abs (t′))

SACM3′
=

∫
v∈[0,1) σ

v
abs(δ̃) = δ

DACM4 : The proof is similar to the proof of axiom DACM3 – axioms INT15 and
SACM4′ are used instead of axioms INT14 and SACM3′.

D1DA : ∂H(a) = ∂H(
∫
v∈[0,1) σ

v
abs(ã))

INT16,SAD
=

∫
v∈[0,1) σ

v
abs(∂H(ã))

D1SA
=∫

v∈[0,1) σ
v
abs(ã) = a if a 6∈ H

D2DA : The proof is similar to the proof of axiom D1DA – axiom D2SA is used
instead of axioms D1SA.

Finally, we show that the additional axioms for discrete initial abstraction are derivable for
closed terms.

54

DIA1 :
√
d j . G =

√
s w . G[bwc/j] SIA1

=
√
s v . G[bwc/j][v/w] =

√
s v . G[bvc/j] =√

s v . G[i/j][bvc/i] =
√
d i . G[i/j]

DIA2 : υn
abs(
√
d i . F) = υn

abs(
√
s v . F [bvc/i]) SIA2

= υn
abs(F [bvc/i][n/v]) = υn

abs(F [n/i])

DIA3 :
√
d i . (

√
d j . F) =

√
s v . (

√
s w . F [bwc/j])[bvc/i] =

√
s v . (

√
s w . F [bwc/j][bvc/i]) SIA3

=
√
s v . F [bwc/j][bvc/i][v/w] =√

s v . F [bvc/j][bvc/i] =
√
s v . F [i/j][bvc/i] =

√
d i . F [i/j]

DIA4 : G
SIA4
=
√
s v . G =

√
s v . G[bvc/i] =

√
d i . G

DIA5 : Suppose p ∈ R≥0 and ∀n ∈ N • υn
abs(F) = υn

abs(F
′).

Then υp
abs(F)

Lemma 7
= υp

abs(
√
s v . υ

bvc
abs (F))

SIA2
= υp

abs(υ
bpc
abs (F)) = υp

abs(υ
bpc
abs (F ′))

SIA2
=

υp
abs(
√
s v . υ

bvc
abs (F ′))

Lemma 7
= υp

abs(F
′).

By SIA5, F = F ′.

DIA6 : σn
abs(a) · F = σn

abs(
∫
v∈[0,1) σ

v
abs(ã)) · F INT10,12,SAT2

=
∫
v∈[0,1)(σ

n+v
abs (ã) · F)

Lemma 7,SIA6
=∫

v∈[0,1)(σ
n+v
abs (ã) · υn+v

abs (
√
s w . υ

bwc
abs (F)))

SIA2,6
=∫

v∈[0,1)(σ
n+v
abs (ã) · υn

abs(F))
SAT2,INT10,12

= σn
abs(

∫
v∈[0,1) σ

v
abs(ã)) · υn

abs(F) =

σn
abs(a) · υn

abs(F)

DIA7 : σn
abs(
√
d i . F) = σn

abs(
√
s v . F [bvc/i]) SIA7

= σn
abs(F [bvc/i][0/v]) = σn

abs(F [0/i])

DIA8 : (
√
d i . F) + G = (

√
s v . F [bvc/i]) + G

Lemma 7
=

(
√
s v . F [bvc/i]) + (

√
s v . υ

bvc
abs (G))

DISTR+
=

√
s v . (F [bvc/i] + υ

bvc
abs (G)) =√

s v . (F + υi
abs(G))[bvc/i] =

√
d i . (F + υi

abs(G))

DIA9 : (
√
d i . F) ·G = (

√
s v . F [bvc/i]) ·G SIA9

=
√
s v . (F [bvc/i] ·G) =√

s v . (F ·G)[bvc/i] =
√
d i . (F ·G)

DIA10 : υn
abs(
√
d i . F) = υn

abs(
√
s v . F [bvc/i]) SIA10

=
√
s v . υ

n
abs(F [bvc/i]) =√

s v . υ
n
abs(F)[bvc/i] =

√
d i . υ

n
abs(F)

DIA11, DIA12, DIA13 and DIA14 :
The proofs are similar to the proof of axiom DIA8 – axioms SIA11,
SIA12, SIA13 and SIA14 are used instead of axioms SIA8.

DIA15 : The proof is similar to the proof of axiom DIA10 – axiom SIA15 is used
instead of axioms SIA10.

2

55

