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1 Introduction

Many theories about processes include conditional expressions of some form.
For instance, several extensions of ACP [1,2] include conditional expressions
of the form ζ :→ p or p � ζ � q (see e.g. [3–6]). What are considered to be
conditions and how they are evaluated differs from one case to another. This
state of affairs forms part of our motivation to investigate this matter further.
The set of conditions is usually one of the following:

• a two-valued set, usually called B;
• the set of all propositions with propositional variables from a given set and

with finite conjunctions and disjunctions;
• the domain of a free Boolean algebra over a given set of generators.

The last alternative generalizes both other alternatives. In this paper, we will
focus our attention on the last alternative and implicate the other alternatives
where appropriate for explanation or motivation.

We introduce ACPc, an extension of ACP with conditional expressions of the
form ζ :→ p in which the set of conditions is the domain of a free Boolean
algebra over a given set of generators. We present the main models of ACPc,
which are based on labelled transition systems of which the labels consist of a
condition and an action, called conditional transition systems, and a variant
of bisimilarity in which a transition of one of the related transition systems
may be simulated by a set of transitions of the other transition system, called
splitting bisimilarity.

The presented models of ACPc demonstrate that infinitely branching processes
can be covered, even in the case where the set of generators of the free Boolean
algebra is not restricted to be finite. An infinite set of generators is needed
for the extension of ACPc with the retrospection operator on conditions men-
tioned below. The approach of structural operational semantics [7] can only be
used here to describe the model that covers only finitely branching processes.

Existing mechanisms that allow for a kind of condition evaluation in condi-
tional expressions include the state operators as introduced in [4] and signal
emission as introduced in [6]. However, those mechanisms were not devised
for that purpose. We extend ACPc with operators devised for condition eval-
uation, with state operators, and with signal emission; and show how those
extensions are related. For the main models of ACPcs, the extension of ACPc

with signal emission, generalizations of conditional transition systems and
splitting bisimilarity are introduced.

Two kinds of operators are devised for condition evaluation, one for the case
where condition evaluation is not dependent on process behaviour and the
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other for the case where condition evaluation is dependent on process be-
haviour. We show how a theory about the set of atomic conditions can be
used for condition evaluation with an operator of the former kind, that the
operators of the former kind are superseded by the operators of the latter kind
and that those operators are in their turn superseded by the state operators.
We also show that the signal emission operator corresponds to a local form
of condition evaluation: unlike the forms of condition evaluation covered by
the operators mentioned above, condition evaluation by means of the signal
emission operator does not persist over performing an action.

We also extend ACPc with a retrospection operator on conditions, which al-
lows for looking back on conditions under which preceding actions have been
performed. For the main models of ACPcr, the extension of ACPc with the
retrospection operator, an adaptation of splitting bisimilarity is introduced.
We extend ACPcr with the above-mentioned operators devised for condition
evaluation as well.

The addition of retrospection to ACPc is a basic way to increase expressiveness.
We have not yet formed a clear notion of the applications of this addition. We
outline in this paper a process algebra built on ACPcr in which retrospection
allows for using conditions which express that a certain number of steps ago
a certain action must have been performed. This suggests, for example, that
we can deal with the history pointers from [8] using retrospection. The effect
of retrospection on expressiveness forms part of our motivation to develop
ACPcr.

The work presented in this paper, can easily be adapted to other process al-
gebras based on (strong) bisimulation models, such as the strong bisimulation
version of CCS [9]. Adaptation to CSP [10], which is not based on bisimulation
models, will be more difficult and in part perhaps even impossible.

The structure of this paper is as follows. First of all, we introduce BPAc
δ, an

important subtheory of ACPc that does not support parallelism and commu-
nication (Section 2). After that, we introduce conditional transition systems,
splitting bisimilarity of conditional transition systems (Section 3) and the
full splitting bisimulation models of BPAc

δ, the main models of BPAc
δ (Sec-

tion 4). Following this, we have a closer look at splitting bisimilarity based on
structural operational semantics (Section 5). Next, we extend BPAc

δ to ACPc

(Section 6) and expand the full splitting bisimulation models of BPAc
δ to full

splitting bisimulation models of ACPc (Section 7). Then, we extend ACPc

with guarded recursion (Section 8). Thereupon, we extend ACPc with condi-
tion evaluation operators (Section 9), with state operators (Section 10) and
with a signal emission operator (Section 11); and analyse how those operators
are related. We also adapt the full splitting bisimulation models of ACPc to
the full signal-observing splitting bisimulation models of ACPcs, the extension
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of ACPc with signal emission (Section 12). After that, we extend BPAc
δ with

a retrospection operator (Section 13) and adapt the full splitting bisimula-
tion models of BPAc

δ to the full retrospective splitting bisimulation models of
BPAcr

δ , the extension of BPAc
δ with retrospection (Section 14). Next, we extend

BPAcr
δ to ACPcr (Section 15) and expand the full retrospective splitting bisim-

ulation models of BPAcr
δ to full retrospective splitting bisimulation models of

ACPcr (Section 16). Thereupon, we extend ACPcr with condition evaluation
operators as well (Section 17). We also outline an interesting variant of ACPcr

(Section 18). Finally, we make some remarks about related work and mention
some options for future work (Section 19).

Some familiarity with Boolean algebras is desirable. The definitions of all no-
tions concerning Boolean algebras that are used in this paper can, for example,
be found in [11].

2 BPA with Conditions

BPAδ is a subtheory of ACP that does not support parallelism and commu-
nication (see e.g. [2]). In this section, we present an extension of BPAδ with
guarded commands, i.e. conditional expressions of the form ζ :→ p. The ex-
tension is called BPAc

δ. In the extension, just as in BPAδ, it is assumed that a
fixed but arbitrary finite set of actions A, with δ 6∈ A, has been given. More-
over it is assumed that a fixed but arbitrary set of atomic conditions Cat has
been given.

Let κ be an infinite cardinal. Then Cκ is the free κ-complete Boolean algebra
over Cat.

1 As usual, we identify Boolean algebras with their domain. Thus, we
also write Cκ for the domain of Cκ. It is well known that, if κ is regular, 2 Cκ is
isomorphic to the Boolean algebra of equivalence classes with respect to logical
equivalence of the set of all propositions with elements of Cat as propositional
variables and with conjunctions and disjunctions of less than κ propositions
(see e.g. [11]). In BPAc

δ, conditions are taken from Cℵ0 . Moreover, if Cat is a
finite set, then Cκ = Cℵ0 for all cardinals κ > ℵ0. We are also interested in
Cκ for cardinals κ > ℵ0 because it permits us to consider infinitely branching
processes in the case where Cat is an infinite set. Henceforth, we write C for
Cℵ0 .

The algebraic theory BPAc
δ has two sorts:

• the sort P of processes ;

1 For a definition of free κ-complete Boolean algebras, see e.g. [11].
2 For a definition of regular cardinals, see e.g. [12,13]. They include ℵ0, ℵ1, ℵ2, . . . .
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• the sort C of (finite) conditions.

The algebraic theory BPAc
δ has the following constants and operators to build

terms of sort C:

• the bottom constant ⊥ : C;
• the top constant > : C;
• for each η ∈ Cat, the atomic condition constant η : C;
• the unary complement operator − : C → C;
• the binary join operator t : C×C → C;
• the binary meet operator u : C×C → C.

The algebraic theory BPAc
δ has the following constants and operators to build

terms of sort P:

• the deadlock constant δ : P;
• for each a ∈ A, the action constant a : P;
• the binary alternative composition operator + : P×P → P;
• the binary sequential composition operator · : P×P → P;
• the binary guarded command operator :→ : C×P → P.

We use infix notation for the binary operators. The following precedence con-
ventions are used to reduce the need for parentheses. The operators to build
terms of sort C bind stronger than the operators to build terms of sort P.
The operator · binds stronger than all other binary operators to build terms
of sort P and the operator + binds weaker than all other binary operators to
build terms of sort P.

The constants and operators of BPAc
δ to build terms of sort P are the constants

and operators of BPAδ and additionally the guarded command operator. Let
p and q be closed terms of sort P and ζ be a closed term of sort C. Intuitively,
the constants and operators to build terms of sort P can be explained as
follows:

• δ can neither perform an action nor terminate successfully;
• a first performs action a and then terminates successfully, both uncondi-

tionally;
• p+ q behaves either as p or as q, but not both;
• p · q first behaves as p, but when p terminates successfully it continues by

behaving as q;
• ζ :→ p behaves as p under condition ζ.

Some earlier extensions of ACP include conditional expressions of the form
p � ζ � q; see e.g. [4]. This notation with triangles originates from [14]. We
treat conditional expressions of the form p� ζ � q, where p and q are terms of
sort P and ζ is a term of sort C, as abbreviations. That is, we write p� ζ � q

5



Table 1
Axioms of Boolean algebras

φ t ⊥ = φ BA1

φ t −φ = > BA2

φ t ψ = ψ t φ BA3

φ t (ψ u χ) = (φ t ψ) u (φ t χ) BA4

φ u > = φ BA5

φ u −φ = ⊥ BA6

φ u ψ = ψ u φ BA7

φ u (ψ t χ) = (φ u ψ) t (φ u χ) BA8

Table 2
Axioms of BPAc

δ

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

> :→ x = x GC1

⊥ :→ x = δ GC2

φ :→ δ = δ GC3

φ :→ (x+ y) = φ :→ x+ φ :→ y GC4

φ :→ x · y = (φ :→ x) · y GC5

φ :→ (ψ :→ x) = (φ u ψ) :→ x GC6

(φ t ψ) :→ x = φ :→ x+ ψ :→ x GC7

for ζ :→ p+−ζ :→ q.

The axioms of BPAc
δ are the axioms of Boolean Algebras (BA) given in Table 1

and the additional axioms given in Table 2. Axioms A1–A7 are the axioms
of BPAδ. So BPAc

δ imports the axioms of both BA and BPAδ. The axioms of
BA given in Table 1 have been taken from [15]. Several alternatives for this
axiomatization can be found in the literature (e.g. in [11,16]). If we use basic
laws of BA other than axioms BA1–BA8, such as φ u φ = φ and −(φ u ψ) =
−φ t −ψ, in a step of a derivation, we will refer to them as applications of
BA and not give their derivation from axioms BA1–BA8. Axioms GC1–GC7
have been taken from [4], but with the axiom x · z�φ� y · z = (x�φ� y) · z
(CO5) replaced by φ :→ x · y = (φ :→ x) · y (GC5).

Example 1 Consider a careful pedestrian who uses a crossing with traffic
lights to cross a road with busy traffic safely. When the pedestrian arrives at
the crossing and the light for pedestrians is green, he or she simply crosses
the street. However, when the pedestrian arrives at the crossing and the light
for pedestrians is red, he or she first makes a request for green light (e.g. by
pushing a button) and then crosses the street when the light has changed. This
behaviour can be described in BPAc

δ as follows:

PED = arrive · (green :→ cross + red :→ (make req · (green :→ cross))) .

The careful pedestrian described above does not cross the street if the light for
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Table 3
Transition rules for BPAc

δ

a
[>] a−−−→

√

x
[φ] a−−−→

√

x+ y
[φ] a−−−→

√
y

[φ] a−−−→
√

x+ y
[φ] a−−−→

√
x

[φ] a−−−→ x′

x+ y
[φ] a−−−→ x′

y
[φ] a−−−→ y′

x+ y
[φ] a−−−→ y′

x
[φ] a−−−→

√

x · y [φ] a−−−→ y

x
[φ] a−−−→ x′

x · y [φ] a−−−→ x′ · y

x
[φ] a−−−→

√

ψ :→ x
[φuψ] a−−−−−→

√ φ u ψ 6= ⊥
x

[φ] a−−−→ x′

ψ :→ x
[φuψ] a−−−−−→ x′

φ u ψ 6= ⊥

pedestrians does not change from red to green after a request for green light.
Whether the change from red to green will ever happen is not described here.

The terms of sort C are interpreted in C as usual.

We proceed to the presentation of the structural operational semantics of
BPAc

δ. The following relations on closed terms of sort P are used:

• for each ` ∈ (C \ {⊥})× A, a binary relation `−→;

• for each ` ∈ (C \ {⊥})× A, a unary relation `−→
√

.

We write p
[α] a−−→ q instead of (p, q) ∈ (α,a)−−−→ and p

[α] a−−→
√

instead of p ∈
(α,a)−−−→

√
. The relations `−→

√
and `−→ can be explained as follows:

• p
[α] a−−→

√
: p is capable of performing action a under condition α and then

terminating successfully;

• p
[α] a−−→ q: p is capable of performing action a under condition α and then

proceeding as q.

The structural operational semantics of BPAc
δ is described by the transition

rules given in Table 3. We will return to this structural operational semantics
in Section 5.

3 Transition Systems and Splitting Bisimilarity for BPAc
δ

In this section, we introduce conditional transition systems and splitting bisim-
ilarity of conditional transition systems. In Section 4, we will make use of con-
ditional transition systems and splitting bisimilarity of conditional transition
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systems to construct models of BPAc
δ. In Section 5, we will show that the

structural operational semantics presented in Section 2 induces a conditional
transition system for each closed term of sort P.

Conditional transition systems are labelled transition systems of which the
labels consist of a condition different from ⊥ and an action. Labels of this kind
are sometimes called guarded actions. Henceforth, we write C−κ for Cκ \ {⊥}.

Let κ be an infinite cardinal. Then a κ-conditional transition system T consists
of the following:

• a set S of states ;
• a set `−→ ⊆ S × S, for each ` ∈ C−κ × A;

• a set `−→
√
⊆ S, for each ` ∈ C−κ × A;

• an initial state s0 ∈ S.

If (s, s′) ∈ `−→ for some ` ∈ C−κ ×A, then we say that there is a transition from s

to s′. We usually write s
[α] a−−→ s′ instead of (s, s′) ∈ (α,a)−−−→ and s

[α] a−−→
√

instead

of s ∈ (α,a)−−−→
√

. Furthermore, we write −→ for the family of sets ( `−→)`∈C−κ ×A and

−→
√

for the family of sets ( `−→
√

)`∈C−κ ×A.

The relations `−→
√

and `−→ can be explained as follows:

• s
[α] a−−→

√
: in state s, it is possible to perform action a under condition α,

and by doing so to terminate successfully;

• s
[α] a−−→ s′: in state s, it is possible to perform action a under condition α,

and by doing so to make a transition to state s′.

A conditional transition system may have states that are not reachable from
its initial state by a number of transitions. Unreachable states, and the transi-
tions between them, are not relevant to the behaviour represented by the tran-
sition system. Connected conditional transition systems are transition systems
without unreachable states.

Let T = (S,−→,−→
√
, s0) be a κ-conditional transition system (for an infinite

cardinal κ). Then the reachability relation of T is the smallest relation →→ ⊆
S × S such that:

• s→→ s;
• if s `−→ s′ and s′ →→ s′′, then s→→ s′′.

We write RS(T ) for {s ∈ S | s0 →→ s}. T is called a connected κ-conditional
transition system if S = RS(T ). Henceforth, we will only consider connected
conditional transition systems. However, this often calls for extraction of the
connected part of a conditional transition system that is composed of con-
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nected conditional transition systems.

Let T = (S,−→,−→
√
, s0) be a κ-conditional transition system (for an infinite

cardinal κ) that is not necessarily connected. Then the connected part of T ,
written Γ(T ), is defined as follows:

Γ(T ) = (S ′,−→′,−→
√′, s0) ,

where

S ′ = RS(T ) ,

and for every ` ∈ C−κ × A:

`−→′ = `−→∩ (S ′ × S ′) ,

`−→
√′ = `−→

√
∩ S ′ .

It is assumed that for each infinite cardinal κ a fixed but arbitrary set Sκ with
the following properties has been given:

• the cardinality of Sκ is greater than or equal to κ;
• if S1, S2 ⊆ Sκ, then S1 ] S2 ⊆ Sκ and S1 × S2 ⊆ Sκ. 3

Let κ be an infinite cardinal. Then CTSκ is the set of all connected κ-
conditional transition systems T = (S,−→,−→

√
, s0) such that S ⊂ Sκ and

the branching degree of T is less than κ, i.e. for all s ∈ S, the cardinality of
the set {(`, s′) ∈ (C−κ × A)× S | (s, s′) ∈ `−→} ∪ {` ∈ C−κ × A | s ∈ `−→

√
} is less

than κ.

The condition S ⊂ Sκ guarantees that CTSκ is indeed a set.

A conditional transition system is said to be finitely branching if its branching
degree is less than ℵ0. Otherwise, it is said to be infinitely branching.

The identity of the states of a conditional transition system is not relevant
to the behaviour represented by it. Conditional transition systems that differ
only with respect to the identity of the states are isomorphic.

3 We write A ]B for the disjoint union of sets A and B, i.e. A ]B = (A× {∅}) ∪
(B × {{∅}}). We write µ1 and µ2 for the associated injections µ1 : A→ A ]B and
µ2 :B → A ]B, defined by µ1(a) = (a, ∅) and µ2(b) = (b, {∅}).
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Let T1 = (S1,−→1,−→
√

1, s
0
1) and T2 = (S2,−→2,−→

√
2, s

0
2) be κ-conditional

transition systems (for an infinite cardinal κ). Then T1 and T2 are isomorphic,
written T1

∼= T2, if there exists a bijective function b : S1 → S2 such that:

• b(s0
1) = s0

2;

• s1
`−→1 s

′
1 iff b(s1)

`−→2 b(s
′
1);

• s `−→
√

1 iff b(s) `−→
√

2.

Henceforth, we will always consider two conditional transition systems essen-
tially the same if they are isomorphic.

Remark 2 The set CTSκ is independent of Sκ. By that we mean the follow-
ing. Let CTSκ and CTS′κ result from different choices for Sκ. Then there exists
a bijection b : CTSκ → CTS′κ such that for all T ∈ CTSκ, T ∼= b(T ).

Bisimilarity has to be adapted to the setting with guarded actions. In the
definition given below, we use two well-known notions from the field of Boolean
algebras: a partial order relation v on Cκ and a unary operation

⊔
on the set

of all subsets of Cκ of cardinality less than κ (for each infinite cardinal κ). The
relation v and the operation

⊔
are defined by

α v β iff α t β = β and
⊔
C is the supremum of C in (Cκ,v) ,

respectively. The operation
⊔

is defined for all subsets of Cκ of cardinality less
than κ because Cκ is κ -complete.

Let T1 = (S1,−→1,−→
√

1, s
0
1) ∈ CTSκ and T2 = (S2,−→2,−→

√
2, s

0
2) ∈ CTSκ (for

an infinite cardinal κ). Then a splitting bisimulation B between T1 and T2 is
a binary relation B ⊆ S1 × S2 such that B(s0

1, s
0
2) and for all s1, s2 such that

B(s1, s2):

• if s1
[α] a−−→1 s

′
1, then there is a set CS ′2 ⊆ C−κ × S2 of cardinality less than

κ such that α v ⊔
dom(CS ′2) and for all (α′, s′2) ∈ CS ′2, s2

[α′] a−−−→2 s
′
2 and

B(s′1, s
′
2);

• if s2
[α] a−−→2 s

′
2, then there is a set CS ′1 ⊆ C−κ × S1 of cardinality less than

κ such that α v ⊔
dom(CS ′1) and for all (α′, s′1) ∈ CS ′1, s1

[α′] a−−−→1 s
′
1 and

B(s′1, s
′
2);

• if s1
[α] a−−→

√
1, then there is a set C ′ ⊆ C−κ of cardinality less than κ such

that α v ⊔
C ′ and for all α′ ∈ C ′, s2

[α′] a−−−→
√

2;

• if s2
[α] a−−→

√
2, then there is a set C ′ ⊆ C−κ of cardinality less than κ such

that α v ⊔
C ′ and for all α′ ∈ C ′, s1

[α′] a−−−→
√

1.

Two conditional transition systems T1, T2 ∈ CTSκ are splitting bisimilar, writ-
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ten T1 ⇔ T2, if there exists a splitting bisimulation B between T1 and T2. Let
B be a splitting bisimulation between T1 and T2. Then we say that B is a
splitting bisimulation witnessing T1 ⇔ T2.

The name splitting bisimulation is used because a transition of one of the
related transition systems may be simulated by a set of transitions of the other
transition system. Splitting bisimulation should not be confused with split
bisimulation [17]. We think that splitting bisimulation can be reformulated
in a style that is similar to the style in which probabilistic bisimulation is
formulated in [18]. We refrain from such a reformulation because it would
require the introduction of various auxiliary notions and notations.

It is easy to see that ⇔ is an equivalence on CTSκ. Let T ∈ CTSκ. Then we
write [T ]⇔ for {T ′ ∈ CTSκ | T ⇔ T ′}, i.e. the ⇔ -equivalence class of T . We
write CTSκ/⇔ for the set of equivalence classes {[T ]⇔ | T ∈ CTSκ}.

In Section 4, we will use CTSκ/⇔ as domain of a structure that is a model
of BPAc

δ. As domain of a structure, CTSκ/⇔ must be a set. That is the case
because CTSκ is a set. The latter is guaranteed by considering only conditional
transition systems of which the set of states is a subset of Sκ.

Remark 3 The question arises whether Sκ is large enough if its cardinality is
greater than or equal to κ. This question can be answered in the affirmative. Let
T = (S,−→,−→

√
, s0) be a connected κ-conditional transition system of which

the branching degree is less than κ. Then there exists a connected κ-conditional
transition system T ′ = (S ′,−→′,−→

√′, s0′) of which the branching degree is less
than κ such that T ⇔ T ′ and the cardinality of S ′ is less than κ.

It is easy to see that, if we would consider conditional transition systems
with unreachable states as well, each conditional transition system would be
splitting bisimilar to its connected part. This justifies the choice to consider
only connected conditional transition systems. It is easy to see that isomorphic
conditional transition systems are splitting bisimilar. This justifies the choice
to consider conditional transition systems essentially the same if they are
isomorphic.

In the remainder of this section, we sketch how splitting bisimilarity is related
to ordinary bisimilarity.

Let T = (S,−→,−→
√
, s0) ∈ CTSκ (for an infinite cardinal κ). We write 'T for

the maximal splitting bisimulation witnessing T ⇔ T (such a relation always
exists). It is easy to see that 'T is an equivalence relation on S. It identifies
states of T that can simulate the conditional transitions of each other. The
condition-normal form of T , written CN(T ), is defined as follows:

CN(T ) = (S,−→′,−→
√′, s0) ,
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where for every (α, a) ∈ C−κ × A:

(α,a)−−−→′ =
{
(s, s′)

∣∣∣ ∃β • s
[β] a−−→ s′ ∧

α =
⊔{
β′

∣∣∣ ∃s′′ • (
s′ 'T s

′′ ∧ s [β′] a−−−→ s′′
)}}

,

(α,a)−−−→
√′ =

{
s

∣∣∣ ∃β • s
[β] a−−→

√
∧ α =

⊔{
β′

∣∣∣ s [β′] a−−−→
√}}

.

It is easy to see that CN(T ) ∈ CTSκ and T ⇔ CN(T ). We have T = CN(T )
iff T has the following properties:

• if s1
[α] a−−→ s′1, s1

[β] a−−→ s′′1 and s′1 'T s
′′
1, then α = β;

• if s1
[α] a−−→

√
and s1

[β] a−−→
√

, then α = β.

We say that T is condition-normal if T = CN(T ).

Let T1 = (S1,−→1,−→
√

1, s
0
1) ∈ CTSκ and T2 = (S2,−→2,−→

√
2, s

0
2) ∈ CTSκ (for

an infinite cardinal κ). Then a bisimulation B between T1 and T2 is a binary
relation B ⊆ S1 × S2 such that B(s0

1, s
0
2) and for all s1, s2 such that B(s1, s2):

• if s1
`−→1 s

′
1, then there is a s′2 ∈ S2 such that s2

`−→2 s
′
2 and B(s′1, s

′
2);

• if s2
`−→2 s

′
2, then there is a s′1 ∈ S1 such that s1

`−→1 s
′
1 and B(s′1, s

′
2);

• s1
`−→
√

1 iff s2
`−→
√

2.

Two conditional transition systems T1, T2 ∈ CTSκ are bisimilar, written
T1 ↔ T2, if there exists a bisimulation B between T1 and T2. We have
CN(T1) ⇔ CN(T2) iff CN(T1) ↔ CN(T2). So, splitting bisimilarity and ordi-
nary bisimilarity coincide on condition-normal conditional transition systems.
It is worth mentioning that we do not have this result if we replace s′ 'T s

′′

by s′ = s′′ in the definition of CN.

4 Full Splitting Bisimulation Models of BPAc
δ

In this section, we introduce the full splitting bisimulation models of BPAc
δ.

They are models in which equivalence classes of conditional transition sys-
tems modulo splitting bisimilarity are taken as processes. The qualification
“full” originates from [19]. It expresses that there exist other splitting bisimu-
lation models, but each of them is isomorphically embedded in a full splitting
bisimulation model.

There is a full splitting bisimulation model of BPAc
δ for each infinite cardinal.

To obtain the full splitting bisimulation model of BPAc
δ for a fixed infinite car-

dinal κ, we associate the set CTSκ/⇔ with the sort P, an element of CTSκ/⇔
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with each of the constants δ and a (a ∈ A), and an operation on CTSκ/⇔ with
each of the operators + , · and :→ . 4 We begin by associating elements of
CTSκ and operations on CTSκ with these constants and operators. The result
of this is subsequently lifted to CTSκ/⇔.

It is assumed that for each infinite cardinal κ a fixed but arbitrary choice
function chκ : (P(Sκ)\∅) → Sκ such that for all S ∈ P(Sκ)\∅, chκ(S) ∈ S has
been given. The function chκ is used whenever there is a need to get a fresh
state from Sκ.

We associate with each constant c mentioned above an element ĉ of CTSκ and
with each operator f mentioned above an operation f̂ on CTSκ as follows.

• δ̂ = ({s0}, ∅, ∅, s0) ,

where

s0 = chκ(Sκ) .

• â = ({s0}, ∅,−→
√
, s0) ,

where

s0 = chκ(Sκ) ,

(>,a)−−−→
√

= {s0} ,

and for every (α, a′) ∈ (C−κ × A) \ {(>, a)}:

(α,a′)−−−→
√

= ∅ .

• Let Ti = (Si,−→i,−→
√
i, s

0
i ) ∈ CTSκ for i = 1, 2. Then

T1 +̂ T2 = Γ(S,−→,−→
√
, s0) ,

where

s0 = chκ(Sκ \ (S1 ] S2)) ,

S = {s0} ∪ (S1 ] S2) ,

4 In this paper, we loosely include the operation associated with the operator :→
in the operations on CTSκ/⇔. Actually, it is an operation from C × CTSκ/⇔ to
CTSκ/⇔.
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and for every (α, a) ∈ C−κ × A:

(α,a)−−−→ =
{
(s0, µ1(s))

∣∣∣ s0
1

[α] a−−→1 s
}

∪
{
(s0, µ2(s))

∣∣∣ s0
2

[α] a−−→2 s
}

∪
{
(µ1(s), µ1(s

′))
∣∣∣ s [α] a−−→1 s

′
}

∪
{
(µ2(s), µ2(s

′))
∣∣∣ s [α] a−−→2 s

′
}
,

(α,a)−−−→
√

=
{
s0

∣∣∣ s0
1

[α] a−−→
√

1

}
∪

{
s0

∣∣∣ s0
2

[α] a−−→
√

2

}
∪

{
µ1(s)

∣∣∣ s [α] a−−→
√

1

}
∪

{
µ2(s)

∣∣∣ s [α] a−−→
√

2

}
.

• Let Ti = (Si,−→i,−→
√
i, s

0
i ) ∈ CTSκ for i = 1, 2. Then

T1 ·̂ T2 = Γ(S,−→,−→
√
, s0) ,

where

S = S1 ] S2 ,

s0 = µ1(s
0
1) ,

and for every (α, a) ∈ C−κ × A:

(α,a)−−−→ =
{
(µ1(s), µ1(s

′))
∣∣∣ s [α] a−−→1 s

′
}

∪
{
(µ1(s), µ2(s

0
2))

∣∣∣ s [α] a−−→
√

1

}
∪

{
(µ2(s), µ2(s

′))
∣∣∣ s [α] a−−→2 s

′
}
,

(α,a)−−−→
√

=
{
µ2(s)

∣∣∣ s [α] a−−→
√

2

}
.

• Let α ∈ C and T = (S,−→,−→
√
, s0) ∈ CTSκ. Then

α :̂→ T = Γ(S,−→′,−→
√′, s0) ,

where for every (α′, a) ∈ C−κ × A:

(α′,a)−−−→′ =
{
(s0, s′)

∣∣∣ ∃β •
(
s0 [β] a−−→ s′ ∧ α′ = α u β

)}
∪

{
(s, s′)

∣∣∣ s [α′] a−−−→ s′ ∧ s 6= s0
}
,

(α′,a)−−−→
√′ =

{
s0

∣∣∣ ∃β •
(
s0 [β] a−−→

√
∧ α′ = α u β

)}
∪

{
s

∣∣∣ s [α′] a−−−→
√
∧ s 6= s0

}
.
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In the definition of alternative composition on CTSκ, the connected part of
a conditional transition system is extracted because the initial states of the
conditional transition systems T1 and T2 may be unreachable from the new
initial state. The new initial state is introduced because, in T1 and/or T2, there
may exist a transition back to the initial state. In the definition of sequential
composition on CTSκ, the connected part of a conditional transition system
is extracted because the initial state of the conditional transition system T2

may be unreachable from the initial state of the conditional transition system
T1 due to absence of termination in T1.

Remark 4 The elements of CTSκ and the operations on CTSκ defined above
are independent of chκ. Different choices for chκ lead for each constant to
isomorphic elements of CTSκ and lead for each operator to operations on
CTSκ with isomorphic results.

We can easily show that splitting bisimilarity is a congruence with respect to
alternative composition, sequential composition and guarded command.

Proposition 5 (Congruence) Let κ be an infinite cardinal. Then for all
T1, T2, T

′
1, T

′
2 ∈ CTSκ and α ∈ C, T1 ⇔ T ′

1 and T2 ⇔ T ′
2 imply T1+̂T2 ⇔ T ′

1+̂T
′
2,

T1 ·̂ T2 ⇔ T ′
1 ·̂ T ′

2 and α :̂→ T1 ⇔ α :̂→ T ′
1.

PROOF. Let Ti = (Si,−→i,−→
√
i, s

0
i ) and T ′

i = (S ′i,−→′
i,−→

√′
i, s

0
i
′) for i = 1, 2.

Let R1 and R2 be splitting bisimulations witnessing T1 ⇔ T ′
1 and T2 ⇔ T ′

2,
respectively. Then we construct relations R+̂, R ·̂ and R:̂→ as follows:

• R+̂ = ({(s0, s0′)}∪µ1(R1)∪µ2(R2))∩ (S×S ′), where S and S ′ are the sets
of states of T1 +̂ T2 and T ′

1 +̂ T ′
2, respectively, and s0 and s0′ are the initial

states of T1 +̂ T2 and T ′
1 +̂ T ′

2, respectively;
• R ·̂ = (µ1(R1)∪ µ2(R2))∩ (S × S ′), where S and S ′ are the sets of states of
T1 ·̂ T2 and T ′

1 ·̂ T ′
2, respectively;

• R:̂→ = R1 ∩ (S × S ′), where S and S ′ are the sets of states of α :̂→ T1 and
α :̂→ T ′

1, respectively.

Here, we write µi(Ri) for {(µi(s), µi(s′)) | Ri(s, s
′)}, where µi is used to denote

both the injection of Si into S1]S2 and the injection of S ′i into S ′1]S ′2. Given
the definitions of alternative composition, sequential composition and guarded
command, it is easy to see that R+̂, R ·̂ and R:̂→ are splitting bisimulations
witnessing T1 +̂ T2 ⇔ T ′

1 +̂ T ′
2, T1 ·̂ T2 ⇔ T ′

1 ·̂ T ′
2 and α :̂→ T1 ⇔ α :̂→ T ′

1,
respectively. 2

The full splitting bisimulation models Pc
κ of BPAc

δ, one for each infinite cardinal
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κ, are the expansions of C with: 5

• for the sort P, a non-empty set P ; 6

• for the constant δ, an element δ̃ of P ;
• for each constant a (a ∈ A), an element ã of P ;
• for the operator + , an operation +̃ : P × P → P ;
• for the operator · , an operation ·̃ : P × P → P ;
• for the operator :→ , an operation :̃→ : C × P → P;

where those ingredients are defined as follows:

P = CTSκ/⇔ ,

δ̃ = [ δ̂ ]⇔ ,

ã = [ â ]⇔ ,

[T1 ]⇔ +̃ [T2 ]⇔ = [T1 +̂ T2 ]⇔ ,

[T1 ]⇔ ·̃ [T2 ]⇔ = [T1 ·̂ T2 ]⇔ ,

α :̃→ [T1 ]⇔ = [α :̂→ T1 ]⇔ .

Alternative composition, sequential composition and guarded command on
CTSκ/⇔ are well-defined because ⇔ is a congruence with respect to the cor-
responding operations on CTSκ. CTSκ/⇔ is called the process domain of Pc

κ.

The structures Pc
κ are models of BPAc

δ.

Theorem 6 (Soundness of BPAc
δ) For each infinite cardinal κ, we have

Pc
κ |= BPAc

δ.

PROOF. Because Pc
κ is an expansion of C, it is not necessary to show that

the axioms of BA are sound. The soundness of all remaining axioms follows
easily from the definitions of the ingredients of Pc

κ. 2

As to be expected, the full splitting bisimulation models are related by iso-
morphic embeddings.

Theorem 7 (Isomorphic Embedding) Let κ and κ′ be infinite cardinals
such that κ < κ′. Then Pc

κ is isomorphically embedded in Pc
κ′.

PROOF. It follows immediately from the definitions of CTSκ, CTSκ′ and ⇔
that for each P ∈ CTSκ/⇔, there exists a unique P ′ ∈ CTSκ′/⇔ such that
P ⊆ P ′. Now consider the function h : CTSκ/⇔→ CTSκ′/⇔ where for each

5 P is the Gothic capital P.
6 Here, the expansions involve the addition of a domain because they go from a
one-sorted algebra to a two-sorted algebra.
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P ∈ CTSκ/⇔, h(P ) is the unique P ′ ∈ CTSκ′/⇔ such that P ⊆ P ′. It follows
immediately from the definition of h that h is injective. Moreover, it follows
easily from the definitions of the operations on CTSκ/⇔ and CTSκ′/⇔ that
h, together with the identity function on C, is a homomorphism from Pc

κ to
Pc
κ′ . 2

5 SOS-Based Splitting Bisimilarity for BPAc
δ

It is customary to associate transition systems with closed terms (of sort
P) from the language of an ACP-like theory about processes by means of
structural operational semantics and to identify closed terms if their associated
transition systems are equivalent by a bisimilarity-based notion of equivalence.

The structural operational semantics of BPAc
δ presented in Section 2 deter-

mines a conditional transition system for each process that can be denoted by
a closed term of sort P. These transition systems are special in the sense that
their states are closed terms of sort P.

Let p be a closed term of sort P. Then the transition system of p induced by the
structural operational semantics of BPAc

δ, written CTS(p), is the connected
conditional transition system Γ(S,−→,−→

√
, s0), where:

• S is the set of all closed terms of sort P;

• (α,a)−−−→ ⊆ S × S and
(α,a)−−−→

√
⊆ S for each α ∈ C \ {⊥} and a ∈ A are the

smallest subsets of S × S and S, respectively, for which the transition rules
from Table 3 hold;

• s0 ∈ S is the closed term p.

Let p and q be closed terms of sort P. Then we say that p and q are splitting
bisimilar, written p⇔ q, if CTS(p)⇔ CTS(q).

Clearly, the structural operational semantics does not give rise to infinitely
branching conditional transition systems. For each closed term p of sort P,
there exists a T ∈ CTSℵ0 such that CTS(p) ∼= T . In Section 4, it has been
shown that it is possible to consider infinitely branching conditional transition
systems too.

6 ACP with Conditions

In order to support parallelism and communication, we add parallel composi-
tion and encapsulation operators to BPAc

δ, resulting in ACPc.
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Like in BPAc
δ, it is assumed that a fixed but arbitrary finite set of actions

A, with δ 6∈ A, and a fixed but arbitrary set of atomic conditions Cat have
been given. We write Aδ for A ∪ {δ}. In ACPc, it is further assumed that
a fixed but arbitrary commutative and associative communication function
| :Aδ×Aδ → Aδ, such that δ |a = δ for all a ∈ Aδ, has been given. The function
| is regarded to give the result of synchronously performing any two actions
for which this is possible, and to be δ otherwise.

The theory ACPc is an extension of BPAc
δ. It has the constants and operators

of BPAc
δ and in addition:

• the binary parallel composition operator ‖ : P×P → P;
• the binary left merge operator bb : P×P → P;
• the binary communication merge operator | : P×P → P;
• for each H ⊆ A, the unary encapsulation operator ∂H : P → P.

We use infix notation for the additional binary operators as well.

The constants and operators of ACPc to build terms of sort P are the constants
and operators of ACP and additionally the guarded command operator.

Let p and q be closed terms of sort P. Intuitively, the additional operators can
be explained as follows:

• p ‖ q behaves as the process that proceeds with p and q in parallel;
• p bb q behaves the same as p ‖ q, except that it starts with performing an

action of p;
• p | q behaves the same as p ‖ q, except that it starts with performing an

action of p and an action of q synchronously;
• ∂H(p) behaves the same as p, except that it does not perform actions in H.

The axioms of ACPc are the axioms of BPAc
δ and the additional axioms given

in Table 4. CM2–CM3, CM5–CM7, C1–C3 and D1–D2 are actually axiom
schemas in which a, b and c stand for arbitrary constants of sort P (keep
in mind that also the deadlock constant belongs to the constants of sort P).
In D1–D4, H stands for an arbitrary subset of A. So, D3 and D4 are ax-
iom schemas as well. Axioms A1–A7, CM1–CM9, C1–C3 and D1–D4 are the
axioms of ACP. So ACPc imports the axioms of both BA and ACP.

A well-known subtheory of ACP is PA, ACP without communication. Like-
wise, we have a subtheory of ACPc, to wit PAc. The theory PAc is ACPc

without the communication merge operator, without axioms CM5–CM9 and
C1–C3, and with axiom CM1 replaced by x ‖ y = x bb y+ y bb x (M1). In other
words, the possibility that actions are performed synchronously is not covered
by PAc.
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Table 4
Additional axioms for ACPc (a, b, c ∈ Aδ)

x ‖ y = x bb y + y bb x+ x | y CM1

a bb x = a · x CM2

a · x bb y = a · (x ‖ y) CM3

(x+ y) bb z = x bb z + y bb z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x+ y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

a | b = b | a C1

(a | b) | c = a | (b | c) C2

δ | a = δ C3

∂H(a) = a if a 6∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x+ y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

(φ :→ x) bb y = φ :→ (x bb y) GC8

(φ :→ x) | y = φ :→ (x | y) GC9

x | (φ :→ y) = φ :→ (x | y) GC10

∂H(φ :→ x) = φ :→ ∂H(x) GC11

The structural operational semantics of ACPc is described by the transition
rules for BPAc

δ and the additional transition rules given in Table 5.

7 Full Splitting Bisimulation Models of ACPc

In this section, we expand the full splitting bisimulation models of BPAc
δ to

ACPc. We will use the abbreviation s a−→ s′ o s′′ for s a−→ s′∨ (s a−→
√
∧ s′ = s′′).

Usually, s′′ is a state that takes the place of s′ in the case of termination.
This is useful where termination has to be turned into a state, as with parallel
composition of conditional transition systems.

First of all, we associate with each additional operator f of ACPc an operation
f̂ on CTSκ as follows.

• Let Ti = (Si,−→i,−→
√
i, s

0
i ) ∈ CTSκ for i = 1, 2. Then

T1 ‖̂ T2 = (S,−→,−→
√
, s0) ,
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Table 5
Additional transition rules for ACPc

x
[φ] a−−−→

√

x ‖ y [φ] a−−−→ y

y
[φ] a−−−→

√

x ‖ y [φ] a−−−→ x

x
[φ] a−−−→ x′

x ‖ y [φ] a−−−→ x′ ‖ y

y
[φ] a−−−→ y′

x ‖ y [φ] a−−−→ x ‖ y′

x
[φ] a−−−→

√
, y

[ψ] b−−−→
√

x ‖ y [φuψ] c−−−−→
√ a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→

√
, y

[ψ] b−−−→ y′

x ‖ y [φuψ] c−−−−→ y′
a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→ x′, y

[ψ] b−−−→
√

x ‖ y [φuψ] c−−−−→ x′
a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→ x′, y

[ψ] b−−−→ y′

x ‖ y [φuψ] c−−−−→ x′ ‖ y′
a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→

√

x bb y [φ] a−−−→ y

x
[φ] a−−−→ x′

x bb y [φ] a−−−→ x′ ‖ y

x
[φ] a−−−→

√
, y

[ψ] b−−−→
√

x | y [φuψ] c−−−−→
√ a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→

√
, y

[ψ] b−−−→ y′

x | y [φuψ] c−−−−→ y′
a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→ x′, y

[ψ] b−−−→
√

x | y [φuψ] c−−−−→ x′
a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→ x′, y

[ψ] b−−−→ y′

x | y [φuψ] c−−−−→ x′ ‖ y′
a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→

√

∂H(x) [φ] a−−−→
√ a 6∈ H

x
[φ] a−−−→ x′

∂H(x) [φ] a−−−→ ∂H(x′)
a 6∈ H

where

s0 = (s0
1, s

0
2) ,

s
√

= chκ(Sκ \ (S1 ∪ S2)) ,

S = ((S1 ∪ {s
√
})× (S2 ∪ {s

√
})) \ {(s

√
, s

√
)} ,
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and for every (α, a) ∈ C−κ × A:

(α,a)−−−→ =
{
((s1, s2), (s

′
1, s2))

∣∣∣ (s′1, s2) ∈ S ∧ s1
[α] a−−→1 s

′
1 o s

√}
∪

{
((s1, s2), (s1, s

′
2))

∣∣∣ (s1, s
′
2) ∈ S ∧ s2

[α] a−−→2 s
′
2 o s

√}
∪

{
((s1, s2), (s

′
1, s

′
2))

∣∣∣ (s′1, s
′
2) ∈ S ∧∨

α′,β′∈C−κ , a′,b′∈A

(
s1

[α′] a′−−−→1 s
′
1 o s

√
∧ s2

[β′] b′−−−→2 s
′
2 o s

√
∧

α′ u β′ = α ∧ a′ | b′ = a
)}

,

(α,a)−−−→
√

=
{
(s1, s

√
)

∣∣∣ s1
[α] a−−→

√
1

}
∪

{
(s

√
, s2)

∣∣∣ s2
[α] a−−→

√
2

}
∪

{
(s1, s2)

∣∣∣∨
α′,β′∈C−κ , a′,b′∈A

(
s1

[α′] a′−−−→
√

1 ∧ s2
[β′] b′−−−→

√
2 ∧

α′ u β′ = α ∧ a′ | b′ = a
)}

.

• Let Ti = (Si,−→i,−→
√
i, s

0
i ) ∈ CTSκ for i = 1, 2. Suppose that T1 ‖̂ T2 =

(S,−→,−→
√
, s0) where S = ((S1 ∪ {s

√
}) × (S2 ∪ {s

√
})) \ {(s

√
, s

√
)} and

s
√

= chκ(Sκ \ (S1 ∪ S2)). Then

T1 b̂b T2 = Γ(S ′,−→′,−→
√
, s0′) ,

where

s0′ = chκ(Sκ \ S) ,

S ′ = {s0′} ∪ S ,

and for every (α, a) ∈ C−κ × A:

(α,a)−−−→′ =
{
(s0′, (s, s0

2))
∣∣∣ s0

1
[α] a−−→1 s o s

√}
∪ (α,a)−−−→ .

• Let Ti = (Si,−→i,−→
√
i, s

0
i ) ∈ CTSκ for i = 1, 2. Suppose that T1 ‖̂ T2 =

(S,−→,−→
√
, s0) where S = ((S1 ∪ {s

√
}) × (S2 ∪ {s

√
})) \ {(s

√
, s

√
)} and

s
√

= chκ(Sκ \ (S1 ∪ S2)). Then

T1 |̂ T2 = Γ(S ′,−→′,−→
√′, s0′) ,

where

s0′ = chκ(Sκ \ S) ,

S ′ = {s0′} ∪ S ,
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and for every (α, a) ∈ C−κ × A:

(α,a)−−−→′ =
{
(s0′, (s1, s2))

∣∣∣ (s1, s2) ∈ S ∧∨
α′,β′∈C−κ , a′,b′∈A

(
s0
1

[α′] a′−−−→1 s1 o s
√
∧ s0

2
[β′] b′−−−→2 s2 o s

√
∧

α′ u β′ = α ∧ a′ | b′ = a
)}

∪ (α,a)−−−→ ,

(α,a)−−−→
√′ =

{
s0′

∣∣∣ ∨
α′,β′∈C−κ , a′,b′∈A

(
s0
1

[α′] a′−−−→
√

1 ∧ s0
2

[β′] b′−−−→
√

2 ∧

α′ u β′ = α ∧ a′ | b′ = a
)}

∪ (α,a)−−−→
√
.

• Let T = (S,−→,−→
√
, s0) ∈ CTSκ. Then

∂̂H(T ) = Γ(S,−→′,−→
√′, s0) ,

where for every (α, a) ∈ C−κ × (A \H):

(α,a)−−−→′ =
(α,a)−−−→ ,

(α,a)−−−→
√′ =

(α,a)−−−→
√
,

and for every (α, a) ∈ C−κ ×H:

(α,a)−−−→′ = ∅ ,

(α,a)−−−→
√′ = ∅ .

We can easily show that splitting bisimilarity is a congruence with respect to
parallel composition, left merge, communication merge and encapsulation.

Proposition 8 (Congruence) Let κ be an infinite cardinal. Then for all
T1, T2, T

′
1, T

′
2 ∈ CTSκ, T1 ⇔ T ′

1 and T2 ⇔ T ′
2 imply T1 ‖̂T2 ⇔ T ′

1 ‖̂T ′
2, T1 b̂bT2 ⇔

T ′
1 b̂b T ′

2, T1 |̂ T2 ⇔ T ′
1 |̂ T ′

2 and ∂̂H(T1)⇔ ∂̂H(T ′
1).

PROOF. Let Ti = (Si,−→i,−→
√
i, s

0
i ) and T ′

i = (S ′i,−→′
i,−→

√′
i, s

0
i
′) for i = 1, 2.

Let R1 and R2 be splitting bisimulations witnessing T1 ⇔ T ′
1 and T2 ⇔ T ′

2,
respectively. Then we construct relations R‖̂, Rb̂b, R |̂ and R∂̂H

as follows:

• R‖̂ = {((s1, s2), (s
′
1, s

′
2)) ∈ S × S ′ | (s1, s

′
1) ∈ R1 ∪ R

√
, (s2, s

′
2) ∈ R2 ∪ R

√
},

where S and S ′ are the sets of states of T1 ‖̂T2 and T ′
1 ‖̂T ′

2, respectively, and
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R
√

= {(chκ(Sκ \ (S1 ∪ S2)), chκ(Sκ \ (S ′1 ∪ S ′2)))};
• Rb̂b = ({(s0, s0′)} ∪ R‖̂) ∩ (S × S ′), where S and S ′ are the sets of states

of T1 b̂b T2 and T ′
1 b̂b T ′

2, respectively, and s0 and s0′ are the initial states of
T1 b̂b T2 and T ′

1 b̂b T ′
2, respectively;

• R |̂ = ({(s0, s0′)} ∪ R‖̂) ∩ (S × S ′), where S and S ′ are the sets of states

of T1 |̂ T2 and T ′
1 |̂ T ′

2, respectively, and s0 and s0′ are the initial states of
T1 |̂ T2 and T ′

1 |̂ T ′
2, respectively;

• R∂̂H
= R1 ∩ (S × S ′), where S and S ′ are the sets of states of ∂̂H(T1) and

∂̂H(T ′
1), respectively.

Given the definitions of parallel composition, left merge, communication merge
and encapsulation, it is easy to see that R‖̂, Rb̂b, R |̂ and R∂̂H

are splitting

bisimulations witnessing T1 ‖̂T2 ⇔ T ′
1 ‖̂T ′

2, T1 b̂bT2 ⇔ T ′
1 b̂bT ′

2, T1 |̂ T2 ⇔ T ′
1 |̂ T ′

2

and ∂̂H(T1)⇔ ∂̂H(T ′
1), respectively. 2

The full splitting bisimulation models Pc
κ
′ of ACPc, one for each infinite cardi-

nal κ, are the expansions of the full splitting bisimulation models Pc
κ of BPAc

δ

with an operation f̃ on CTSκ/⇔ for each additional operator f of ACPc.
Those additional operations are defined as follows:

[T1 ]⇔ ‖̃ [T2 ]⇔ = [T1 ‖̂ T2 ]⇔ ,

[T1 ]⇔ b̃b [T2 ]⇔ = [T1 b̂b T2 ]⇔ ,

[T1 ]⇔ |̃ [T2 ]⇔ = [T1 |̂ T2 ]⇔ ,

∂̃H([T1 ]⇔) = [ ∂̂H(T1) ]⇔ .

Parallel composition, left merge, communication merge and encapsulation on
CTSκ/⇔ are well-defined because ⇔ is a congruence with respect to the cor-
responding operations on CTSκ.

The structures Pc
κ
′ are models of ACPc.

Theorem 9 (Soundness of ACPc) For each infinite cardinal κ, we have
Pc
κ
′ |= ACPc.

PROOF. Because Pc
κ
′ is an expansion of Pc

κ, it is sufficient to show that the
additional axioms for ACPc are sound. The soundness of all additional axioms
follows easily from the definitions of the ingredients of Pc

κ
′. 2

It is easy to see that Theorem 7 goes through for Pc
κ
′.
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Table 6
Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

In this section, the full splitting bisimulation models Pc
κ of BPAc

δ have been
expanded to obtain the full splitting bisimulation models Pc

κ
′ of ACPc. Hence-

forth, we will loosely write Pc
κ for Pc

κ
′. It is always made sure that no confusion

between the original model and its expansion may arise.

8 Guarded Recursion

In order to allow for the description of (potentially) non-terminating processes,
we add guarded recursion to ACPc.

A recursive specification over ACPc is a set of recursive equations E = {X =
tX | X ∈ V } where V is a set of variables and each tX is a term of sort P
that only contains variables from V . We write V(E) for the set of all variables
that occur on the left-hand side of an equation in E. A solution of a recursive
specification E is a set of processes (in some model of ACPc) {PX | X ∈ V(E)}
such that the equations of E hold if, for all X ∈ V(E), X stands for PX .

Let t be a term of sort P containing a variable X. We call an occurrence of X
in t guarded if t has a subterm of the form a · t′, where a ∈ A and t′ a term of
sort P, with t′ containing this occurrence of X. A recursive specification over
ACPc is called a guarded recursive specification if all occurrences of variables
in the right-hand sides of its equations are guarded or it can be rewritten to
such a recursive specification using the axioms of ACPc and the equations of
the recursive specification. We are only interested in models of ACPc in which
guarded recursive specifications have unique solutions.

For each guarded recursive specification E and each variable X ∈ V(E), we
introduce a constant of sort P standing for the unique solution of E for X.
This constant is denoted by 〈X|E〉. We often write X for 〈X|E〉 if E is clear
from the context. In such cases, it should also be clear from the context that
we use X as a constant.

We will also use the following notation. Let t be a term of sort P and E be
a guarded recursive specification over ACPc. Then we write 〈t|E〉 for t with,
for all X ∈ V(E), all occurrences of X in t replaced by 〈X|E〉.

The additional axioms for guarded recursion are the equations given in Table 6.
Both RDP and RSP are axiom schemas. A side condition is added to restrict
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Table 7
Transition rules for guarded recursion

〈tX |E〉
[φ] a−−−→

√

〈X|E〉 [φ] a−−−→
√ X= tX ∈ E

〈tX |E〉
[φ] a−−−→ x′

〈X|E〉 [φ] a−−−→ x′
X= tX ∈ E

the variables, terms and guarded recursive specifications for whichX, tX and E
stand. The additional axioms for guarded recursion are known as the recursive
definition principle (RDP) and the recursive specification principle (RSP). The
equations 〈X|E〉 = 〈tX |E〉 for a fixed E express that the constants 〈X|E〉
make up a solution of E. The conditional equations E ⇒ X = 〈X|E〉 express
that this solution is the only one.

The structural operational semantics for the constants 〈X|E〉 is described by
the transition rules given in Table 7.

In the full splitting bisimulation models of ACPc, guarded recursive specifica-
tions over ACPc have unique solutions.

Theorem 10 (Unique solutions in Pc
κ) For each infinite cardinal κ,

guarded recursive specifications over ACPc have unique solutions in Pc
κ.

PROOF. In [20], a proof of uniqueness of solutions of guarded recursive
specifications in the graph models of ACPτ is given. That proof can easily
be adapted to the full bisimulation models of ACP introduced in [19]. The
proof consists of the following three steps: (i) proving that two transition
systems are bisimilar if at least one of them is finitely branching and all their
finite projections are bisimilar; (ii) proving, using the result of step (i), that
every guarded recursive specification has a solution that is finitely branching;
(iii) proving, using the result of step (i), that the solution from step (ii) is
bisimilar to any other solution. Steps (ii) and (iii) remain essentially the same
in the case of conditional transition systems and splitting bisimilarity. It is
straightforward to define a normal form of elements of CTSκ such that: (a) each
element of CTSκ is splitting bisimilar to its normal form and (b) two elements
of CTSκ are splitting bisimilar iff their normal forms are bisimilar (cf. the last
two paragraphs of Section 3). This enables us to adapt step (i) easily to the
case of conditional transition systems and splitting bisimilarity as well. 2

Thus, the full splitting bisimulation models Pc
κ
′′ of ACPc with guarded recur-

sion are simply the expansions of the full splitting bisimulation models Pc
κ of

ACPc obtained by associating with each constant 〈X|E〉 the unique solution
of E for X in the full splitting bisimulation model concerned.
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Table 8
Axioms for condition evaluation (a ∈ Aδ, η ∈ Cat, η′ ∈ Cat ∪ {⊥,>})
CEh(a) = a CE1

CEh(a · x) = a · CEh(x) CE2

CEh(x+ y) = CEh(x) + CEh(y) CE3

CEh(φ :→ x) = CEh(φ) :→ CEh(x) CE4

CEh(CEh′(x)) = CEh◦h′(x) CE5

CEh(⊥) = ⊥ CE6

CEh(>) = > CE7

CEh(η) = η′ if h(η) = η′ CE8

CEh(−φ) = −CEh(φ) CE9

CEh(φ t ψ) = CEh(φ) t CEh(ψ) CE10

CEh(φ u ψ) = CEh(φ) u CEh(ψ) CE11

9 Evaluation of Conditions

Guarded commands cannot always be eliminated from closed terms of sort
P because conditions different from both ⊥ and > may be involved. The
condition evaluation operators introduced below, can be brought into action
in such cases. These operators require to fix an infinite cardinal λ. By doing
so, full splitting bisimulation models with process domain CTSκ/⇔ for κ > λ
are excluded.

There are unary λ-complete condition evaluation operators CEh : P → P and
CEh : C → C for each λ-complete endomorphisms h of Cλ. 7

These operators can be explained as follows: CEh(p) behaves as p with each
condition ζ occurring in p replaced according to h. If the image of Cλ under h
is B, i.e. the Boolean algebra with domain {⊥,>}, then guarded commands
can be eliminated from CEh(p). In the case where the image of Cλ under h is
not B, CEh can be regarded to evaluate the conditions only partially.

Henceforth, we write Hλ for the set of all λ-complete endomorphisms of Cλ.

The additional axioms for CEh, where h ∈ Hλ, are the axioms given in Table 8.

Example 11 We return to Example 1, which is concerned with a pedestrian
who uses a crossing with traffic lights to cross a road with busy traffic safely.

7 For a definition of κ-complete endomorphisms, see e.g. [11].
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Table 9
Transition rules for condition evaluation

x
[φ] a−−−→

√

CEh(x)
[h(φ)] a−−−−−→

√ h(φ) 6= ⊥
x

[φ] a−−−→ x′

CEh(x)
[h(φ)] a−−−−−→ CEh(x′)

h(φ) 6= ⊥

Recall that the description of the behaviour of the pedestrian given in Exam-
ple 1 is as follows:

PED = arrive · (green :→ cross + red :→ (make req · (green :→ cross))) .

Let hg be such that hg(green) = > and hg(red) = ⊥; and let hr be such that
hr(green) = ⊥ and hr(red) = >. Then we can derive the following:

CEhg(PED) = arrive · cross ,

CEhr(PED) = arrive ·make req · δ .

So in a world where the traffic light for pedestrians is green he or she will
cross the street without making a request for green light; and in a world where
the traffic light for pedestrians is red he or she will become completely inactive
after making a request for green light. In reality, the request would cause a
change from red to green, but the condition evaluation operators CEh cannot
deal with that. We will return to this issue in Example 15.

The structural operational semantics of ACPc extended with condition eval-
uation is described by the transition rules for ACPc and the transition rules
given in Table 9.

If λ is a regular infinite cardinal, the elements of Cλ can be used to repre-
sent equivalence classes with respect to logical equivalence of the set of all
propositions with elements of Cat as propositional variables and with conjunc-
tions and disjunctions of less than λ propositions. We write Pλ for this set of
propositions. Suppose that a theory Φ about the set of atomic conditions Cat

is given in the shape of a subset of Pλ. Then we can associate a λ-complete
endomorphism hΦ with Φ as set out below.

Let λ be a regular infinite cardinal, let Φ ⊂ Pλ, and let hΦ ∈ Hλ be such that
for all α, β ∈ Cλ:

Φ ` 〈〈hΦ(α)〉〉 ⇔ 〈〈α〉〉 and hΦ(α) = hΦ(β) iff Φ ` 〈〈α〉〉 ⇔ 〈〈β〉〉 (1)

where 〈〈α〉〉 is a representative of the equivalence class of propositions iso-
morphic to α. Then we have hΦ(α) = > iff 〈〈α〉〉 is derivable from Φ and
hΦ(α) = ⊥ iff ¬〈〈α〉〉 is derivable from Φ. The image of Cλ under hΦ is B iff Φ
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is a complete theory. If Φ is not a complete theory, then hΦ is not uniquely
determined by (1). However, the images of Cλ under the different endomor-
phisms satisfying (1) are isomorphic subalgebras of Cλ. Moreover, if both h
and h′ satisfy (1), then Φ ` 〈〈h(α)〉〉 ⇔ 〈〈h′(α)〉〉 for all α ∈ Cλ.

Example 12 In Example 11, where Cat = {green, red}, we introduced the λ-
complete endomorphisms hg and hr such that hg(green) = >, hg(red) = ⊥,
hr(green) = ⊥ and hr(red) = >. Let Φ = {green,¬red}. In the terminology
of Example 11, Φ is a theory about the world in which the traffic light for
pedestrians is green. Because Φ is a complete theory, hΦ is uniquely deter-
mined by (1). Indeed, we have hΦ = hg. Note that hΦ would not be uniquely
determined if the restriction Φ ` 〈〈hΦ(α)〉〉 ⇔ 〈〈α〉〉 had been left out from (1).
In that case, both hg and hr could be taken as hΦ.

Below, we show that condition evaluation on the basis of a complete theory
can be viewed as substitution on the basis of the theory. That leads us to the
use of the following convention: for α ∈ C, α stands for an arbitrary closed
term of sort C of which the value in C is α.

Proposition 13 (Condition evaluation on the basis of a theory)
Assume that λ is a regular infinite cardinal. Let Φ ⊂ Pλ be a complete theory
and let p be a closed term of sort P. Then CEhΦ

(p) = p′ where p′ is p with,
for all α ∈ C, in all subterms of the form α :→ q, α replaced by > if Φ ` 〈〈α〉〉
and α replaced by ⊥ if Φ ` ¬〈〈α〉〉.

PROOF. This result follows immediately from the definition of hΦ and the
distributivity of CEhΦ

over all operators of ACPc. 2

In µCRL [21], an extension of ACP which includes conditional expressions,
we find a formalization of the substitution-based alternative for CEhΦ

.

The substitution-based alternative works properly because condition evalua-
tion by means of a λ-complete condition evaluation operator is not dependent
on process behaviour. Hence, the result of condition evaluation is globally
valid. Below, we will generalize the condition evaluation operators introduced
above in such a way that condition evaluation may be dependent on process
behaviour. In that case, the result of condition evaluation is in general not
globally valid.

Remark 14 Assume that λ is a regular infinite cardinal. Let h ∈ Hλ. Then
h induces a theory Φ ⊂ Pλ such that h = hΦ, viz. the theory Φ defined by

Φ = {〈〈h(α)〉〉 ⇔ 〈〈α〉〉 | α ∈ Cλ} ∪ {〈〈α〉〉 ⇔ 〈〈β〉〉 | h(α) = h(β)} .
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Table 10
Axioms for generalized condition evaluation (a ∈ Aδ)

GCEh(a) = a GCE1

GCEh(a · x) = a · GCEeff(a,h)(x) GCE2

GCEh(x+ y) = GCEh(x) + GCEh(y) GCE3

GCEh(φ :→ x) = CEh(φ) :→ GCEh(x) GCE4

Consequently, if λ is a regular infinite cardinal, condition evaluation by means
of the λ-complete condition evaluation operators introduced above is always
condition evaluation of which the result can be determined from a set of propo-
sitions. We will return to this observation in Section 11.

We proceed with generalizing the condition evaluation operators introduced
above. It is assumed that a fixed but arbitrary function eff :A×Hλ → Hλ has
been given.

There is a unary generalized λ-complete condition evaluation operator GCEh :
P → P for each h ∈ Hλ; and there is again the unary operator CEh : C → C
for each h ∈ Hλ.

The λ-complete generalized condition evaluation operator GCEh allows, given
the function eff, to evaluate conditions dependent on process behaviour. The
function eff gives, for each action a and λ-complete endomorphism h, the λ-
complete endomorphism h′ that represents the changed results of condition
evaluation due to performing a. The function eff is extended to Aδ such that
eff(δ, h) = h for all h ∈ Hλ.

The additional axioms for GCEh, where h ∈ Hλ, are the axioms given in
Table 10 and axioms CE6–CE11 from Table 8.

Example 15 We return to Example 1, which is concerned with a pedestrian
who uses a crossing with traffic lights to cross a road with busy traffic safely. In
Example 11, we illustrated that the condition evaluation operators CEh cannot
deal with the change from red light to green light caused by a request for green
light. Here, we illustrate that the generalized condition evaluation operators
GCEh can deal with such a change. Let hg and hr be as in Example 11; and
let eff be such that eff(make req , hr) = hg and eff(a, h) = h otherwise. Then
we can derive the following:

GCEhg(PED) = arrive · cross ,

GCEhr(PED) = arrive ·make req · cross .

The change from red light to green light is due to interaction between the pedes-
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Table 11
Transition rules for generalized condition evaluation

x
[φ] a−−−→

√

GCEh(x)
[h(φ)] a−−−−−→

√ h(φ) 6= ⊥
x

[φ] a−−−→ x′

GCEh(x)
[h(φ)] a−−−−−→ GCEeff(a,h)(x′)

h(φ) 6= ⊥

trian and the traffic lights. It is clear that this interaction is poorly represented
by a generalized condition evaluation operator. We will return to this issue in
Example 18.

The structural operational semantics of ACPc extended with generalized con-
dition evaluation is described by the transition rules for ACPc and the tran-
sition rules given in Table 11.

We can add both the λ-complete condition evaluation operators and the gen-
eralized λ-complete condition evaluation operators to ACPc. However, Propo-
sition 16 stated below makes it clear that the latter operators supersede the
former operators.

The full splitting bisimulation models of ACPc with condition evaluation
and/or generalized condition evaluation are simply the expansions of the full
splitting bisimulation models Pc

κ of ACPc, for infinite cardinals κ ≤ λ, ob-
tained by associating with each operator CEh and/or GCEh the corresponding
re-labeling operation on conditional transition systems. As mentioned before,
full splitting bisimulation models with process domain CTSκ/⇔ for κ > λ are
excluded.

We write Pce
κ for the expansion of Pc

κ for the λ-complete condition evaluation
operators and the generalized λ-complete condition evaluation operators.

As their name suggests, the generalized λ-complete condition evaluation op-
erators are generalizations of the λ-complete condition evaluation operators.

Proposition 16 (Generalization) We can fix the function eff such that
GCEh(x) = CEh(x) holds for all h ∈ Hλ in all full splitting bisimulation models
Pce
κ with κ ≤ λ.

PROOF. Clearly, if eff(a, h′) = h′ for all a ∈ A and h′ ∈ Hλ, then GCEh(x) =
CEh(x) holds for all h ∈ Hλ in all full splitting bisimulation models Pce

κ with
κ ≤ λ. 2

The λ-complete state operators that are added to ACPc in Section 10 are in
their turn generalizations of the generalized λ-complete condition evaluation
operators.
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Note that the equation CEh(CEh′(x)) = CEh◦h′(x) is an axiom, but the equation
GCEh(GCEh′(x)) = GCEh◦h′(x) is not an axiom. The latter equation is only
valid in the full splitting bisimulation models Pce

κ if eff satisfies eff(a, h ◦h′) =
eff(a, h) ◦ eff(a, h′) for all a ∈ A and h, h′ ∈ Hλ.

We come back to the λ-complete condition evaluation operators CEh for h ∈
Hλ. The image of Cλ under the λ-complete endomorphism h is a subalgebra
of Cλ that is λ-complete too. For that reason, we could have used λ-complete
homomorphisms to subalgebras that are λ-complete instead of λ-complete
endomorphisms. It would go beyond the models of the theory developed so
far to generalize this in such a way that λ-complete homomorphisms to λ-
complete Boolean algebras different from subalgebras of Cλ are also included.

However, in the case where we consider λ-complete homomorphisms between
free λ-complete Boolean algebras over different sets of generators, we can relate
the models for different choices for Cat.

Let C and C ′ be different choices for Cat,
8 and let Pc

κ(C) and Pc
κ(C

′), for
κ ≤ λ, be the full splitting bisimulation models Pc

κ of ACPc for the different
choices for Cat. Moreover, let h be a λ-complete homomorphism from the free
λ-complete Boolean algebra over C to the free λ-complete Boolean algebra
over C ′. Then h can be extended to a homomorphism h∗ from Pc

κ(C) to
Pc
κ(C

′). This homomorphism is defined by

h∗([ (S,−→,−→
√
, s0) ]⇔) = [ Γ(S,−→′,−→

√′, s0) ]⇔ ,

where for every (α, a) ∈ C−κ × A:

(α,a)−−−→′ =
{
(s, s′)

∣∣∣ ∃β •
(
s

[β] a−−→ s′ ∧ α = h(β)
)}

,

(α,a)−−−→
√′ =

{
s

∣∣∣ ∃β •
(
s

[β] a−−→
√
∧ α = h(β)

)}
.

It is easy to see that h∗ is well-defined and a homomorphism indeed.

Thus, a λ-complete homomorphism between free λ-complete Boolean algebras
over different sets of generators can be used to translate conditions throughout
a full splitting bisimulation model for one choice of Cat in such a way that a
full splitting bisimulation model for a different choice of Cat is obtained.

8 The interesting cases are those where the cardinalities of C and C ′ are different.
Otherwise, the homomorphisms are isomorphisms.
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10 State Operators

The state operators make it easy to represent the execution of a process in a
state. The basic idea is that the execution of an action in a state has effect on
the state, i.e. it causes a change of state. Besides, there is an action left when
an action is executed in a state. The operators introduced here generalize
the state operators added to ACP in [22]. The main difference with those
operators is that guarded commands are taken into account. As in the case of
the condition evaluation operators and the generalized condition evaluation
operators, these state operators require to fix an infinite cardinal λ. By doing
so, full splitting bisimulation models with process domain CTSκ/⇔ for κ > λ
are excluded.

It is assumed that a fixed but arbitrary set S of states has been given, together
with functions act :A×S → Aδ, eff :A×S → S and eval :Cλ×S → Cλ, where,
for each s ∈ S, the function hs : Cλ → Cλ defined by hs(α) = eval(α, s) is a
λ-complete endomorphism of Cλ.

There are unary λ-complete state operators λs : P → P and λs : C → C for
each s ∈ S. 9

The λ-complete state operator λs allows, given the above-mentioned functions,
processes to interact with a state. Let p be a process. Then λs(p) is the process
p executed in state s. The function act gives, for each action a and state s,
the action that results from executing a in state s. The function eff gives, for
each action a and state s, the state that results from executing a in state s.
The function eval gives, for each condition α and state s, the condition that
results from evaluating α in state s. The functions act and eff are extended to
Aδ such that act(δ, s) = δ and eff(δ, s) = s for all s ∈ S.

The additional axioms for λs, where s ∈ S, are the axioms given in Table 12.
Axioms SO1–SO3 are the axioms for the state operators added to ACP in [22].

The structural operational semantics of ACPc extended with state operators
is described by the transition rules for ACPc and the transition rules given in
Table 13.

The full splitting bisimulation models of ACPc with state operators are simply
the expansions of the full splitting bisimulation models Pc

κ of ACPc obtained
by associating with each operator λs the corresponding re-labeling operation
on conditional transition systems.

9 Holding on to the usual conventions leads to the double use of the symbol λ:
without subscript it stands for an infinite cardinal, and with subscript it stands for
a state operator.
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Table 12
Axioms for state operators (a ∈ Aδ, η ∈ Cat, η′ ∈ Cat ∪ {⊥,>})
λs(a) = act(a, s) SO1

λs(a · x) = act(a, s) · λeff(a,s)(x) SO2

λs(x+ y) = λs(x) + λs(y) SO3

λs(φ :→ x) = λs(φ) :→ λs(x) SO4

λs(⊥) = ⊥ SO5

λs(>) = > SO6

λs(η) = η′ if eval(η, s) = η′ SO7

λs(−φ) = −λs(φ) SO8

λs(φ t ψ) = λs(φ) t λs(ψ) SO9

λs(φ u ψ) = λs(φ) u λs(ψ) SO10

Table 13
Transition rules for state operators

x
[φ] a−−−→

√

λs(x)
[eval(φ,s)] act(a,s)−−−−−−−−−−−→

√ act(a, s) 6= δ, eval(φ, s) 6= ⊥

x
[φ] a−−−→ x′

λs(x)
[eval(φ,s)] act(a,s)−−−−−−−−−−−→ λeff(a,s)(x′)

act(a, s) 6= δ, eval(φ, s) 6= ⊥

We can add, in addition to the λ-complete state operators, the λ-complete
condition evaluation operators and/or the generalized λ-complete condition
evaluation operators from Section 9 to ACPc.

We write Pce′
κ for the expansion of Pc

κ for the λ-complete condition evaluation
operators, the generalized λ-complete condition evaluation operators and the
λ-complete state operators.

The λ-complete state operators are generalizations of the generalized λ-
complete condition evaluation operators from Section 9.

Proposition 17 (Generalization) We can fix S, act, eff and eval such that,
for some f : Hλ → S, λf(h)(x) = GCEh(x) holds for all h ∈ Hλ in all full
splitting bisimulation models Pce′

κ with κ ≤ λ.

PROOF. Clearly, if S = Hλ, f is the identity function on Hλ, and act(a, s) =
a, eff(a, s) = eff(a, f−1(s)) and eval(α, s) = f−1(s)(α) for all a ∈ A, s ∈ S and
α ∈ Cλ, then λf(h)(x) = GCEh(x) holds for all h ∈ Hλ in all full splitting
bisimulation models Pce′

κ with κ ≤ λ. 2
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11 Signal Emission

In Section 9, we made the observation that, if λ is a regular infinite cardinal,
condition evaluation by means of the λ-complete condition evaluation opera-
tors CEh from that section is always condition evaluation of which the result
can be determined from a set of propositions (see Remark 14). A similar ob-
servation can be made about condition evaluation by means of the generalized
λ-complete condition evaluation operators GCEh from that section. In the case
of condition evaluation by means of CEh, the set of propositions determining
the result of condition evaluation does not change as a process proceeds. In
the case of condition evaluation by means of GCEh, it may happen that the
set of propositions determining the result of condition evaluation changes as
a process proceeds. That is, the sets of propositions relevant to a process and
its subprocesses may differ. This suggest that condition evaluation can also be
dealt with by explicitly associating sets of propositions with processes. The
intuition is, then, that all propositions from the set of propositions associated
with a process holds at the start of the process.

Clearly, if we restrict ourselves to sets of propositions of cardinality less than
a regular infinite cardinal λ, we can associate elements of Cλ with processes
instead. In line with [4], the element of Cλ associated with a process is called
the signal emitted by the process. Because ⊥ represents the proposition F, the
proposition that cannot hold at the start of any process, we regard a process
with which ⊥ is associated as an inconsistency. However, in an algebraic set-
ting, we cannot exclude this inconsistency. Therefore, we consider it to be a
special process, which is called the inaccessible process. 10

The idea to associate elements of Cλ with processes naturally suggests itself in
the case where λ is a regular infinite cardinal. However, there are no trammels
to drop the restriction that λ is regular.

All this leads us to an extension of ACPc, called ACPcs, with the following
additional constants and operators:

• the inaccessible process constant ⊥ : P;
• the binary signal emission operator ∧N : C×P → P.

The axioms of ACPcs are the axioms of ACPc with axioms CM2–CM3 and
GC8–GC10 replaced by axioms CM2S–CM3S and GC8S–GC10S from Ta-
ble 14, and the additional axioms given in Table 15. Axioms NE1–NE3 and
SE1–SE11 have been taken from [6] and axioms GC9S and GC10S have been

10 In [23,24], this process is rather contradictory called the non-existent process. Its
new name was prompted by the fact that after performing an action no process will
ever proceed as this process.
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Table 14
Axioms adapted to signal emission (a ∈ Aδ)

a bb x = a · x+ ∂A(x) CM2S

a · x bb y = a · (x ‖ y) + ∂A(y) CM3S

(φ :→ x) bb y = φ :→ (x bb y) + ∂A(y) GC8S

(φ :→ x) | y = φ :→ (x | y) + ∂A(y) GC9S

x | (φ :→ y) = φ :→ (x | y) + ∂A(x) GC10S

Table 15
Additional axioms for signal emission (a ∈ Aδ)

x+⊥ = ⊥ NE1

⊥ · x = ⊥ NE2

a · ⊥ = δ NE3

> ∧N x = x SE1

⊥ ∧N x = ⊥ SE2

φ ∧N x+ y = φ ∧N (x+ y) SE3

(φ ∧N x) · y = φ ∧N x · y SE4

φ ∧N (ψ ∧N x) = (φ u ψ) ∧N x SE5

φ ∧N (φ :→ x) = φ ∧N x SE6

φ :→ (ψ ∧N x) = (−φ t ψ) ∧N (φ :→ x) SE7

(φ ∧N x) bb y = φ ∧N (x bb y) SE8

(φ ∧N x) | y = φ ∧N (x | y) SE9

x | (φ ∧N y) = φ ∧N (x | y) SE10

∂H(φ ∧N x) = φ ∧N ∂H(x) SE11

taken from [6] with subterms of the form s(x) ∧N δ replaced by ∂A(x). Axioms
CM2S, CM3S and GC8S differ really from the corresponding axioms in [6]
due to the choice of having as the signal emitted by the left merge of two
processes, as in the case of the communication merge, always the meet of the
signals emitted by the two processes.

Example 18 We return to Example 1, which is concerned with a pedestrian
who uses a crossing with traffic lights to cross a road with busy traffic safely. In
Example 15, we illustrated that the generalized condition evaluation operators
GCEh poorly represent the interaction between the pedestrian and the traffic
lights. Here, we illustrate that such interaction can be better represented with
the signal emission operator ∧N. Recall that the description of the behaviour of
the pedestrian is as follows:

PED = arrive · (green :→ cross + red :→ (make req · (green :→ cross))) .

In the case where the light for pedestrians is red, the traffic lights will grant a
request for green light. The next action of the traffic lights is to revert to red
light. Suppose that initially the light for pedestrians is red. Then the behaviour
of the traffic lights can be described as follows:

TL = (red u −green) ∧N grant req · ((−red u green) ∧N revert · TL) .
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Let the communication function | be such that make req |grant req = grant req |
make req = request and a | b = δ otherwise. Then we can derive the following
about the combined behaviour of the pedestrian and the traffic lights:

∂{make req,grant req}(PED ‖ TL) =

(red u −green) ∧N arrive · ((red u −green) ∧N request ·

((−red u green) ∧N cross · ((−red u green) ∧N revert · TL))) +

(red u −green) ∧N arrive · ((red u −green) ∧N request ·

((−red u green) ∧N revert · ((red u −green) ∧N δ))) .

The possibility that the combined behaviour ends in deadlock shows that we
have actually described a rather simple-minded pedestrian. If he or she has
not started crossing the road before the traffic lights revert to red light, the
pedestrian takes no action; and consequently the light remains red. This re-
mains unobserved in the case where the interaction between the pedestrian and
the traffic lights is represented by the generalized condition evaluation opera-
tors GCEh.

In the structural operational semantics of ACPcs, unary relations sα, one for
each α ∈ C \ {⊥}, are used in addition to the relations `−→

√
and `−→. We write

s(p) = α instead of p ∈ sα. The relation sα can be explained as follows:

• s(p) = α: p emits the signal α.

The structural operational semantics of ACPcs is described by the transition
rules given in Tables 16 and 17. These transition rules include all transition
rules from Tables 3 and 5 with additional premises to exclude transitions from
or to processes that emit the signal ⊥. There are additional transition rules
describing the signals emitted by the processes. The transition rules for signal
emission are new as well.

The following gives a good picture of the nature of signals and conditions.

Proposition 19 (Signals and conditions) If 〈〈α〉〉 ` 〈〈β〉〉⇔〈〈β′〉〉, then
α ∧N (β :→ x) = α ∧N (β′ :→ x).

PROOF. It follows immediately from 〈〈α〉〉 ` 〈〈β〉〉⇔〈〈β′〉〉, using the deduc-
tion theorem of propositional calculus and the isomorphism of C and the
Boolean algebra of equivalence classes with respect to logical equivalence of
the set of all finite propositions with elements of Cat as propositional vari-
ables, that (−(α u β) t β′) u (−(α u β′) t β) = >. It follows easily from
this equation, using the axioms of BA, that (α u β) t β′ = β′ (*) and
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Table 16
Transition rules for BPAcs

δ

a
[>] a−−−→

√

x
[φ] a−−−→

√
, s(x+ y) 6= ⊥

x+ y
[φ] a−−−→

√
y

[φ] a−−−→
√
, s(x+ y) 6= ⊥

x+ y
[φ] a−−−→

√

x
[φ] a−−−→ x′, s(x+ y) 6= ⊥

x+ y
[φ] a−−−→ x′

y
[φ] a−−−→ y′, s(x+ y) 6= ⊥

x+ y
[φ] a−−−→ y′

x
[φ] a−−−→

√
, s(y) 6= ⊥

x · y [φ] a−−−→ y

x
[φ] a−−−→ x′

x · y [φ] a−−−→ x′ · y

x
[φ] a−−−→

√

ψ :→ x
[φuψ] a−−−−−→

√ φ u ψ 6= ⊥
x

[φ] a−−−→ x′

ψ :→ x
[φuψ] a−−−−−→ x′

φ u ψ 6= ⊥

x
[φ] a−−−→

√
, s(ψ ∧N x) 6= ⊥

ψ ∧N x
[φ] a−−−→

√
x

[φ] a−−−→ x′, s(ψ ∧N x) 6= ⊥

ψ ∧N x
[φ] a−−−→ x′

s(⊥) = ⊥ s(a) = >

s(x) = φ, s(y) = ψ

s(x+ y) = φ u ψ

s(x) = φ

s(x · y) = φ

s(x) = φ

s(ψ :→ y) = −ψ t φ

s(x) = φ

s(ψ ∧N y) = ψ u φ

(α u β′) t β = β (**). From (*), using the axioms of ACPcs, we can derive
α ∧N (β :→ x) + α ∧N (β′ :→ x) = α ∧N (β′ :→ x) as follows:

α ∧N (β :→ x) + α ∧N (β′ :→ x)

SE6,GC6
= α ∧N (α u β :→ x) + α ∧N (β′ :→ x)

SE3,SE5,BA,GC7
= α ∧N ((α u β) t β′ :→ x)
(∗)
= α ∧N (β′ :→ x) .

From (**), we can derive analogously α ∧N(β′ :→x)+α ∧N(β :→x) = α ∧N(β :→x).
From these two results, it follows immediately that α ∧N (β :→ x) = α ∧N (β′ :→
x). 2

We have the following corollaries from Proposition 19.

Corollary 20 If 〈〈α〉〉 ` 〈〈β〉〉, then α ∧N (β :→ x) = α ∧N x. If 〈〈α〉〉 ` ¬〈〈β〉〉,
then α ∧N (β :→ x) = α ∧N δ.
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Table 17
Additional transition rules for ACPcs

x
[φ] a−−−→

√
, s(x ‖ y) 6= ⊥, s(y) 6= ⊥

x ‖ y [φ] a−−−→ y

y
[φ] a−−−→

√
, s(x ‖ y) 6= ⊥, s(x) 6= ⊥

x ‖ y [φ] a−−−→ x

x
[φ] a−−−→ x′, s(x ‖ y) 6= ⊥, s(x′ ‖ y) 6= ⊥

x ‖ y [φ] a−−−→ x′ ‖ y

y
[φ] a−−−→ y′, s(x ‖ y) 6= ⊥, s(x ‖ y′) 6= ⊥

x ‖ y [φ] a−−−→ x ‖ y′

x
[φ] a−−−→

√
, y

[ψ] b−−−→
√
, s(x ‖ y) 6= ⊥

x ‖ y [φuψ] c−−−−→
√ a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→

√
, y

[ψ] b−−−→ y′, s(x ‖ y) 6= ⊥

x ‖ y [φuψ] c−−−−→ y′
a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→ x′, y

[ψ] b−−−→
√
, s(x ‖ y) 6= ⊥

x ‖ y [φuψ] c−−−−→ x′
a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→ x′, y

[ψ] b−−−→ y′, s(x ‖ y) 6= ⊥, s(x′ ‖ y′) 6= ⊥

x ‖ y [φuψ] c−−−−→ x′ ‖ y′
a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→

√
, s(x bb y) 6= ⊥, s(y) 6= ⊥

x bb y [φ] a−−−→ y

x
[φ] a−−−→ x′, s(x bb y) 6= ⊥, s(x′ ‖ y) 6= ⊥

x bb y [φ] a−−−→ x′ ‖ y

x
[φ] a−−−→

√
, y

[ψ] b−−−→
√
, s(x | y) 6= ⊥

x | y [φuψ] c−−−−→
√ a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→

√
, y

[ψ] b−−−→ y′, s(x | y) 6= ⊥

x | y [φuψ] c−−−−→ y′
a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→ x′, y

[ψ] b−−−→
√
, s(x | y) 6= ⊥

x | y [φuψ] c−−−−→ x′
a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→ x′, y

[ψ] b−−−→ y′, s(x | y) 6= ⊥, s(x′ ‖ y′) 6= ⊥

x | y [φuψ] c−−−−→ x′ ‖ y′
a | b = c, φ u ψ 6= ⊥

x
[φ] a−−−→

√

∂H(x) [φ] a−−−→
√ a 6∈ H

x
[φ] a−−−→ x′

∂H(x) [φ] a−−−→ ∂H(x′)
a 6∈ H

s(x) = φ, s(y) = ψ

s(x ‖ y) = φ u ψ

s(x) = φ, s(y) = ψ

s(x bb y) = φ u ψ

s(x) = φ, s(y) = ψ

s(x | y) = φ u ψ

s(x) = φ

s(∂H(x)) = φ

Corollary 21 If eff(h, a) is the identity endomorphism on C for all endomor-
phisms h on C and a ∈ A, then we have GCEh{〈〈α〉〉}(β :→x) = β′:→GCEh{〈〈α〉〉}(x)
implies α ∧N (β :→ x) = α ∧N (β′ :→ x).
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12 Full Signal-Observing Splitting Bisimulation Models of ACPcs

In this section, we introduce conditional transition systems with signals, signal-
observing splitting bisimilarity of conditional transition systems with signals,
and the full signal-observing splitting bisimulation models of ACPcs.

Conditional transition systems with signals generalize conditional transition
systems.

Let κ be an infinite cardinal. Then a κ-conditional transition system with
signals T is a tuple (S,−→,−→

√
, s, s0) where

• (S,−→,−→
√
, s0) is a κ-conditional transition system;

• s is a function from S to Cκ;

and for all ` ∈ C−κ × A:

• {(s, s′) ∈ `−→ | s(s) = ⊥ ∨ s(s′) = ⊥} = ∅;
• {s ∈ `−→

√
| s(s) = ⊥} = ∅.

We say that s(s) is the signal emitted by the state s.

For conditional transition systems with signals, reachability and connectedness
are defined exactly as for conditional transition systems.

Let T = (S,−→,−→
√
, s, s0) be a κ-conditional transition system with signals

(for an infinite cardinal κ) that is not necessarily connected. Then the con-
nected part of T , written Γ(T ), is simply defined as follows:

Γ(T ) = (S ′,−→′,−→
√′, s′, s0) ,

where

(S ′,−→′,−→
√′, s0) = Γ(S,−→,−→

√
, s0) ,

s′ is the restriction of s to S ′ .

Let κ be an infinite cardinal. Then CTSs
κ is the set of all κ-conditional transi-

tion systems with signals (S,−→,−→
√
, s, s0) for which (S,−→,−→

√
, s0) ∈ CTSκ.

Isomorphism between conditional transition systems with signals is defined
as between conditional transition systems, but with the additional condition
that s1(s) = s2(b(s)). Splitting bisimilarity has to be adapted to the setting
with signals.
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Let T1 = (S1,−→1,−→
√

1, s1, s
0
1) ∈ CTSs

κ, T2 = (S2,−→2,−→
√

2, s2, s
0
2) ∈ CTSs

κ

(for an infinite cardinal κ). Then a signal-observing splitting bisimulation B
between T1 and T2 is a binary relation B ⊆ S1 × S2 such that B(s0

1, s
0
2) and

for all s1, s2 such that B(s1, s2):

• s1(s1) = s2(s2);

• if s1
[α] a−−→1 s

′
1, then there is a set CS ′2 ⊆ C−κ × S2 of cardinality less than κ

such that s1(s1) u α v
⊔

dom(CS ′2) and for all (α′, s′2) ∈ CS ′2, s2
[α′] a−−−→2 s

′
2

and B(s′1, s
′
2);

• if s2
[α] a−−→2 s

′
2, then there is a set CS ′1 ⊆ C−κ × S1 of cardinality less than κ

such that s2(s2) u α v
⊔

dom(CS ′1) and for all (α′, s′1) ∈ CS ′1, s1
[α′] a−−−→1 s

′
1

and B(s′1, s
′
2);

• if s1
[α] a−−→

√
1, then there is a set C ′ ⊆ C−κ of cardinality less than κ such

that s1(s1) u α v
⊔
C ′ and for all α′ ∈ C ′, s2

[α′] a−−−→
√

2;

• if s2
[α] a−−→

√
2, then there is a set C ′ ⊆ C−κ of cardinality less than κ such

that s2(s2) u α v
⊔
C ′ and for all α′ ∈ C ′, s1

[α′] a−−−→
√

1.

Two conditional transition systems with signals T1, T2 ∈ CTSs
κ are signal-ob-

serving splitting bisimilar, written T1 ⇔s T2, if there exists a signal-observing
splitting bisimulation B between T1 and T2. Let B be a signal-observing split-
ting bisimulation between T1 and T2. Then we say that B is a splitting signal-
observing bisimulation witnessing T1 ⇔s T2.

It is straightforward to see that⇔s is an equivalence on CTSs
κ. Let T ∈ CTSs

κ.
Then we write [T ]⇔s for {T ′ ∈ CTSs

κ | T ⇔
s T ′}, i.e. the⇔s -equivalence class

of T . We write CTSs
κ/⇔

s for the set of equivalence classes {[T ]⇔s | T ∈ CTSs
κ}.

The elements of CTSs
κ and operations on CTSs

κ to be associated with the
constants δ and a (for each a ∈ A) and the operators + , · , :→ , ‖ , bb , | and
∂H (for each H ⊆ A) are as the elements of CTSκ and operations on CTSκ
associated with them before, but with the additional function s as suggested
by the structural operational semantics of ACPcs and with all relations `−→

√

and `−→ restricted to states that emit a signal different from ⊥.

We associate with the additional constant ⊥ an element ⊥̂
s

of CTSs
κ and with

the additional operator ∧N an operation ∧̂N
s

on CTSs
κ as follows.

• ⊥̂
s

= ({s0}, ∅, ∅, s, s0) ,

where

s(s0) = ⊥ .
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• Let α ∈ C and T = (S,−→,−→
√
, s, s0) ∈ CTSs

κ. Then

α ∧̂N
s

T = Γ(S,−→′,−→
√′, s′, s0) ,

where

s′(s) = s(s) for s ∈ S \ {s0} ,

s′(s0) = α u s(s0) ,

and for every (α′, a) ∈ C−κ × A:

(α′,a)−−−→′ =
{
(s, s′)

∣∣∣ s [α′] a−−−→ s′ ∧ s′(s) 6= ⊥ ∧ s′(s′) 6= ⊥
}
,

(α′,a)−−−→
√′ =

{
s

∣∣∣ s [α′] a−−−→
√
∧ s′(s) 6= ⊥

}
.

We can easily show that signal-observing splitting bisimilarity is a congruence
with respect to alternative composition, sequential composition, guarded com-
mand, signal emission, parallel composition, left merge, communication merge
and encapsulation.

Proposition 22 (Congruence) Let κ be an infinite cardinal. Then for all
T1, T2, T

′
1, T

′
2 ∈ CTSκ and α ∈ C, T1 ⇔s T ′

1 and T2 ⇔s T ′
2 imply T1 +̂

s

T2 ⇔s

T ′
1 +̂

s

T ′
2, T1 ·̂

s
T2 ⇔s T ′

1 ·̂
s
T ′

2, α :̂→s
T1 ⇔s α :̂→s

T ′
1, α ∧̂N

s

T1 ⇔s α ∧̂N
s

T ′
1,

T1 ‖̂
s

T2 ⇔s T ′
1 ‖̂

s

T ′
2, T1 b̂b

s

T2 ⇔s T ′
1 b̂b

s

T ′
2, T1 |̂

s

T2 ⇔s T ′
1 |̂

s

T ′
2 and ∂̂H

s

(T1)⇔s

∂̂H
s

(T ′
1).

PROOF. For +̂
s

, ·̂ s
and :̂→s

, witnessing signal-observing splitting bisimu-
lations are constructed in the same way as witnessing splitting bisimulations

are constructed in the proof of Proposition 5. For ‖̂
s

, b̂b
s

, |̂
s

and ∂̂H
s

, witness-
ing signal-observing splitting bisimulations are constructed in the same way as
witnessing splitting bisimulations are constructed in the proof of Proposition 8.
What remains is to construct a witnessing signal-observing splitting bisimula-
tion for ∧̂N

s

. That is simple. Let R be a signal-observing splitting bisimulation
witnessing T1 ⇔s T ′

1. Then we construct a relation R∧̂Ns as follows:

• R∧̂Ns = R ∩ (S × S ′), where S and S ′ are the sets of states of α ∧̂N
s

T1 and

α ∧̂N
s

T ′
1, respectively.

Given the definition of signal emission, it is easy to see that R∧̂Ns is a signal-

observing splitting bisimulation witnessing α ∧̂N
s

T1 ⇔s α ∧̂N
s

T ′
1. 2

The full signal-observing splitting bisimulation models Pcs
κ of ACPcs, one for
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each infinite cardinal κ, are the expansions of C whose additional ingredients
are defined as follows:

P = CTSs
κ/⇔

s ,

⊥̃
s

= [ ⊥̂
s

]⇔s ,

δ̃
s

= [ δ̂
s

]⇔s ,

ã
s

= [ â
s
]⇔s ,

[T1 ]⇔s +̃
s

[T2 ]⇔s = [T1 +̂
s

T2 ]⇔s ,

[T1 ]⇔s ·̃ s
[T2 ]⇔s = [T1 ·̂

s
T2 ]⇔s ,

α :̃→s
[T1 ]⇔s = [α :̂→s

T1 ]⇔s ,

α ∧̃N
s

[T1 ]⇔s = [α ∧̂N
s

T1 ]⇔s ,

[T1 ]⇔s ‖̃
s

[T2 ]⇔s = [T1 ‖̂
s

T2 ]⇔s ,

[T1 ]⇔s b̃b
s

[T2 ]⇔s = [T1 b̂b
s

T2 ]⇔s ,

[T1 ]⇔s |̃
s

[T2 ]⇔s = [T1 |̂
s

T2 ]⇔s ,

∂̃H
s

([T1 ]⇔s) = [ ∂̂H
s

(T1) ]⇔s .

Alternative composition, sequential composition, guarded command, signal
emission, parallel composition, left merge, communication merge and encap-
sulation on CTSs

κ/⇔
s are well-defined because⇔s is a congruence with respect

to the corresponding operations on CTSs
κ.

The structures Pcs
κ are models of ACPcs.

Theorem 23 (Soundness of ACPcs) For each infinite cardinal κ, we have
Pcs
κ |= ACPcs.

PROOF. Because Pcs
κ is an expansion of C, it is not necessary to show that

the axioms of BA are sound. The soundness of all remaining axioms follows
straightforwardly from the definitions of the ingredients of Pcs

κ . 2

13 BPA with Retrospective Conditions

In this section, we present an extension of BPAc
δ with a retrospection operator

on conditions. The retrospection operator allows for looking back on conditions
under which preceding actions have been performed. The extension of BPAc

δ

with the retrospection operator is called BPAcr
δ . In Section 15, we will add

parallel composition and encapsulation to BPAcr
δ .

BPAcr
δ has the constants and operators of BPAc

δ and in addition:

• the unary retrospection operator ∼ : C → C.
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Table 18
Additional axioms for retrospection operator (a ∈ Aδ)

∼⊥ = ⊥ R1

∼> = > R2

∼(−φ) = −(∼φ) R3

∼(φ t ψ) = ∼φ t ∼ψ R4

∼(φ u ψ) = ∼φ u ∼ψ R5

a · (∼φ :→ x) = φ :→ a · x+−φ :→ a · δ R6

The axioms of BPAcr
δ are the axioms of BPAc

δ and the additional axioms given
in Table 18. The crucial axiom is R6, which shows that a conditional expression
of the form ∼ζ :→ p gives a retrospection at the condition under which the
immediately preceding action has been performed.

Recall that we write p� ζ � q for ζ :→ p+−ζ :→ q. An interesting equation is
a ·(x�∼φ�y) = a ·x�φ�a ·y. This equation is a generalization of axiom R6:
axiom R6 is derivable from the other axioms of BPAcr

δ and this equation by
substituting δ for y and applying axioms GC3 and A6. It is not immediately
clear that this equation is derivable from the axioms of BPAcr

δ .

Proposition 24 (Derivability Generalization Axiom R6) The equa-
tion a · (x �∼φ� y) = a · x �φ� a · y (R6′) is derivable from the axioms of
BPAcr

δ .

PROOF. We can make the following derivation:

a · (x�∼φ� y)

BA2,GC1
= (φ t −φ) :→ a · (x�∼φ� y)

GC7
= φ :→ a · (x�∼φ� y) +−φ :→ a · (x�∼φ� y)

A6,GC2,BA6,BA,GC6,GC4
= φ :→ (φ :→ a · (x�∼φ� y) +−φ :→ a · δ) +

−φ :→ (−φ :→ a · (x�∼φ� y) + φ :→ a · δ) .

Hence, if we can derive φ :→(φ :→a ·(x�∼φ�y)+−φ :→a ·δ) = φ :→a ·x (*)
and −φ :→ (−φ :→ a · (x �∼φ� y) + φ :→ a · δ) = −φ :→ a · y (**), then it
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follows immediately that we can derive R6′. We can derive (*) as follows:

φ :→ (φ :→ a · (x�∼φ� y) +−φ :→ a · δ)
R6
= φ :→ a · (∼φ :→ (x�∼φ� y))

GC4,GC6,BA,BA6,GC2,A6
= φ :→ a · (∼φ :→ x)

R6
= φ :→ (φ :→ a · x+−φ :→ a · δ)

GC4,GC6,BA,BA6,GC2,A6
= φ :→ a · x .

We can derive (**) analogously. 2

Example 25 We return to Example 1, which is concerned with a pedestrian
who uses a crossing with traffic lights to cross a road with busy traffic safely.
Recall that the description of the behaviour of the pedestrian given in Exam-
ple 1 is as follows:

PED =

arrive · (green :→ cross + red :→ (make req · (green :→ cross))) .

This description concerns a pedestrian who does not act unthinkingly. Now
consider a pedestrian who does act unthinkingly. When this pedestrian arrives
at the crossing, he or she first makes a request for green light and then crosses
the street unconditionally if the light for pedestrians was green on arrival and
crosses the street when the light for pedestrians has changed if it was red on
arrival. This behaviour can be described in BPAcr

δ as follows:

PED ′ =

arrive ·make req · (∼green :→ cross +∼red :→ (green :→ cross)) .

Because of the addition of the retrospection operator, we cannot use the
Boolean algebras Cκ here. The algebras Cr

κ that we use here can be character-
ized as the free κ-complete algebras over Cat from the class of algebras with
interpretations for the constants and operators of Boolean algebras and the
retrospection operator that satisfy the axioms of Boolean algebras (Table 1)
and axioms R1–R5 from Table 18. We do not make this fully precise, but give
an explicit construction of the algebras Cr

κ instead. Important to bear in mind
is that not only the atomic conditions, but also the results of applying the
operation associated with the retrospection operator a finite number of times
to atomic conditions, should not satisfy any equations except those derivable
from the axioms.
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Let Cr
at =

⋃{Cat × {i} | i ∈ ω} and define prev : Cr
at → Cr

at by prev((η, i)) =
(η, i + 1). For any infinite cardinal κ, let C ′κ be the free κ-complete Boolean
algebra over Cr

at. Then the function prev extends to a unique κ-complete en-
domorphism prev∗ of C ′κ. This endomorphism is a unary operation on C ′κ that
preserves

⊔
C ′ for every C ′ ⊆ C′κ of cardinality less then κ. The algebra Cr

κ

is the expansion of C ′κ obtained by associating the operation prev∗ with the
operator ∼. We write Cr for Cr

ℵ0
.

The structural operational semantics of BPAcr
δ differs only from the structural

operational semantics of BPAc
δ in the conditions involved. They are now taken

from Cr instead of C.

14 Full Retrospective Splitting Bisimulation Models of BPAcr
δ

The construction of the full splitting bisimulation models of BPAcr
δ differs

from the construction of the full splitting bisimulation models of BPAc
δ in

the conditions involved and in the notion of splitting bisimulation used. The
conditions are now taken from Cr

κ instead of Cκ. Henceforth, we write Cr
κ
− for

Cr
κ \ {⊥}.

Let κ be an infinite cardinal. Then a κ-conditional transition system with
retrospection T consists of the following:

• a set S of states ;
• a set `−→ ⊆ S × S, for each ` ∈ Cr

κ
− × A;

• a set `−→
√
⊆ S, for each ` ∈ Cr

κ
− × A;

• an initial state s0 ∈ S.

For conditional transition systems with retrospection, reachability, connect-
edness and connected part are defined exactly as for conditional transition
systems.

Let κ be an infinite cardinal. Then CTSr
κ is the set of all connected κ-

conditional transition systems with retrospection T = (S,−→,−→
√
, s0) such

that S ⊂ Sκ and the branching degree of T is less than κ.

Isomorphism between conditional transition systems with retrospection is de-
fined exactly as for conditional transition systems. Splitting bisimilarity has
to be adapted to the setting with retrospection.

Let T1 = (S1,−→1,−→
√

1, s
0
1) ∈ CTSr

κ and T2 = (S2,−→2,−→
√

2, s
0
2) ∈ CTSr

κ (for
an infinite cardinal κ). Then a retrospective splitting bisimulation B between
T1 and T2 is a ternary relation B ⊆ S1 × Cr

κ × S2 such that B(s0
1,>, s0

2) and
for all s1, β, s2 such that B(s1, β, s2):
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• if s1
[α] a−−→1 s

′
1, then there is a set CS ′2 ⊆ Cr

κ
− × S2 of cardinality less than κ

such that α u β v ⊔
dom(CS ′2) and for all (α′, s′2) ∈ CS ′2, s2

[α′] a−−−→2 s
′
2 and

B(s′1,∼α′, s′2);
• if s2

[α] a−−→2 s
′
2, then there is a set CS ′1 ⊆ Cr

κ
− × S1 of cardinality less than κ

such that α u β v ⊔
dom(CS ′1) and for all (α′, s′1) ∈ CS ′1, s1

[α′] a−−−→1 s
′
1 and

B(s′1,∼α′, s′2);
• if s1

[α] a−−→
√

1, then there is a set C ′ ⊆ Cr
κ
− of cardinality less than κ such

that α u β v ⊔
C ′ and for all α′ ∈ C ′, s2

[α′] a−−−→
√

2;

• if s2
[α] a−−→

√
2, then there is a set C ′ ⊆ Cr

κ
− of cardinality less than κ such

that α u β v ⊔
C ′ and for all α′ ∈ C ′, s1

[α′] a−−−→
√

1.

Two conditional transition systems with retrospection T1, T2 ∈ CTSr
κ are ret-

rospective splitting bisimilar, written T1 ⇔r T2, if there exists a retrospective
splitting bisimulation B between T1 and T2. Let B be a retrospective split-
ting bisimulation between T1 and T2. Then we say that B is a retrospective
splitting bisimulation witnessing T1 ⇔r T2.

It is straightforward to see that⇔r is an equivalence on CTSr
κ. Let T ∈ CTSr

κ.
Then we write [T ]⇔r for {T ′ ∈ CTSr

κ | T ⇔
r T ′}, i.e. the⇔r -equivalence class

of T . We write CTSr
κ/⇔

r for the set of equivalence classes {[T ]⇔r | T ∈ CTSr
κ}.

The elements of CTSr
κ and operations on CTSr

κ to be associated with the
constants δ and a (for each a ∈ A) and the operators + , · and :→ are
defined exactly as the elements of CTSκ and operations on CTSκ associated
with them before.

Below, we show that retrospective splitting bisimilarity is a congruence with
respect to alternative composition, sequential composition and guarded com-
mand. That leads us to the use of the notion of a layered retrospective splitting
bisimulation.

Let T = (S,−→,−→
√
, s0) ∈ CTSr

κ (for an infinite cardinal κ). Then the reach-
ability in n steps relations of T , one for each n ∈ N, are the smallest relations
n−→→ ⊆ S × S such that:

• s 0−→→ s;
• if s `−→ s′ and s′ n−→→ s′′, then s n+1−−→→ s′′.

Let T1 = (S1,−→1,−→
√

1, s
0
1) ∈ CTSr

κ and T2 = (S2,−→2,−→
√

2, s
0
2) ∈ CTSr

κ; and
let B be a retrospective splitting bisimulation between T1 and T2. Then B is
called a layered retrospective splitting bisimulation if for all s1 ∈ S1, s2 ∈ S2

and α ∈ Cr
κ, B(s1, α, s2) implies that s0

1
n−→→1 s1 iff s0

2
n−→→2 s2 for all n ∈ N.

Lemma 26 (Existence layered retrospective splitting bisimulation)
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Let T1 = (S1,−→1,−→
√

1, s
0
1) ∈ CTSr

κ and T2 = (S2,−→2,−→
√

2, s
0
2) ∈ CTSr

κ

(for an infinite cardinal κ). Then T1 ⇔r T2 implies that there exists a layered
retrospective splitting bisimulation witnessing T1 ⇔r T2.

PROOF. Let B be a retrospective splitting bisimulation witnessing T1 ⇔r T2.
Then we construct a relation B′ as follows: B′ = {(s1, α, s2) | B(s1, α, s2) ∧
∀n ∈ N • s0

1
n−→→1 s1 ⇔ s0

2
n−→→2 s2}. It is easy to see that B′ is a retrospective

splitting bisimulation witnessing T1 ⇔r T2 as well. 2

Proposition 27 (Congruence) Let κ be an infinite cardinal. Then for all
T1, T2, T

′
1, T

′
2 ∈ CTSr

κ and α ∈ C, T1 ⇔r T ′
1 and T2 ⇔r T ′

2 imply T1 +̂
r

T2 ⇔r

T ′
1 +̂

r

T ′
2, T1 ·̂

r
T2 ⇔r T ′

1 ·̂
r
T ′

2, α :̂→r
T1 ⇔r α :̂→r

T ′
1.

PROOF. Let Ti = (Si,−→i,−→
√
i, s

0
i ) and T ′

i = (S ′i,−→′
i,−→

√′
i, s

0
i
′) for i =

1, 2. Let R1 and R2 be layered retrospective splitting bisimulations witnessing
T1 ⇔r T ′

1 and T2 ⇔r T ′
2, respectively. Then we construct relations R

+̂
r , R ·̂

r

and R
:̂→

r as follows:

• R
+̂

r = ({(s0,>, s0′)}∪µ1(R1)∪µ2(R2))∩ (S×Cr
κ×S ′), where S and S ′ are

the sets of states of T1 +̂
r

T2 and T ′
1 +̂

r

T ′
2, respectively, and s0 and s0′ are

the initial states of T1 +̂
r

T2 and T ′
1 +̂

r

T ′
2, respectively;

• R ·̂
r = (µ1(R1) ∪ µ2(R

′′
2)) ∩ (S × Cr

κ × S ′), where S and S ′ are the sets of
states of T1 ·̂

r
T2 and T ′

1 ·̂
r
T ′

2, respectively, and R′′
2 = {(s,∼n+1(α)uα′, s′) |

R2(s, α
′, s′) ∧ ∃s1 ∈ S1, a ∈ A • s1

[α] a−−→
√

1 ∧ s0
2

n−→→2 s};
• R

:̂→
r = R′′

1 ∩ (S×Cr
κ×S ′), where S and S ′ are the sets of states of α :̂→r

T1

and α :̂→r
T ′

1, respectively, and R′′
1 = {(s0

1,>, s0
1
′)} ∪ {(s,∼n+1(α) u α′, s′) |

R1(s, α
′, s′) ∧ s0

1
n+1−−→→1 s}.

Here, we write µi(Ri) for {(µi(s), α, µi(s′)) | Ri(s, α, s
′)}, where µi is used

to denote both the injection of Si into S1 ] S2 and the injection of S ′i
into S ′1 ] S ′2. The notation ∼n(α) is defined as follows: ∼0(α) = α and
∼n+1(α) = ∼(∼n(α)). Given the definitions of alternative composition, se-
quential composition and guarded command, it is straightforward to see
that R

+̂
r , R ·̂

r and R
:̂→

r are retrospective splitting bisimulations witnessing

T1 +̂
r

T2 ⇔r T ′
1 +̂

r

T ′
2, T1 ·̂

r
T2 ⇔r T ′

1 ·̂
r
T ′

2 and α :̂→r
T1 ⇔r α :̂→r

T ′
1, respec-

tively. 2

Note that, in the proof of Proposition 27, showing that R ·̂
r and R

:̂→
r are

witnesses needs the assumption that R1 and R2 are layered.

The full retrospective splitting bisimulation models Pcr
κ of BPAcr

δ , one for each
infinite cardinal κ, are the expansions of Cr whose additional ingredients are
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defined as follows:

P = CTSr
κ/⇔

r ,

δ̃
r

= [ δ̂
r

]⇔r ,

ã
r

= [ â
r
]⇔r ,

[T1 ]⇔r +̃
r

[T2 ]⇔r = [T1 +̂
r

T2 ]⇔r ,

[T1 ]⇔r ·̃ r
[T2 ]⇔r = [T1 ·̂

r
T2 ]⇔r ,

α :̃→r
[T1 ]⇔r = [α :̂→r

T1 ]⇔r .

Alternative composition, sequential composition and guarded command on
CTSr

κ/⇔
r are well-defined because ⇔r is a congruence with respect to the

corresponding operations on CTSr
κ.

The structures Pcr
κ are models of BPAcr

δ .

Theorem 28 (Soundness of BPAcr
δ ) For each infinite cardinal κ, we have

Pcr
κ |= BPAcr

δ .

PROOF. Because Pcr
κ is an expansion of Cr, and Cr is an expansion of a

Boolean algebra (see the end of Section 13), it is not necessary to show that
the axioms of BA are sound. The soundness of all remaining axioms follows
straightforwardly from the definitions of the ingredients of Pcr

κ . 2

15 ACP with Retrospective Conditions

We proceed with adding parallel composition and encapsulation operators to
BPAcr

δ , resulting in ACPcr.

For ACPcr, we need the following auxiliary operators:

• the unary retrospection shift operator Π+ : P → P;
• for each n ∈ N, the unary restricted retrospection shift operator Π+

>n:P → P;
• for each n ∈ N, the unary restricted retrospection shift operator Π+

>n : C →
C.

In the parallel composition of two processes, when an action of one of the
processes is performed, the retrospections of the other process that are not
internal should go one step further. This is accomplished by the retrospection
shift operator. The restricted retrospection shift operators, on processes and
conditions, are needed for the axiomatization of the retrospection shift opera-
tor. The retrospection shift operator Π+ is similar to the history pointer shift
operator hps from [8].
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Table 19
Axioms adapted to retrospection (a ∈ Aδ)

a bb x = a ·Π+(x) CM2R

a · x bb y = a · (x ‖Π+(y)) CM3R

Table 20
Additional axioms for retrospection (a ∈ Aδ, η ∈ Cat)

Π+(x) = Π+
>0(x) RS0

Π+
>n(a) = a RS1

Π+
>n(a · x) = a ·Π+

>n+1(x) RS2

Π+
>n(x+ y) = Π+

>n(x) + Π+
>n(y) RS3

Π+
>n(φ :→ x) = Π+

>n(φ) :→Π+
>n(x) RS4

Π+
>n(⊥) = ⊥ RS5

Π+
>n(>) = > RS6

Π+
>n(η) = η RS7

Π+
>n(−φ) = −Π+

>n(φ) RS8

Π+
>n(φ t ψ) = Π+

>n(φ) tΠ+
>n(ψ) RS9

Π+
>n(φ u ψ) = Π+

>n(φ) uΠ+
>n(ψ) RS10

Π+
>0(∼φ) = ∼(∼φ) RS11

Π+
>n+1(∼φ) = ∼Π+

>n(φ) RS12

The axioms of ACPcr are the axioms of ACPc with axioms CM2–CM3 re-
placed by axioms CM2R–CM3R from Table 19, and the additional axioms for
retrospection given in Table 20. Axioms CM2R and CM3R show that retro-
spections are adapted if two processes proceed in parallel. Axioms RS0–RS12
state that this happens as explained above. By means of axioms RS5–RS12,
the retrospection shift operators on conditions can be eliminated from all
terms of sort C.

The structural operational semantics of ACPcr is described by the transition
rules for ACPc with the first four transition rules for parallel composition
and the two transition rules for left merge replaced by the transition rules
given in Table 21, and the additional transition rules for retrospection given
in Table 22.
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Table 21
Transition rules adapted to retrospection

x
[φ] a−−−→

√

x ‖ y [φ] a−−−→ Π+(y)

y
[φ] a−−−→

√

x ‖ y [φ] a−−−→ Π+(x)

x
[φ] a−−−→ x′

x ‖ y [φ] a−−−→ x′ ‖Π+(y)

y
[φ] a−−−→ y′

x ‖ y [φ] a−−−→ Π+(x) ‖ y′

x
[φ] a−−−→

√

x bb y [φ] a−−−→ Π+(y)

x
[φ] a−−−→ x′

x bb y [φ] a−−−→ x′ ‖Π+(y)

Table 22
Additional transition rules for retrospection

x
[φ] a−−−→

√

Π+(x)
[Π+

>0(φ)] a
−−−−−−→

√
x

[φ] a−−−→ x′

Π+(x)
[Π+

>0(φ)] a
−−−−−−→ Π+

>1(x
′)

x
[φ] a−−−→

√

Π+
>n(x)

[Π+
>n(φ)] a−−−−−−−→

√
x

[φ] a−−−→ x′

Π+
>n(x)

[Π+
>n(φ)] a−−−−−−−→ Π+

>n+1(x
′)

16 Full Retrospective Splitting Bisimulation Models of ACPcr

In this section, we expand the full retrospective splitting bisimulation models
of BPAcr

δ to ACPcr. The operations on CTSr
κ that we associate with most of

the additional operators of ACPcr call for unfolding of transition systems from
CTSr

κ.

For the sake of unfolding, it is assumed that, for each infinite cardinal κ, Sκ
has the following closure property: 11

for all S ⊆ Sκ, {π y 〈s〉 | π ∈ (S × (Cr
κ × A))∗ ∧ s ∈ S} ⊆ Sκ .

We write P′(S) for the set {π y 〈s〉 | π ∈ (S × (Cr
κ × A))∗ ∧ s ∈ S}. The

function # : P′(S) → N is defined by

#(〈s〉) = 0 ,

#(π y 〈s, `, s′〉) = #(π y 〈s〉) + 1 .

The elements of P′(S), for an S ⊆ Sκ, can be looked upon as potential paths of

11 We write 〈 〉 for the empty sequence, 〈e〉 for the sequence having e as sole element
and σ y σ′ for the concatenation of sequences σ and σ′; and we use 〈e1, . . . , en〉 as
a shorthand for 〈e1〉 y . . . y 〈en〉.
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a κ-conditional transition system with S as set of states. A (non-terminating)
path of a transition system (S,−→,−→

√
, s0) ∈ CTSr

κ is a finite alternating
sequence 〈s0, `1, s1, . . . , `n, sn〉 of states from S and labels from Cr

κ × A such

that s0 = s0 and si
`i+1−−→ si+1 for all i < n. The state sn is called the state in

which the path ends.

Let T = (S,−→,−→
√
, s0) ∈ CTSr

κ. Then the set of paths of T , written P(T ), is
the smallest subset of P′(S) such that:

• 〈s0〉 ∈ P(T ),

• if π y 〈s〉 ∈ P(T ) and s `−→ s′, then π y 〈s, `, s′〉 ∈ P(T ).

In order to unfold a transition system, we need for each state s of the original
transition system, for each different path that ends in state s, a different state
in the unfolded transition system. The obvious choice is to take the paths
concerned as states.

Let T = (S,−→,−→
√
, s0) ∈ CTSr

κ. Then the unfolding of T , written Υ(T ), is
defined as follows:

Υ(T ) = (S ′,−→′,−→
√′, s0′) ,

where

S ′ = P(T ) ,

and for every ` ∈ Cr
κ
− × A:

`−→′ =
{
(π y 〈s〉, π y 〈s, `, s′〉)

∣∣∣ π y 〈s〉 ∈ P(T ) ∧ s `−→ s′
}
,

`−→
√′ =

{
π y 〈s〉

∣∣∣ π y 〈s〉 ∈ P(T ) ∧ s `−→
√}

,

s0′ = 〈s0〉 .

The functions upd1 and upd2 defined next will be used in the definition of
parallel composition on CTSr

κ to adapt the retrospection in steps originating
from the first operand and the second operand, respectively.

Let S1, S2 ⊆ Sκ. Then the functions updi :Cr
κ
−×P′(S1×S2) → Cr

κ
−, for i = 1, 2,
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are defined by

updi(α, 〈(s1, s2)〉) = α ,

updi(α, 〈(s1, s2), `, (s
′
1, s

′
2)〉 y π′) = updi(α, 〈(s′1, s′2)〉 y π′) if si 6= s′i ,

updi(α, 〈(s1, s2), `, (s
′
1, s

′
2)〉 y π′) =

updi
(
Π+
>#i(〈(s′1,s

′
2)〉yπ′)(α), 〈(s′1, s′2)〉 y π′

)
if si = s′i .

where

#i(〈(s1, s2)〉) = 0 ,

#i(〈(s1, s2), `, (s
′
1, s

′
2)〉 y π′) = #i(〈(s′1, s′2)〉 y π′) + 1 if si 6= s′i ,

#i(〈(s1, s2), `, (s
′
1, s

′
2)〉 y π′) = #i(〈(s′1, s′2)〉 y π′) if si = s′i .

Henceforth, we write upd(α1, α2, π) for upd1(α1, π) u upd2(α2, π).

We proceed with expanding the full retrospective splitting bisimulation models
of BPAcr

δ to ACPcr.

We associate with the additional operator ‖ an operation ‖̂
r

on CTSr
κ as fol-

lows.

• Let T1, T2 ∈ CTSr
κ. Suppose that Υ(Ti) = (Si,−→i,−→

√
i, s

0
i ) for i = 1, 2, and

Υ(Υ(T1) ‖̂Υ(T2)) = (S,−→,−→
√
, s0). Then

T1 ‖̂
r

T2 = (S,−→′,−→
√′, s0) ,
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where for every (α, a) ∈ Cr
κ
− × A:

(α,a)−−−→′ =
{
(π y 〈(s1, s2)〉, π′ y 〈(s′1, s′2)〉)

∣∣∣ s1 6= s′1 ∧ s2 = s′2 ∧∨
α′∈Cr

κ
−

(
π y 〈(s1, s2)〉

[α′] a−−−→ π′ y 〈(s′1, s′2)〉 ∧

upd1(α
′, π y 〈(s1, s2)〉) = α

)}
∪

{
(π y 〈(s1, s2)〉, π′ y 〈(s′1, s′2)〉)

∣∣∣ s1 = s′1 ∧ s2 6= s′2 ∧∨
α′∈Cr

κ
−

(
π y 〈(s1, s2)〉

[α′] a−−−→ π′ y 〈(s′1, s′2)〉 ∧

upd2(α
′, π y 〈(s1, s2)〉) = α

)}
∪

{
(π y 〈(s1, s2)〉, π′ y 〈(s′1, s′2)〉)

∣∣∣∨
α′,β′∈Cr

κ
−,a′,b′∈A

(
π y 〈(s1, s2)〉

[α′uβ′] a−−−−−→ π′ y 〈(s′1, s′2)〉 ∧

s1
[α′] a′−−−→1 s

′
1 ∧ s2

[β′] b′−−−→2 s
′
2 ∧

upd(α′, β′, π y 〈(s1, s2)〉) = α ∧

a′ | b′ = a
)}

,

(α,a)−−−→
√′ =

{
π y 〈(s1, s2)〉

∣∣∣ s2 6∈ S2 ∧∨
α′∈Cr

κ
−

(
π y 〈(s1, s2)〉

[α′] a−−−→
√
∧

upd1(α
′, π y 〈(s1, s2)〉) = α

)}
∪

{
π y 〈(s1, s2)〉

∣∣∣ s1 6∈ S1 ∧∨
α′∈Cr

κ
−

(
π y 〈(s1, s2)〉

[α′] a−−−→
√
∧

upd2(α
′, π y 〈(s1, s2)〉) = α

)}
∪

{
π y 〈(s1, s2)〉

∣∣∣∨
α′,β′∈Cr

κ
−,a′,b′∈A

(
π y 〈(s1, s2)〉

[α′uβ′] a−−−−−→
√
∧

s1
[α′] a′−−−→

√
1 ∧ s2

[β′] b′−−−→
√

2 ∧

upd(α′, β′, π y 〈(s1, s2)〉) = α ∧

a′ | b′ = a
)}

.

Remark 29 The operation ‖̂
r

on CTSr
κ is defined above in a step-by-step way.

The basic idea behind this definition is twofold:

• T1 ‖̂
r

T2 can be obtained by first composing T1 and T2 to T1 ‖̂ T2 and then
adapting the retrospections in steps of T1 ‖̂ T2;

• unfolding of T1 ‖̂ T2 is needed before the actual adaptations can take place
because the adaptation of the retrospection in a step may be different for the
different paths that end in the state from which the step starts.
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Somewhat surprisingly, in addition, T1 and T2 must be unfolded before the
actual composition takes place. In a step where an action of T1 and an action
of T2 are performed synchronously, the condition under which the action of
T1 can be performed and the condition under which the action of T2 can be
performed are needed to adapt the retrospection in that step correctly. If T1

and T2 are not unfolded before the actual composition takes place, in general,
those conditions cannot be determined uniquely.

The operations on CTSr
κ to be associated with the additional operators bb

and | are defined analogously. The operations on CTSr
κ to be associated with

the additional operators ∂H are defined exactly as the operations on CTSκ
associated with them before. We associate with the additional operators Π+

>n

operations Π̂+
>n

r

on CTSr
κ as follows.

• Let T ∈ CTSr
κ. Suppose that Υ(T ) = (S,−→,−→

√
, s0). Then

Π̂+
>n

r

(T ) = (S,−→′,−→
√′, s0) ,

where for every (α, a) ∈ Cr
κ
− × A:

(α,a)−−−→′ =
{
(π y 〈s〉, π′ y 〈s′〉)

∣∣∣∨
α′∈Cr

κ
−

(
π y 〈s〉 [α′] a−−−→ π′ y 〈s′〉 ∧ Π+

>#(π)+n(α
′) = α

)}
,

(α,a)−−−→
√′ =

{
π y 〈s〉

∣∣∣∨
α′∈Cr

κ
−

(
π y 〈s〉 [α′] a−−−→

√
∧ Π+

>#(π)+n(α
′) = α

)}
.

The operation on CTSr
κ to be associated with the additional operator Π+ is

the same as the operation on CTSr
κ associated with Π+

>0.

We can also show that retrospective splitting bisimilarity is a congruence with
respect to parallel composition, left merge, communication merge, encapsula-
tion, retrospection shift and restricted retrospection shift.

Proposition 30 (Congruence) Let κ be an infinite cardinal. Then for all

T1, T2, T
′
1, T

′
2 ∈ CTSr

κ, T1 ⇔r T ′
1 and T2 ⇔r T ′

2 imply T1 ‖̂
r

T2 ⇔r T ′
1 ‖̂

r

T ′
2,

T1 b̂b
r

T2 ⇔r T ′
1 b̂b

r

T ′
2, T1 |̂

r

T2 ⇔r T ′
1 |̂

r

T ′
2, ∂̂H

r

(T1) ⇔r ∂̂H
r

(T ′
1), Π̂+

r

(T1) ⇔r

Π̂+
r

(T ′
1) and Π̂+

>n

r

(T1)⇔r Π̂+
>n

r

(T ′
1).

PROOF. It is easy to see that, for all T, T ′ ∈ CTSr
κ, T ⇔r T ′ implies

Υ(T ) ⇔r Υ(T ′). Hence, Υ(T1) ⇔r Υ(T ′
1) and Υ(T2) ⇔r Υ(T ′

2). Let R′
1 and

R′
2 be retrospective splitting bisimulations witnessing Υ(T1) ⇔r Υ(T ′

1) and
Υ(T2) ⇔r Υ(T ′

2), respectively; and let R1 be a layered retrospective splitting
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bisimulation witnessing T1 ⇔r T ′
1. Then we construct relations R

‖̂
r , R

b̂b
r , R

|̂
r ,

R
∂̂H

r , R
Π̂+

r and R
Π̂+

>n

r as follows:

• Let S and S ′ be the sets of states of T1 ‖̂
r

T2 and T ′
1 ‖̂

r

T ′
2, respectively, and

let s0 and s0′ be the initial states of T1 ‖̂
r

T2 and T ′
1 ‖̂

r

T ′
2, respectively. Then

R
‖̂
r is the smallest subset of S × Cr

κ × S ′ such that:

· R
‖̂
r (s0,>, s0′);

· if R
‖̂
r (π y 〈(π1, π2)〉, α, π′ y 〈(π′1, π′2)〉) ,

R′
1(π

′′
1

y 〈s1〉, α1, π
′′′
1

y 〈s′1〉) ,

R′
2(π

′′
2

y 〈s2〉, α2, π
′′′
2

y 〈s′2〉) ,

π y 〈(π1, π2), `, (π
′′
1

y 〈s1〉, π′′2 y 〈s2〉)〉 ∈ S ,

π′ y 〈(π′1, π′2), `, (π′′′1
y 〈s′1〉, π′′′2

y 〈s′2〉)〉 ∈ S ′ ,

((s1 6= s′1 ∧ s2 = s′2 ∧ upd1(α1, π y 〈(π1, π2)〉) = α′) ∨

(s1 = s′1 ∧ s2 6= s′2 ∧ upd2(α2, π y 〈(π1, π2)〉) = α′) ∨

(s1 6= s′1 ∧ s2 6= s′2 ∧ upd(α1, α2, π y 〈(π1, π2)〉) = α′)) ,

then R
‖̂
r (π y 〈(π1, π2), `, (π

′′
1

y 〈s1〉, π′′2 y 〈s2〉)〉, α′,

π′ y 〈(π′1, π′2), `, (π′′′1
y 〈s′1〉, π′′′2

y 〈s′2〉)〉) .
• R

b̂b
r is constructed analogous to R

‖̂
r .

• R
|̂
r is constructed analogous to R

‖̂
r .

• R
∂̂H

r = R1 ∩ (S × S ′), where S and S ′ are the sets of states of ∂̂H
r

(T1) and

∂̂H
r

(T ′
1), respectively.

• R
Π̂+

r = {(π y 〈s〉,Π+
>#(π)(α), π′ y 〈s′〉) ∈ S × Cr

κ
− × S ′ | R1(s, α, s

′)}, where

S and S ′ are the sets of states of Π̂+
r

(T1) and Π̂+
r

(T ′
1), respectively.

• R
Π̂+

>n

r = {(πy〈s〉,Π+
>#(π)+n(α), π′y〈s′〉) ∈ S×Cr

κ
−×S ′ | R1(s, α, s

′)}, where

S and S ′ are the sets of states of Π̂+
>n

r

(T1) and Π̂+
>n

r

(T ′
1), respectively.

Given the definitions of parallel composition, left merge, communication
merge, encapsulation, retrospection shift and restricted retrospection shift,
it is straightforward to see that R

‖̂
r , R

b̂b
r , R

|̂
r , R

∂̂H

r , R
Π̂+

r and R
Π̂+

>n

r are ret-

rospective splitting bisimulations witnessing T1 ‖̂
r

T2 ⇔r T ′
1 ‖̂

r

T ′
2, T1 b̂b

r

T2 ⇔r

T ′
1 b̂b

r

T ′
2, T1 |̂

r

T2 ⇔r T ′
1 |̂

r

T ′
2, ∂̂H

r

(T1) ⇔r ∂̂H
r

(T ′
1), Π̂+

r

(T1) ⇔r Π̂+
r

(T ′
1) and

Π̂+
>n

r

(T1)⇔r Π̂+
>n

r

(T ′
1), respectively. 2

Note that, in the proof of Proposition 30, showing that R
Π̂+

r and R
Π̂+

>n

r are
witnesses needs the assumption that R1 is layered.
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The full retrospective splitting bisimulation models Pcr
κ
′ of ACPcr, one for each

infinite cardinal κ, are the expansions of the full retrospective splitting bisim-
ulation models Pcr

κ of BPAcr
δ with an operation f̃

r

on CTSr
κ/⇔

r for each addi-
tional operator f of ACPcr. Those additional operations are defined as follows:

[T1 ]⇔r ‖̃
r

[T2 ]⇔r = [T1 ‖̂
r

T2 ]⇔r ,

[T1 ]⇔r b̃b
r

[T2 ]⇔r = [T1 b̂b
r

T2 ]⇔r ,

[T1 ]⇔r |̃
r

[T2 ]⇔r = [T1 |̂
r

T2 ]⇔r ,

∂̃H
r

([T1 ]⇔r) = [ ∂̂H
r

(T1) ]⇔r ,

Π̃+
r

([T1 ]⇔r) = [ Π̂+
r

(T1) ]⇔r ,

Π̃+
>n

r

([T1 ]⇔r) = [ Π̂+
>n

r

(T1) ]⇔r .

Parallel composition, left merge, communication merge, encapsulation, retro-
spection shift and restricted retrospection shift on CTSr

κ/⇔
r are well-defined

because ⇔r is a congruence with respect to the corresponding operations on
CTSr

κ.

The structures Pcr
κ
′ are models of ACPcr.

Theorem 31 (Soundness of ACPcr) For each infinite cardinal κ, we have
Pcr
κ
′ |= ACPcr.

PROOF. Because Pcr
κ
′ is an expansion of Pcr

κ , it is sufficient to show that the
additional axioms for ACPcr are sound. The soundness of all additional axioms
follows straightforwardly from the definitions of the ingredients of Pcr

κ
′. 2

Above, the full retrospective splitting bisimulation models Pcr
κ of BPAcr

δ have
been expanded to obtain the full retrospective splitting bisimulation models
Pcr
κ
′ of ACPcr. We will loosely write Pcr

κ for Pcr
κ
′.

In the full retrospective splitting bisimulation models of ACPcr, guarded re-
cursive specifications over ACPcr have unique solutions.

Theorem 32 (Unique solutions in Pcr
κ ) For each infinite cardinal κ,

guarded recursive specifications over ACPcr have unique solutions in Pcr
κ .

PROOF. The proof follows the same line as the proof of Theorem 10. Here,
it is crucial that it is straightforward to define a normal form of elements of
CTSr

κ such that: (a) each element of CTSr
κ is retrospective splitting bisimilar

to its normal form and (b) two elements of CTSr
κ are retrospective splitting

bisimilar iff their normal forms are splitting bisimilar. 2

56



Thus, the full retrospective splitting bisimulation models Pcr
κ
′′ of ACPcr with

guarded recursion are simply the expansions of the full retrospective splitting
bisimulation models Pcr

κ of ACPcr obtained by associating with each constant
〈X|E〉 the unique solution of E for X in the full retrospective splitting bisim-
ulation model concerned.

17 Evaluation of Retrospective Conditions

In this section, we add condition evaluation operators and generalized condi-
tion evaluation operators to ACPcr. As in the case of ACPc, these operators
require to fix an infinite cardinal λ. By doing so, full retrospective splitting
bisimulation models with process domain CTSr

κ/⇔
r for κ > λ are excluded.

Henceforth, we write Hr
λ for the set of all λ-complete endomorphisms of Cr

λ.

In the case of ACPcr, there are λ-complete condition evaluation operators
CEh:P → P and CEh:C → C, and generalized λ-complete condition evaluation
operators GCEh : P → P and GCEh : C → C, for each h ∈ Hr

λ. We also need
the following auxiliary operators:

• for each h ∈ Hr
λ, n ∈ N, the unary retrospection update operator Πh

n:P → P;
• for each h ∈ Hr

λ, n ∈ N, the unary retrospection update operator Πh
n:C → C.

In the case of ACPcr, it is assumed that a fixed but arbitrary function eff :
A × Hr

λ → Hr
λ has been given. The function eff is extended to Aδ such that

eff(δ, h) = h for all h ∈ Hr
λ.

The condition evaluation operators and generalized condition evaluation oper-
ators cannot be added to ACPcr in the same way as they are added to ACPc.
First of all, retrospective conditions may refer back too far to be evaluated.
The effect is that, in condition evaluation or generalized condition evaluation
of a process according to some endomorphism, the retrospective conditions
that refer back further than the beginning of the process have to be left un-
evaluated. This is accomplished by the retrospection update operators men-
tioned above. In the case of generalized condition evaluation, there is another
complication. Recall that generalized condition evaluation allows the results
of condition evaluation to change by performing an action. In the presence
of retrospection, different parts of a condition may have to be evaluated dif-
ferently because of such changes. The effect is that, in generalized condition
evaluation of a process according to some endomorphism, after an action of
the process is performed, the subsequent retrospective conditions that refer
back to the beginning of the process have to be evaluated according to that
endomorphism as well. This is also accomplished by the retrospection update
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Table 23
New axioms for (generalized) condition evaluation (a ∈ Aδ)

CEh(a) = a CE1

CEh(a · x) = a · CEh(Πh
1(x)) CE2R

CEh(x+ y) = CEh(x) + CEh(y) CE3

CEh(φ :→ x) = Πh
0(φ) :→ CEh(x) CE4R

GCEh(a) = a GCE1

GCEh(a · x) = a · GCEeff(a,h)(Πh
1(x)) GCE2R

GCEh(x+ y) = GCEh(x) + GCEh(y) GCE3

GCEh(φ :→ x) = Πh
0(φ) :→ GCEh(x) GCE4R

Table 24
Axioms for retrospection update (a ∈ Aδ, η ∈ Cat, η′ ∈ Cat ∪ {⊥,>})
Πh
n(a) = a RU1

Πh
n(a · x) = a ·Πh

n+1(x) RU2

Πh
n(x+ y) = Πh

n(x) + Πh
n(y) RU3

Πh
n(φ :→ x) = Πh

n(φ) :→Πh
n(x) RU4

Πh
n(⊥) = ⊥ RU5

Πh
n(>) = > RU6

Πh
0(η) = η′ if h(η) = η′ RU7

Πh
n+1(η) = η RU8

Πh
n(−φ) = −Πh

n(φ) RU9

Πh
n(φ t ψ) = Πh

n(φ) tΠh
n(ψ) RU10

Πh
n(φ u ψ) = Πh

n(φ) uΠh
n(ψ) RU11

Πh
0(∼φ) = ∼φ RU12

Πh
n+1(∼φ) = ∼Πh

n(φ) RU13

operators mentioned above.

For a clear understanding of the retrospection update operators, the following
additional remarks are in order. By merely evaluating ahead as described
above, in the end only the retrospective conditions that refer back further
than the beginning of the process are unevaluated. In other words, by dealing
with the second complication, the first complication is dealt with as well,
except for the conditions occurring at the beginning of the process. Even if
there is no necessity for evaluating ahead because of the second complication,
it still deals properly with the first complication.

In the case of ACPcr, the additional axioms for CEh and GCEh, where h ∈ Hr
λ,

are the axioms given in Tables 23 and 24. These additional axioms differ from
the additional axioms in the absence of retrospection (Tables 8 and 10) in that
axioms CE2, CE4, GCE2 and GCE4 have been replaced by axioms CE2R,
CE4R, GCE2R and GCE4R, and axioms CE6–CE11 by axioms RU1–RU13.
Axioms CE2R, CE4R, GCE2R, GCE4R and RU1–RU13 state that condition
evaluation and generalized condition evaluation take place as explained above.
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Table 25
New transition rules for (generalized) condition evaluation

x
[φ] a−−−→

√

CEh(x)
[Πh

0 (φ)] a−−−−−−→
√ Πh

0(φ) 6= ⊥
x

[φ] a−−−→ x′

CEh(x)
[Πh

0 (φ)] a−−−−−−→ CEh(Πh
1(x′))

Πh
0(φ) 6= ⊥

x
[φ] a−−−→

√

GCEh(x)
[Πh

0 (φ)] a−−−−−−→
√ Πh

0(φ) 6= ⊥

x
[φ] a−−−→ x′

GCEh(x)
[Πh

0 (φ)] a−−−−−−→ GCEeff(a,h)(Πh
1(x′))

Πh
0(φ) 6= ⊥

x
[φ] a−−−→

√

Πh
n(x)

[Πh
n(φ)] a−−−−−−→

√ Πh
n(φ) 6= ⊥

x
[φ] a−−−→ x′

Πh
n(x)

[Πh
n(φ)] a−−−−−−→ Πh

n+1(x
′)

Πh
n(φ) 6= ⊥

Example 33 We return to Example 25, which is concerned with a pedestrian
who uses a crossing with traffic lights to cross a road with busy traffic safely,
but acts unthinkingly. Recall that the description of the behaviour of the un-
thinkingly acting pedestrian given in Example 25 is as follows:

PED ′ =

arrive ·make req · (∼green :→ cross +∼red :→ (green :→ cross)) .

Like in Example 15, let hg be such that hg(green) = > and hg(red) = ⊥,
let hr be such that hr(green) = ⊥ and hr(red) = >, and let eff be such that
eff(make req , hr) = hg and eff(a, h) = h otherwise. Then we can derive the
following:

GCEhg(PED ′) = arrive ·make req · cross ,

GCEhr(PED ′) = arrive ·make req · cross .

As to be expected, the unthinkingly acting pedestrian will act the same regard-
less the color of the traffic light for pedestrians on arrival.

The structural operational semantics of ACPcr extended with condition evalu-
ation and generalized condition evaluation is described by the transition rules
for ACPcr and the transition rules given in Table 25.

The full retrospective splitting bisimulation models of ACPcr with condition
evaluation and/or generalized condition evaluation are not simply the expan-
sions of the full retrospective splitting bisimulation models Pcr

κ of ACPcr, for
infinite cardinals κ ≤ λ, obtained by associating with each operator CEh
and/or GCEh the corresponding re-labeling operation on conditional transi-
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Table 26
Additional axioms for last action conditions (a ∈ A)

a · x = a · (Ja :→ x) J

tion systems with retrospection. As suggested by the structural operational
semantics of ACPcr extended with condition evaluation and generalized con-
dition evaluation, these re-labeling operations have to be adapted in a way
similar to the way in which parallel composition had to be adapted to the
case with retrospection in Section 16. As mentioned before, full retrospective
splitting bisimulation models with process domain CTSr

κ/⇔
r for κ > λ are

excluded.

Proposition 16, stating that the generalized λ-complete condition evaluation
operators supersede the λ-complete condition evaluation operators in the set-
ting of ACPc, goes through in the setting of ACPcr.

Adding state operators to ACPcr can be done on the same lines as adding
generalized evaluation operators to ACPcr, but is more complicated. Roughly
speaking, signal emission can be added to ACPcr in the same way as it is added
to ACPc provided that signals are taken from C. No adaptations like for gen-
eralized condition evaluation are needed because signal emission corresponds
to condition evaluation that does not persist over performing an action. This
property also points at one of the differences between the signal-emission ap-
proach to condition evaluation and the other approaches treated in this paper:
retrospection has to be resolved in the signal-emission approach before con-
dition evaluation can take place. The case where signals are taken from Cr is
expected to be too complicated to handle.

18 A Variant of ACPcr with Last Action Conditions

In this section, we outline a process algebra built on ACPcr. It is a variant of
ACPcr in which condition evaluation takes place implicitly. The actions that
have been performed in preceding steps determine the result of the implicit
condition evaluation. The evaluation mechanism concerned requires a minor
adaptation of the axioms of ACPcr.

We take the set {Ja | a ∈ A} of last action conditions as the set of atomic
conditions Cat. The intuition is that Ja indicates that action a is performed
just now. The retrospection operator now allows for using conditions which
express that a certain number of steps ago a certain action must have been
performed.

The additional axioms for last action conditions are given in Table 26. More-
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Table 27
Axioms adapted to last action conditions (a, b ∈ Aδ, c ∈ A)

a · x | b = (a | b) ·Πa
0(x) CM5J

a | b · x = (a | b) ·Πb
0(x) CM6J

a · x | b · y = (a | b) · (Πa
0(x) ‖Πb

0(y)) CM7J

Π+
>0(Jc) = ∼Jc RS7Ja

Π+
>n+1(Jc) = Jc RS7Jb

Πa
n(b) = b LAU1

Πa
n(b · x) = b ·Πa

n+1(x) LAU2

Πa
n(x+ y) = Πa

n(x) + Πa
n(y) LAU3

Πa
n(φ :→ x) = Πa

n(φ) :→Πa
n(x) LAU4

Πa
n(⊥) = ⊥ LAU5

Πa
n(>) = > LAU6

Πa
0(Jc) = ⊥ if a 6= c LAU7

Πa
0(Jc) = > if a = c LAU8

Πa
n+1(Jc) = Jc LAU9

Πa
n(−φ) = −Πa

n(φ) LAU10

Πa
n(φ t ψ) = Πa

n(φ) tΠa
n(ψ) LAU11

Πa
n(φ u ψ) = Πa

n(φ) uΠa
n(ψ) LAU12

Πa
0(∼φ) = ∼φ LAU13

Πa
n+1(∼φ) = ∼Πa

n(φ) LAU14

over, axioms CM5–CM7 (Table 4) and RS7 (Table 20) must be replaced by
axioms CM5J–CM7J, RS7Ja and RS7Jb from Table 27. Axioms CM5–CM7
must be replaced by axioms CM5J–CM7J because, after performing a | b, it
makes no sense to refer back to the actions performed just now by the processes
originally following a and b in the process following a | b. Retrospective con-
ditions in the process originally following a that indicate that a is performed
just now should be evaluated to > and the ones that indicate that another
action is performed just now should be evaluated to ⊥. Retrospective con-
ditions in the process originally following b should be evaluated analogously.
This is accomplished by the auxiliary operators Πa

n : P → P and Πa
n : C → C

(for each a ∈ Aδ and n ∈ N) of which the defining axioms are axioms LAU1–
LAU14 from Table 27. Axiom RS7 must be replaced by axioms RS7Ja and
RS7Jb because of the retrospective nature of last action conditions. We mean
by this that Ja can be viewed as a condition of the form ∼η, where η indi-
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cates that action a is performed next. We have not introduced corresponding
atomic conditions because their use without restrictions would be problematic
in alternative composition.

From the axioms of BPAcr
δ and the additional axiom J, we can derive the

equation a · x+ b · y = (a+ b) · (Ja :→ x+Jb :→ y). This equation can be used
to reduce the number of subprocesses of a process. For example, the equation
a·a′+b·b′ = (a+b)·(Ja :→a′+Jb :→b′) shows a reduction from 3 subprocesses
to 2 subprocesses and the equation a ·(a1 ·a′1+a2 ·a′2)+b ·(b1 ·b′1+b2 ·b′2) = (a+
b)·(Ja :→(a1+a2)·(Ja1 :→a′1+Ja2 :→a′2)+Jb :→(b1+b2)·(Jb1 :→b′1+Jb2 :→b′2))
shows a reduction from 7 subprocesses to 4 subprocesses.

In order to obtain the full retrospective splitting bisimulation models of the
extension of ACPcr with last action conditions, retrospective splitting bisimi-
larity has to be adapted: in the definition of retrospective splitting bisimula-
tion (see Section 14), the two occurrences of B(s′1,∼α′, s′2) must be replaced
by B(s′1,∼α′ u Ja, s′2).

The operators Πa
n are reminiscent of the operators Πh

n from Section 17. In
fact, if we would exclude full retrospective splitting bisimulation models with
process domain CTSr

κ/⇔
r for κ greater than some infinite cardinal λ, Πa

n could
have been replaced by Πha

n , where ha ∈ Hr
λ for a ∈ A is defined by ha(Ja) = >

and ha(Jb) = ⊥ if a 6= b and hδ ∈ Hr
λ is defined by hδ(Ja) = ⊥.

19 Concluding Remarks

In this paper, we build on earlier work on ACP. Conditional expressions of the
form ζ :→p were added to ACP for the first time in [3]. In [4], it was proposed to
take the domain of a free Boolean algebra over a given set of generators as the
set of conditions. Splitting bisimilarity is based on the variant of bisimilarity
that was defined for the first time in [4]. The formulation given here is closer
to the one given in [5]. State operators and signal emission were added to
ACP for the first time in [22] and [6], respectively. The condition evaluation
operators, the generalized evaluation operators and the retrospection operator
are new. The variants of splitting bisimilarity, i.e. signal-observing splitting
bisimilarity and retrospective splitting bisimilarity, are new as well.

Full bisimulation models were presented in [19] for a first-order extension
of ACP. Those models are basically the graph models of ACP, which are
most extensively described in [20]. The full splitting bisimilation models of
ACPc presented in this paper, as well as the full signal-observing splitting
bisimilation models of ACPcs and the full retrospective splitting bisimilation
models of ACPcr, are adaptations of the full bisimulation models from [19]. The
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adaptations, in particular for the models of ACPcs and ACPcr, are substantial.

The above-mentioned variants of full bisimulation models take into account in-
finitely branching processes, even in the case where the set of atomic conditions
(the set of generators) is infinite. We are not aware of previous work presenting
models of such generality for a process algebra with conditional expressions.
We are also not aware of previous work studying condition evaluation or ret-
rospective conditions in a process algebra with conditional expressions.

In some extensions of ACP with conditional expressions, the conditions are
propositions of a three-, four- or five-valued propositional logic, see e.g. [25,26].
It is not clear whether the work presented in this paper can be adapted to
those cases, because they bring us outside the domain of Boolean algebras.

In this paper, we give a survey of algebraic theories about processes that in-
clude conditional expressions and the main models of those theories. Although
our aim is to provide complete axiomatizations, we do not present complete-
ness theorems. We conjecture that the axioms of ACPc, ACPcs and ACPcr form
complete axiomatizations of the full splitting bisimulation models of ACPc,
the full signal-observing splitting bisimilation models of ACPcs and the full
retrospective splitting bisimilation models of ACPcr, respectively, with respect
to equations between closed terms; and leave the proofs for future work.

Other options for future work include: development of an extension of ACPcr

with state operators, development of an extension of ACPcr with signal emis-
sion, development of first-order extensions of ACPc, ACPcs and ACPcr in the
style of [19], and investigations into ways to deal with the history pointers
from [8] in the setting of ACPcr.

After the report version of this paper appeared, we have written several closely
related papers, namely [27–30]. The first of those, i.e. [27], is essentially an
extended abstract of Sections 1–10 of this paper. In [28], it is shown that
the threads and services considered in that paper can be viewed as processes
that are definable over ACPc. In [29], we present ACPcc, a variant of ACPc

in which the conditions concern the enabledness of actions in the context in
which a process is placed. With those conditions, it becomes easy to model
preferential choices, which are usually modelled rather indirectly using a pri-
ority mechanism. In [30], we add a constant for a process that is only capable
of terminating successfully to ACPc, ACPcs and ACPcr. It happens that the
addition of this constant, often referred to as the empty process constant,
is unproblematic. Therefore, we look upon [30] primarily as supplementary
material to this paper.
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