Real time process algebra with
time-dependent conditions

J.C.M. Baeten?, C.A. Middelburg ®"*

aComputing Science Department, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, Netherlands

b Department of Philosophy, Utrecht University, P.O. Box 80126,
3508 TC Utrecht, Netherlands

Abstract

We add conditionals with time-dependent conditions to the real time process al-
gebra with parametric timing from the framework of process algebras with timing
presented by Baeten and Middelburg (Handbook of Process Algebra, Elsevier, 2001,
Ch. 10). This extension facilitates flexible dependence of process behaviour on ini-
tialization time. We show that the conditions concerned generalize the conditions
introduced earlier in a discrete time setting by Baeten and Bergstra (Formal Aspects
of Computing 8 (1996) 188-208).

Key words: process algebra, real time, discrete time, absolute timing, relative
timing, parametric timing, initialization, conditionals, time-dependent conditions.

1 Introduction

Algebraic concurrency theories such as ACP [1-3], CCS [4,5] and CSP [6,7]
have been extended to deal with time-dependent behaviour in various ways. In
Ref. [8], we presented results of a systematic study of some of the most impor-
tant issues relevant to dealing with time-dependent behaviour of processes —
viz. absolute versus relative timing, continuous versus discrete time scale, and
separation versus combination of execution of actions and passage of time — in
the setting of ACP. We presented real time and discrete time versions of ACP
with both absolute timing and relative timing, starting with a new real time

* Corresponding author. Telephone: +31 40 247 5157, fax: +31 40 247 5361.
Email addresses: josb@win.tue.nl (J.C.M. Baeten), keesm@win.tue.nl (C.A.

Middelburg).

Preprint submitted to Elsevier Science 7 February 2001

version of ACP with absolute timing called ACP%**. We demonstrated that
ACP®*" extended with integration and initial abstraction generalizes the pre-
sented real time version with relative timing and the presented discrete time
version with absolute timing. Integration provides for alternative composition
over a continuum of alternatives; and initial abstraction, being reminiscent of
A-abstraction but specific to the case where the parameter is process initial-
ization time, provides a way of forming processes with parametric timing. The
extension with integration enables embedding of discrete time process alge-
bras and the extension with initial abstraction enables embedding of process
algebras with relative timing. We focussed on versions of ACP with timing
where execution of actions and passage of time are separated, but explained
how versions with time stamping of actions can be obtained.

The real time versions of ACP presented in Ref. [8], unlike those presented
in Refs. [9,10], do not exclude the possibility of two or more actions to be
performed consecutively at the same point in time. That is, they include urgent
actions, similar to ATP [11] and the different versions of CCS with timing [12—
14]. This feature seems to be essential to obtain simple and natural embeddings
of discrete time versions as well as useful in practice when describing and
analyzing systems in which actions occur that are entirely independent. This
is, for example, the case for actions that happen at different locations in a
distributed system. In Refs. [9,10], ways to deal with independent actions are
proposed where such actions take place at the same point in time by treating
it as a special case of communication. This is, however, a real burden in the
description and the analysis of the systems concerned.

In this paper we extend ACP% extended with integration and initial abstrac-
tion further with conditionals in which the condition depends on time. The
conditions concerned generalize the conditions introduced earlier in Ref. [15]
to extend discrete time versions of ACP with conditionals in which the condi-
tion depends on time. The extension allows an interesting expansion property
of processes with parametric timing, called time spectrum expansion, to be
expressed. It is practically useful as well, because it facilitates flexible depen-
dence of process behaviour on initialization time. We also extend the discrete
time counterpart of ACP** presented in Ref. [8] with conditionals in which
the condition depends on time. In this case, the conditions are essentially the
same as the conditions introduced earlier in Ref. [15]. For all that, the em-
phasis of this paper is on a real time version with parametric timing that
essentially encompasses all real time and discrete time versions of ACP with
absolute timing and relative timing presented in Ref. [8].

In Ref. [8], our aim was to present a coherent collection of algebraic concur-
rency theories generalizing ACP that deal with time-dependent behaviour in
different ways. In this paper, we extend the main real time and discrete time
versions of ACP presented in Ref. [8] with conditionals in which the condition

depends on time. By showing that the discrete time version with conditionals
can be embedded in the real time version with conditionals, we demonstrate
that the extensions with conditionals do not destroy the coherence.

We also give an example of the use of the presented version of ACP®*' with
conditionals. The example concerns the description of the behaviour that is rel-
evant to railroad crossing control. We do not go into detail about the analysis of
the described railroad crossing system, but we do mention some of the proper-
ties that can be checked using generalizations of the standard process algebraic
techniques of linearization and expansion. Various standard process algebraic
techniques for a detailed analysis of systems described using ACP-style pro-
cess algebras, including linearization and expansion, can be generalized to the
presented version of ACP®* with conditionals. However, a treatment of these
techniques in the setting of this real time version of ACP is considered to go
beyond the scope of this paper.

Various constants and operators of real time versions of ACP have counter-
parts in discrete time versions of ACP; and various constants and operators of
versions of ACP with absolute timing have counterparts in versions of ACP
with relative timing. A notational distinction is made between a constant or
operator of one version and its counterparts in another version, by means of
different decorations of a common symbol, if they should not be identified in
case the versions are integrated. The embeddings of discrete time versions in
real time versions (with integration) and the embeddings of versions with rel-
ative timing in versions with absolute timing (with initial abstraction) permit
discrete time versions and real time versions to be integrated and versions
with relative timing and versions with absolute timing to be integrated, re-
spectively. We can, for example, describe a process as the parallel composition
of a process described in a real time version with relative timing and a pro-
cess described in a discrete time version with absolute timing. Of course, so
long as one uses a single version, one can safely omit the above-mentioned
decorations.

The structure of this paper is as follows. First, we review ACP®* and its exten-
sion with integration and initial abstraction in Sections 2. Then, in Section 3,
we add conditionals in which the condition depends on time to this real time
version of ACP. After that, in Section 4, we first briefly review the discrete
time counterpart of ACP®** and then add conditionals in which the condition
depends on time to this discrete time version of ACP. In Section 5, we show
that the discrete time version with conditionals can be embedded in the real
time version with conditionals.

2 Real time process algebra with absolute timing

In this section, we review ACP%3, the real time process algebra with absolute
timing introduced in Ref. [8], and its extension with integration and initial
abstraction. A detailed account of this real time version of ACP and these
extensions is given in Ref. [8]. The axioms and operational semantics rules —
extracted from Ref. [8] — are given in Appendix A.

In case of ACP®* | it is assumed that a theory of the non-negative real numbers
has been given. Its signature has to include the constant 0: — R>, the opera-
tor +:R>¢ x R>g — R>g, and the predicates < :Rsp X R>p and = :R>¢ x R>.
In addition, this theory has to include axioms that characterize 4+ as a com-
mutative and associative operation with 0 as a neutral element and < as a
total ordering that has 0 as its least element and that is preserved by +.

In ACP®* as in the other versions of ACP with timing presented in this
paper, it is assumed that a fixed but arbitrary set A of actions has been given.
It is also assumed that a fixed but arbitrary communication function, i.e. a
partial, commutative and associative function v: A x A — A, has been given.
The function 7 is regarded to give the result of the synchronous execution of
any two actions for which this is possible, and to be undefined otherwise. In
ACP® | as in the other versions of ACP with timing presented in this paper,
the term communication is used in the sense of synchronous communication:
communication is considered to take place only when actions are performed
synchronously. The weak restrictions on 7 allow many kinds of communication
between parallel processes to be modeled.

First, in Section 2.1, we treat BPA®® basic standard real time process algebra
with absolute timing, in which parallelism and communication are not con-
sidered. After that, in Section 2.2, BPA® is extended to ACP* to deal with
parallelism and communication as well. In Section 2.3, integration and ini-
tial abstraction are added to ACP®¥*. Finally, some useful additional axioms,
derivable for closed terms, and elimination results are given in Section 2.4.

2.1 Basic process algebra

In BPA®3 we have the sort P of processes, the urgent action constants a: — P
(one for each a € A), the urgent deadlock constant 5 — P, the deadlocked
process constant 0: — P, the alternative composition operator +: P x P — P,
the sequential composition operator -: P x P — P, the absolute delay operator
Oqps : R0 X P — P, the absolute time-out operator v,y :R>o x P — P, and the
absolute initialization operator U, : Rsg X P — P.

The process a is only capable of performing action a, immediately followed by
successful termination, at time 0. The process 9, although existing at time 0,
is incapable of doing anything. The process 4 stands a process that exhibits
inconsistent timing at time 0. This process, which is called immediate deadlock
in Refs. [8,15], can be viewed as a process that has already deadlocked at
time 0. The process o, () is the process z shifted in time by p. Thus, the
process afbs(g) is capable of idling from time 0 upto and including time p
— and at time p it gets incapable of doing anything — whereas the process
o”.(0) is only capable of idling from time 0 upto, but not including, time p.
The process = -y is the process x followed upon successful termination by
the process y. The process x + y is the process that proceeds with either the
process x or the process y, but not both. As in the untimed case, the choice
is resolved upon execution of the first action, and not before. We also have
two auxiliary operators: v, and 7,, . The process vh (z) is the part of x that
starts to perform actions before time p. The process U4 (x) is the part of =
that starts to perform actions at time p or later. The operator v, , makes it
easy to capture the interaction of absolute delay with sequential composition
in the axioms of BPA®*. The operator T, is used to anticipate in the axioms
of BPA®® the addition of initial abstraction, by which a process cannot only
to be started up at time 0 but also at other time points.

We assume that an infinite set of variables of sort P has been given. Given
the signature of BPAS terms of BPA® are constructed in the usual way.
We will in general use infix notation for binary operators. The need to use
parentheses is further reduced by ranking the precedence of the binary oper-
ators. Throughout this paper we adhere to the following precedence rules: (i)
the operator - has the highest precedence, (ii) the operator + has the lowest
precedence, and (iii) all other operators have the same precedence. We will
also use the following abbreviation. Let (¢;);ez be an indexed set of terms of
BPA®* where Z = {i1,...,i,}. Then we write Y ;c7t; for t;, + ...+ ¢;,. We
further use the convention that > ;.7 ¢; stands for Sif T =0.

We denote variables by z, 2, y,1/,.... We use a,d’,b,l/, ... to denote elements
of AU {6} in the context of an equation, and elements of A in the context of
an operational semantics rule. Furthermore, we use H to denote a subset of
A. We denote elements of R> by p,p’,¢,¢" and elements of R.o by r,7'. We
write A; for AU {0}.

Azxiom system

The axiom system of BPA® consists of the equations given in Table 1. For
a discussion of the axioms of BPA® see Ref. [8]. The axioms concerning the
interaction of absolute delay with sequential composition become easier to
understand by realizing that for all closed BPA*'-terms ¢ and for all p > 0

Table 1
Axioms of BPA® (q € As, p,q >0, r > 0)

tty=y+ta Al vh (8 =4 SATO0
(a;+y)+z:x+(y+z) A2 Ugbs(a:) =4 SATO1
rt+r==x A3 U:bs(a) =a SATO2
(z4+y)-z=z-2+y-2 A4 Uft;:q(ofbs(x):o’fbs(vgbs(fv)) SATO3
@) 2= (y-2) A5 () =)t) SATOM
t+é=zx A6ID B (@-y) =08 (2) -y SATOb5
brxz=34 ATID

79, (8) =4 SAIOa
09.(z) =03 (z) SAT1 ol () = 07, (8) SAIOb
ob (08 (2)) = o5t (x) SAT2 oo, (@) = @ SAIL
oh (x) +oh (y) = oF, (z +y) SAT3 on (@) = o7, (8) SAI2
Ufbs(w) ' Ufbs y) = Ufbs (CL‘ : 5) SAT4 Efbtq (O'st(iv)) = Ufbs (E;Ibs (Eé?bs (CL‘))) SAI3
Ufbs(w) : (Ufbs y) + Ufbs(z)) = o-ezajbs(:D : 6é?bs(z)) SAT5 Efbs(m + y) = E:bs z) + 6ez:bs(y) SAl4
Ufbs(5) cx = Ufbs(5) SAT6 ol (z-y) =78 (2)-y SAI5
it+d=a A6SAa
ol (@) + 0 =07 (z) ABSAD
drx=4 ATSA

either ¢ = vl (¢) is derivable or there exists a closed term ¢’ such that ¢ =

vl (1) + ob (') is derivable. Besides, U9 (t) = t is derivable for all closed
BPAS?_terms t. The above-mentioned representation result for closed BPASt-
terms is a corollary of the following two lemmas from Ref. [8], which are used
there to shorten the calculations in the proof of an embedding theorem.

Lemma 1 In BPA% gnd ACP®, as well as in the further extensions with
restricted integration and initial abstraction:

(1) the equation t = Vi (t) + Ta(t) is derivable for all closed terms t such
that t = 09 (t) and t =t + o, (9);
(2) the equations t = v%, (t) and Th(t) = 0%, () are derivable for all closed
terms t such that t =00, (t) and t # t + o, (9).
Lemma 2 In BPA®' agnd ACP®', as well as in the further extensions with
restricted integration and initial abstraction, for each p € Rso and each closed
term t, there exists a closed term t' such that O (t) = of (¢') and t' = VO (¥).
Lemma 1 indicates that a process that is able to reach time p can be regarded
as being the alternative composition of the part that starts to perform actions
before p and the part that starts to perform actions at p or later. Lemma 2
shows that the part of a process that starts to perform actions at time p or
later can always be regarded as a process shifted in time by p.

Example 3 We take A such that a,b,c € A. From the azioms of BPA® we

can, for example, derive the equations:

abs(b) + Uabs()) = Ugbls(a O—a?b?;(g))

026 (@) - (
02s (@) - (036 (0) - 735 (€)) = olu(@ - o (0 - 9))
Ube(03bs (@) + abs()) = ojis(a) + 035 (0)
Ulia(0366(@) + 03 (0)) = 02 (D)
Uia(0366(@) + 05 (0)) = 0% (9)

Semantics

A real time transition system over A consists of a set of states S, a root state
p € S and four kinds of relations on states:

a binary relation (_,p) = (_,p) for each a € A, p € Ry,

a unary relation (_,p) = (y/,p) for each a € A, p € Ry,

a binary relation (_, p) v (_, q) for each r € Rx, p, ¢ € Ry where ¢ = p+r,
a unary relation (_,p)1 for each p € Ry;

satisfying

o if (s,p) " (3 q), r,r' > 0, then there is a s” such that (s, p) v (s”, p+7)
and (s",p+r) = (s',q);
o if (s,p)+> (s",p+7r)and (s",p+ 1) = (s, q), then (s,p) —— SALIN (s',q).

The four kinds of relations are called action step, action termination, time
step and deadlocked relations, respectively. We write RTTS(A) for the set of
all real time transition systems over A.

We shall associate a transition system in RTTS(A) with a closed term ¢ of
BPAS®a by taking the set of closed terms of BPA®® as set of states and the
closed term t as root state, and defining the action step, action termination,
time step and deadlocked relations using rules in the style of Plotkin [16]. A
semantics given in this way is called a structural operational semantics.

Notice that, by taking closed terms as states, the relations can be explained
as follows:

e (t,p) = (t',p): process t is capable of first performing action a at time p
and then proceeding as process t';

e (t,p) % (\/,p): process t is capable of first performing action a at time p
and then terminating successfully;

o (t,p) v (', q): process t is capable of first idling from time p to time ¢ and

then proceeding as process t';
e (t,p)T: process t has already deadlocked at time p.

The rules for the operational semantics have the form - , where s is
optional. They are to be read as “if h; and ...and h,, then c; and ...and

Cns provided s”. The conclusions ¢y, ..., ¢, are positive formulas of the form
{t,py % (t',p), (t,p) % (V/,p), (t,p) v (t',q) or {t,p) 1, where ¢ and t' are
open terms of BPA®'. The premises hi,...,h,, are positive formulas of the

above forms or negative formulas of the form —((¢, p)). The rules are actually
rule schemas. The optional s is a side-condition restricting the actions over
which a, b and ¢ range and the non-negative real numbers over which p, ¢ and
r range.

The structural operational semantics of BPA®* is described by the rules given
in Table A.1. For a discussion of some of the rules for the operational semantics
of BPA®" see Ref. [8]. On the basis of the rules for the operational semantics
of BPA% the operators of BPA® can be directly defined on the set of real
time transition systems in a straightforward way.

By identifying bisimilar processes we obtain our preferred model of BPA®,
One process is (strongly) bisimilar to another process means that if one of the
processes is capable of doing a certain step, i.e. performing a certain action
at a certain time or idling from a certain time to another, and next going on
as a certain subsequent process then the other process is capable of doing the
same step and next going on as a process bisimilar to the subsequent process.
More precisely, a bisimulation on RTTS(A) is a symmetric binary relation R
on the set of states S such that:

e if R(s,t) and (s,p) = (s',p), then there is a ¢’ such that (¢,p) % (t',p) and
R(s',1');

o if R(s,t), then (s,) = (Vo) iff (¢, p) = (V) p);

o if R(s,t) and (s, p) > (s', q), then there is a ¢’ such that (t,p) +~ (#',¢) and
R(s',1');

o if R(s t), then (s, p) 1 iff (¢, p) 1.

We say that two states s and t are bisimilar, written s &2 ¢, if there exists a
bisimulation R such that R(s,t).

Bisimulation equivalence is a congruence for the operators of BPA®, For this
reason, the operators of BPAS? can be defined on the set of bisimulation
equivalence classes. We can prove that this results in a model for BPAS, i.e.
all equations derivable in BPA®® hold. In other words, the axioms of BPASsa
form a sound axiomatization for the model based on bisimulation equivalence
classes. As in the case of the other axiomatizations presented in this paper,
we leave it as an open problem whether the axioms of BPA® form a complete
axiomatization for this model.

2.2 Algebra of communicating processes

In ACP®** we have, in addition to the constants and operators of BPA®* the
parallel composition operator ||:P x P — P, the left merge operator || :PxP —
P, the communication merge operator |:PxP — P, the encapsulation operators
Oy : P — P (for each H C A), and the absolute urgent initialization operator
Vaps - P—P.

The process x || y is the process that proceeds with the processes x and y in
parallel. It may start to perform actions by (i) performing an action of z if x
can do so before or at the ultimate time for y to start performing actions or to
deadlock, (ii) performing an action of y if y can do so before or at the ultimate
time for x to start performing actions or to deadlock or (iii) performing an
action of x and an action of y synchronously if x and y can do so at the same
time. Furthermore, we have the encapsulation operators dy (one for each
H C A) which turns all urgent actions a, where a € H, into 5. As in ACP,
we also have the auxiliary operators || and | to get a finite axiomatization of
the parallel composition operator. The processes z || y and x || y are the same
except that = || y must start to perform actions by performing an action of
x. The processes x | y and z || y are the same except that x | y must start to
perform actions by performing an action of x and an action of y synchronously.
In case of ACP®%, one additional auxiliary operator is used: v,,s. The process
Vabs() is the part of process = that starts to perform actions at time 0. The
operator v,,s makes it easy to capture the interaction of absolute delay with
left merge and communication merge in the axioms of ACP%**, Notice that the
process Thy (Vi (x)) (p < q) is the part of process x that starts to perform
actions in the time interval [p, ¢). Because the interval is always right open,
the operator v,,s cannot be defined in terms of the operators v,,, and 7.
Changing the operator v, such that the interval becomes right closed, would
make the operator useless to capture the interaction of absolute delay with
sequential composition in the axioms of ACP®2t,

Azxiom system

The axiom system of ACP®** consists of the axioms of BPA®**' and the equa-
tions given in Table 2. For a discussion of the axioms of ACP** see Ref. [8].
The axioms concerning the interaction of absolute delay with left merge and
communication merge become easier to understand by realizing that for all
closed ACP#-terms ¢ either ¢ = 4 is derivable or t = Vabs(t) + § is derivable
or there exists a p > 0 and a closed term ¢’ such that ¢t = vh () 4+ ob(t') is
derivable.

Example 4 We take A such that a,b,c,d € A and v such that y(b,c) =

Table 2

Additional axioms for ACP%2 (a,b € A5, c € A, p >0, r > 0)
b
b

zlly=z|lyt+ylzt+zly CM1 alb=_¢ify(a,b) =c CF1SA

dle=9d CMID1 a|b=74 if y(a,b) undefined CF2SA

x|éd=4 CMID2

il (x+0)=a-(z+9) CM2SA ag(§) =4 DO

a-z|(y+d)=a-(z| (y+90)) CM3SA Op(a)=difag H DISA

o7 (@) || (Vabs(y) +8) = & SACM1 dy(a)=0difacH D2SA

b (@) || (W () + 05 (2) =0b (x| 2) SACM2 8u(oh (x)) =0of (0u(z)) SAD

+y)llz==zlz+ylz CM4 On(z +y)=0u(z)+0u(y) D3

Sle=46 CMID3 Ou(z-y) = 0u(zx)-0u(y) D4

r|d=4 CMID4

a-x|b=(a|b) = CM5SA vas(8) =46 SAUO

alb-z=(a|b) = CM6SA vap(@) = @ SAU1L

a-x|b-y=(al|b)-(z|y) CMT7SA vaps(07, (2)) =6 SAU2

(vabs(@) +0) | 0 (y) = 0 SACM3 Vabs (@ +y) = vabs(7) + vabs(y) SAUB
07e(@) | (Vabs(y) +8) = & SACM4 vaps(2 - y) = vaps(@) - y SAU4
ohe(@) [o8 () = ol (x|) SACM5

(z4+y)|z=zlz+ylz CM8

z|ly+z)=z|y+tz]|z CM9

v(e,b) = d and vy is undefined otherwise. From the azioms of ACP®' we can,
for example, derive the equations:

(a’+0abs()) || Uabs() a: abs() abs(O.gbi(l;))
(a’ + Uabs()) || Uabs() =a- UaBs() + Uabs(’ Ugbi(é))
abs() || Uabs() =a- Uabs(b c+c- b CZ)

Uabs() bHUabs()_ abs(a 6+C a- 6)

Semantics

The structural operational semantics of ACP®* is described by the rules for
BPA®* and the rules given in Table A.2. For a discussion of some of the
additional rules for ACP®** see Ref. [8]. Bisimulation equivalence is also a
congruence for the additional operators of ACP®2*. Therefore, these operators
can be defined on the set of bisimulation equivalence classes as well. As in the
case of BPA®' we can prove that this results in a model for ACPS?",

2.3 Integration and initial abstraction

In this subsection, we review the extension of ACP®' with integration and
initial abstraction. The extension with integration enables embedding of dis-

10

crete time process algebras and the extension with initial abstraction enables
embedding of process algebras with relative timing, as exemplified in Ref. [8].
For embedding of discrete time process algebras only a restricted form of inte-
gration, known as prefix integration (see Ref. [17]), is needed. The usefulness
of integration in practical applications of real time process algebra has been
demonstrated in various case studies, see e.g. Refs. [18,19], but the usefulness
of initial abstraction in practical applications has not been demonstrated yet.

Integration and initial abstraction are both variable binding operators. Fol-
lowing e.g. Refs. [20,21], we will introduce variable binding operators by a dec-
laration of the form f:Sy,..., Sk, .S1 X ... X Sp1, ..., Snk, - Sn — S. Hereby is
indicated that f combines an operator f*:((S11X...xXS1k,) — S1)X. .. X ((Sp1 X
oo X Spk,) — Sn) — S with A-calculus-like functional abstraction, binding k;
variables ranging over Sji, ..., Sy, in the ith argument (0 < i < n). Applica-
tions of f have the following form: f(11,...,Z1k - t1y- s Tnls -« Tnk, - tn),
where each x;; is a variable of sort S;; and each ¢; is a term of sort .S;.

Integration requires a more extensive theory of the non-negative real numbers
than the minimal theory sketched at the beginning of Section 2 (page 4). In
the first place, it has to include a theory of sets of non-negative real numbers
that makes it possible to deal with set membership and set equality. Besides,
the theory should cover suprema of sets of non-negative real numbers.

First, ACP%* is extended with integration. After that, initial abstraction is
added.

Integration

In ACP**'I, we have, in addition to the constants and operators of ACP,
the integration (variable-binding) operator [:P(Rsp) x Rso . P — P. The
integration operator | provides for alternative composition over a continuum
of alternatives. That is, [.y P, where v is a variable ranging over R>o, V C
R>¢ and P is a term that may contain free variables, proceeds as one of the
alternatives P[p/v] for p € V. We use the notation P[p/v] for the term P with
all free occurrences of variable v replaced by p. Obviously, we could first have
added integration to BPA® resulting in BPAS*I, and then have extended
BPA®*T to deal with parallelism and communication.

We assume that an infinite set of time variables ranging over R has been
given, and denote them by v, w,.... Furthermore, we use V,W,... to denote
subsets of Rso. We denote terms of ACP*I by P,Q,.... We will use the
following notational convention. We write [, P for [(V,v. P).

11

Table 3
Axioms for integration (p > 0, v not free in R)

waVR = [,y Rlv/w] INT1 fvevag’bs(zﬂ) = afbs(fvevp) INT10
fvE(Z)P =4 INT2 fvev(P +Q) = fvevP + fver INT11
fve{p}P = P[p/v] INT3 fveV(P-R) = (fvEVP) ‘R INT12
fvEVUWP = fvEV tloew? INT4 fvEV(P LR)= (fveVP) L& INT13
V#0= [_R=R INT5 [, (PIR) =([_,P)IR INT14
(VpeVePp/v)=Qp/])= [_,P=[_,Q INT6 [oev ®RIP)=R[([, _, P) INT15
VED= [ok 8) =0l (8) INTT [, 0u(P)=0u ([, _,P) INT16
VALswV EV = [on 0)=oaPV() INTS i ([, P)= [,y ie(P) SATO6
supV eV = [ot (5) =05V () INT9 TR ([, v P) = [, oy Tms(P) SAI6
v [oo P) = [vae(P) SAUS

Axiom system The axiom system of ACP®'I consists of the axioms of
ACP*®* and the equations given in Table 3. Axioms INT1-INT6 are the crucial
axioms of integration. They reflect the informal explanation given above.

Example 5 We take A such that a,b € A. From the azioms of ACPS'I, we
can, for example, derive the equations:

Joe11.9,5.1)Ta0s(@) + Joea9,5.4)0 0 (D) = 4951) Tabs(@ + Jue[0,0.3)Tabs (b)
(fv64951 bs()) UE4954 bs(b) €[4.9,5.1) abs(d'fw€[054 v) (
(fue49540bs() - uE4951)Ubs()

Joer1.9,5.1Ta6s(@ * Jipeio5.1-0)0 ol (b)) + Joeps.1,5.4)Tabs(@ -)

)
b))

Semantics The structural operational semantics of ACPS*'] is described by
the rules for ACP®® and the rules given in Table A.3. The rules for integra-
tion are simple generalizations of the rules for alternative composition to the
infinite case. Bisimulation equivalence is also a congruence for the integration
operator. Hence, this operator can be defined on the set of bisimulation equiv-
alence classes as well. As in the case of BPA®* and ACP®*, we can prove that
this results in a model for ACPS*I. We will call this model Ma.

For a formal treatment of structural operational semantics in the presence of
variable binding operators, the reader is referred to Ref. [21].

Initial abstraction

In ACP**'Iv, we have, in addition to the constants and operators of ACPS¥'],
the initial abstraction (variable-binding) operator y/ : Rso . P* — P*. The
sort P of processes with absolute timing is replaced in ACPS*'Iv by the sort
P* of processes with parametric timing. The initial abstraction operator 4/

12

Table 4
Axioms for standard initial abstraction (p > 0, v not free in G)

Viw . G = \[v.Gv/w] SIAL vh (Vv.F)=v.vh (F) SIA10
ol (Vv . F) =98 (Flp/v]) SIA2 (V. F)[[G=+v.(F|75./(Q)) SIA11
VU - (Vw . F) =y/v. Flv/w] SIA3 G| (M- F)=+w.(04,(G) LF) STA12
G=\v.G SIAL (V. F) |G =[v. (F|5%,(G)) SIA13
(Vp €R>g e T _(z) =78 (y)) = x=y SIA5 G|l (Vv.F)= .04 (G)|F) SIA14
b (a) -z =oh (a) -0F (x) SIA6 Om(Wfv.F)=+[v.0u(F) SIA15
Ufbs(\/sv .F) = Ufbs(F[O/'UD SIA7 Vabs(VLV - F) = V(v . vaps(F) SIA16
(Vv .F)+G=v.(F+v3(G)) SIAS fvev(\/sw.F) :\/sw.(fvevF) ifv#£w SIAL7
(Mv.F)-G=v.(F-G) STA9

provides the primary way of forming processes with parametric timing. The
operators of ACPI can simply be lifted to processes with parametric tim-
ing. The behaviour of processes with parametric timing depends on the time
of initialization. They can be perceived as functions from non-negative real
numbers to processes with absolute timing that map each non-negative real
number p to a process with absolute timing that is initialized at time p. Initial
abstraction is an abstraction mechanism to form such functions. It is reminis-
cent of A-abstraction, but specific to the case where the parameter is process
initialization time. That is, \/v. F', where v is a variable ranging over R, and
F is a term that may contain free variables, proceeds as F[p/v] if initialized
at time p € Rs(. Of course, it is also possible to add the initial abstraction
operator to ACP®", resulting in a theory ACP®*v.

We now use z,v, ... to denote variables of sort P*. Terms of ACP®*'1v are
denoted by F,G,.... We will use the following notational convention. We

write v . F' for /(v . F).

Axiom system The axiom system of ACP®*'Iv consists of the axioms of
ACP®*'T and the equations given in Table 4. Axioms SIA1-SIA6 are the crucial
axioms of initial abstraction. Axioms SIA1 and SIA2 are similar to the a-
and (-conversion rules of A-calculus. Axiom SIA3 points out that multiple
initial abstractions can simply be replaced by one. Axiom SIA4 shows that
processes with absolute timing can be treated as special cases of processes with
parametric timing: they do not vary with different initialization times. Axiom
SIA5 is an extensionality axiom. Axiom SIA6 expresses that in case a process
performs an action and then proceeds as another process, the initialization
time of the latter process is the time at which the action is performed. The
remaining axioms concern the lifting of the operators of ACP**I to processes
with parametric timing.

Example 6 We take A such that a € A. From the azioms of ACP®'Iv, we

13

can, for example, derive the equations:

Vv - Ui (w ol (@) = Vv - ogge (@)
VU - TR (Vow - o (@) = v - 0355 (@)
UEBQS(\/S’U ‘6:;2.3(1;1;6[4.8,4 9) abs ())) \/U Uabs()

T (Vv - U:tjsm(fwe[zl.s,zl.g) T 2(@))) = v . || wel6,6.1)Oabs (@)

Because of axiom SIAY, the right hand sides of the third and fourth equation
can be simplified further to 0%2(8) and [, c16,6.1)Tabs (@), TESpectively.

Semantics On the basis of the rules for the operational semantics of ACPSa*],
all operators of ACP®**I can be directly defined on real time transition systems
in a straightforward way. We will now describe a model of ACP**1v in terms
of these operators.

We have to extend RTTS(A) to the function space

RTTS*(A) = {f:Rs0 = RTTS(A) | Vp € Rog o f(p) = Tps(f(P)) }

of real time transition systems with parametric timing. In Table A.4, the con-
stants and operators of ACP**1v are defined on RTTS*(A).

We say that f,g € RTTS"(A) are bisimilar if for all p € R>¢, the root states
of f(p) and g(p) are bisimilar.

We obtain a model of ACP®**'Iv by defining all operators on the set of bisimula-
tion equivalence classes. We will call this model M}. Notice that f € RTTS"(A)
corresponds to a process that can be written with only the constants and op-
erators of ACP*'T iff 9, (f) = f. In fact, Ma is isomorphic to a subalgebra
of the reduct of M} that leaves out initial abstraction.

2.4 Miscellaneous

Standard initialization azioms

In Table 5, some equations concerning initialization and time-out are given
that hold in the model M}, and that are derivable for closed terms of ACP®*Iv.
We will use these axioms in proofs. Using the standard initialization axioms,
the following can easily be derived for all terms F' and F":

(Vv.F)O(v.F')=yw.(FOF') DISTRO

14

Table 5
Standard initialization axioms (p,q,q > 0, r > 0)

oh (VB () = vB T (@h () SIt - wh (z|ly) = vk (z) [05 (y) SII0

Vo (Ths (@) =710 (@) Sz T (e]y) = abs<)T,) si

oEF (W (@) = o5 E () SI3 2 (9y(x) = On (WP, () SII2

v bs(fbtq() = abs() SI4 Eabs(”abS(x)) = Vaps(T abs(z)) ST13

0% (8) + T (2) = T4 () SI5 T, (vans(@)) = 07y () ST14

ol (0 5) + vl (z+) = vl (z+9) SI6 Vabs (U] (2)) = 0 SI15

ol (2) + 8 =v], (x) SI7T 07, (Vabs(T)) = Vabs() ST16

Vi (v,,(2)) = v P (2) SIS Vabs (0],(7)) = vabs(2) SI17

oP (08 (B (2))) = DEEPUDY () SI9

for O = +,],[,] In other words, initial abstraction distributes over +, ||, ||

and |. This fact is a useful aid to shorten the calculations needed in proofs.

Elimination results

We can prove that the auxiliary operators v, and 7,,,, as well as sequential
compositions in which the form of the first operand is not @ (a € A) and
alternative compositions in which the form of the first operand is o}, (¢), can
be eliminated in closed terms of BPAS*'] with a restricted form of integration.
Basically, this restriction means that in terms of the form [. P, V is an in-
terval of which the bounds are given by linear expressions over time variables
and P is of the form 0¥ (@) or 0¥ (@) -t (a € As). This restricted form of
integration is essentially the same as prefix integration from Ref. [17]. The
terms that remain after exhaustive elimination are called the basic terms over
BPA®" with restricted integration. We can also prove that the operators ||,
|, |, O and v,ps can be eliminated in closed terms of ACP®** with restricted
integration. Because of these elimination results, we are permitted to use in-
duction on the structure of basic terms over BPA®" with restricted integration
to prove statements for all closed terms of ACP®** with restricted integration.
The right-hand sides of the equations in Examples 3, 4 and 5 are all basic
terms over BPA®® with restricted integration.

The elimination results for ACP***v with restricted integration are essentially
the same as the ones for ACP®** with restricted integration. Besides, all closed
terms of ACP**'v with restricted integration can be written in the form \/v.F
where F' is a basic term over BPA® with restricted integration. The right-
hand sides of the equations in Example 6 are all of this form.

15

3 Conditionals with time-dependent conditions

In this section, we add a conditional operator with time-dependent conditions
to ACP®**1v. This operator facilitates flexible dependence of process behaviour
on initialization time. The time-dependent conditions introduced here gener-
alize the time-dependent conditions introduced in a discrete time setting in
Ref. [15]. First, in Section 3.1, ACP*'1v is extended with time-dependent con-
ditions and conditionals. After that, in Section 3.2, we describe a similar ex-
tension of ACP**'T and explain how it is related to the extension of ACPS*'Iv/.
We treat the extension of ACP*1v first because it is semantically simpler to
add a conditional operator with time-dependent conditions to ACP*'Iv. In
Section 3.4, we give an example of the use of conditionals with time-dependent
conditions. In Section 3.3, we describe the addition of recursion in outline to
make understanding of the specifications given in Section 3.4 easier.

3.1 Parametric timing

We first introduce time-dependent conditions. We have the sort B* of time-
dependent conditions, the at time point operator pt:R — B*, the at time point
greater than operator pt. :R — B* (for technical reasons, it is convenient to use
R instead of Rsy as the domain of these functions), the logical constants and
operators t: — B*, f: — B* —:B* — B*, V:B* xB* — B* and \:B* xB* — B*,
the initialization operator U,,, : R>q X B* — B*, and the initial abstraction
operator \/: Rso . B* — B*.

For a time-dependent condition b, % (b) is either t or f, determined by
whether b holds at time point p or not. For p € Ry, the condition pt(p)
holds only at time point p and the condition pt. (p) holds at all time points
greater than p. For r € R, the condition pt(—r) never holds and the con-
dition pt.(—r) always holds — recall that all time points are in Rsy. The
logical operators —, V and A are defined on B* pointwise. Initial abstraction
for conditions is similar to initial abstraction for processes.

We join time-dependent conditions with parametric time processes by means
of the conditional operator ::—. In ACP*'IvC, we have, in addition to the
above-mentioned constants and operators on B*, the constants and operators
of ACP**'Iv and the conditional operator ::— : B* x P* — P*.

Initialized at a time point p where the condition b holds, the process b::— x
proceeds as the process x initialized at time point p; and initialized at a time
point p where the condition b does not hold, it proceeds as the process &
initialized at time point p.

16

Table 6
Axioms for logical operators

-t=f BOOL1 tvb=t BOOL4
-f=t BOOL2 fvb=1» BOOLS
-—-b=0b BOOL3 bV =b Vb BOOL6

bAb =—(-bV-b) BOOL7

Table 7

Axioms for conditions (p,q > 0, r > 0, v not free in D)

Th (1) =t CSAIl Viw.D = \/v.Dv/w] CSIA1
Tk () =f CSAI2 Th (V. C) =TF _(Clp/v]) CSIA2
ol (pt(p)) =t CSAI3 Vv (Mw . C)=v.Clv/w] CSIA3
vh (pt(p—r)) =f CSAI4 D=\[v.D CSIA4
Th (pt(p + 7)) = CSAI5 (Vp € Ry e TH (b) =TH (V) = b=0" CSIA5
TE _(pts(p— 7)) =t CSAI6 —(y/v.C) = [v.~C CSIA6
uh(pts(p+q) =f CSAI7 (Vv.C)AD = \[v.(C AT (D)) CSIA7
TP _(—b) = ok (b) CSAI8 (Vv.C)VD=[v.(CVTY (D)) CSIAS
vl (bAD) =78 _(b) ATE _(b') CSAI9

Tk (bV) =TE (b)VTh (b)) CSAILO

We write b, V', ... to denote variables of sort B*. Terms of sort B* are denoted

by C,D,.... We will use the following abbreviations. We write pt.(p) for
pt.(p) V pt(p), pt<(p) for —pt.(p) and pt_(p) for =pt(p). We further write
Vv . C for (v.C).

Azxiom system

The axiom system of ACP**'IvC consists of the axioms of ACP**'Iv and the
equations given in Tables 6, 7 and 8. Axioms CSAI1-CSAI10 (Table 7) reflect
the intended meaning of the initialization operator on conditions, viz. evalua-
tion at initialization time, clearly. Axioms CSIA1-CSIAS8 (Table 7) closely re-
semble the axioms for initial abstraction of processes. Axioms SCG1, SCG2ID,
SASGC1 and SASGC2 from Table 8 are the crucial axioms of conditionals.
Axioms SCG1, SCG2ID and SASGC1 reflect the informal explanation of the
conditional operator given above. Axiom SASGC2, also called the time spec-
trum expansion axiom, indicates that a parametric time process can be re-
garded as including a separate alternative for each initialization time. These
alternatives are expressed by terms of the form pt(v) ::— T} (x). The impor-
tant point here is that T () is a process with absolute timing, i.e. it can be
written with the constants and operators of ACP®3] only. Notice further that
axiom SASGC2 could not be expressed in an extension of ACP®** without in-
tegration. Axiom SASGC3 shows that checking whether a condition holds at
initialization time can safely be postponed till after an initial delay provided
that it does not matter that, if the condition does not hold at initialization

17

Table 8
Axioms for conditionals (p > 0, v not free in D and G)

tu—mzr==x SGC1
fusr=4 SGC2ID
ol (b x) =UE _(b) == DL _(z) + o, (§) SASGC1
x = fve[o,p](pt(v) m= U4 (@) +pts(p) = SASGC2
bi:—>0=0 SGC3ID
bu— b (x) + 05 (8) = v . 0F, (T, (b) i z) SASGC3
bu—a(z+y)=buosac+buoy SGC4
bu—oz-y=(bu>a) y SGC5
bvbd)uszr=buoz+b o SGC6
bu=s (b iox)=(bAY)i>x SGC7
b=l (x) =vh (bu—a) SASGC4
b= (z|y)=0Gu—z) | (b>y) SASGC5
bu—(z]y)=(bu>a)|(b>y) SASGC6
b:u— 0p(z) =0 (b:—x) SASGCT
b 11— Vaps () = Vabs(b 11—) SASGCS8
D (fvevp) = fUGV(D = P) SASGC9
D= (Vv.F)=\w.(04(D):=F) SASGC10
(Vv.C) =G = .(C:=13(G)) SASGC11

time, deadlock will have occurred after the initial delay.

Example 7 We take A such that a,b € A. From the azioms of ACP*'1vC,
we can, for example, derive the equation.:

ViU - (05 2(@) 1| 035 () = fucro 2 (PE() > 025 2(@) - 03 (B)) +
Juelzs (PE(v) = 05 (0) - 03 (@) +
pt(2.8) i o (@ | D)

In addition to the axioms needed for the expansion of parallel composition, the
time spectrum expansion aziom is important in the derivation of this equation.
The second alternative of the right-hand side of that axiom can be eliminated
here: it is easy to show, using the extensionality axiom for processes with
parametric timing, that this alternative equals §.

It is easy to check that Lemmas 1 and 2 from Section 2.1 go through for the
extension with conditionals.

Semantics

First of all, we need the structural operational semantics of ACP**Iv extended
with a restricted form of conditionals, viz. conditionals where the condition is
either t or f. It is described by the rules for ACP*'Iv and the rules given in

18

Table 9
Rules for conditionals (a € A, r > 0, p > 0)

(z,p) = (z',p) (z,p) = (V»p)
% (z',p) (tu—x,p) = (V,p)

(t:=a,p) = (z

(z,p) = (&, p+ 1) (x,p)1
(t > x,p) é(t::%m,p#»r) (tu—>x,pyt (fuoz,p)t

Table 10

Definition of conditional operator on RTTS" (p € R>g, s € R)
cu— f=At. (c(t) > f(t)) —c = At . —(c(t))

t=At.t end = At (c(t) A d(t))

f= AL f evd=A. (c(t) v d(t)

pt(s) = At. (if t = s then t else f) ol (c) = c(p)
pts(s) = At. (if t > sthen telse f) /[*(y) = At. T, (v(¢))

Table 9. On the basis of these rules, the restricted conditional operator can also
be directly defined on real time transition systems in a straightforward way.
In Table 10, the conditional operator is defined on RTTS*(A) in terms of this
operator. Additionally, the operators introduced for conditions are defined on
B*. We use f to denote elements of RTTS*(A), ¢ and d to denote elements of
B*, and + to denote elements of R~y — B*. We use A-notation for functions, ¢
is a variable ranging over R>(. Asin the case of ACP**1v, we obtain a model
by defining all operators on bisimulation equivalence classes.

Standard initialization azioms

The following equation concerning initialization of conditions holds in the
model described above, and is derivable for closed terms of sort B*:

Egbs(Ugbs(b)) = Ugbs(b) SI18

We will use this axiom in proofs in subsequent sections.

3.2 Absolute timing

Conditions of the forms pt(p) and pt.(p) make it possible to express time-
dependent conditions without using initial abstraction. As a result, an exten-
sion of ACP®*'I similar to the extension of ACP**'Iv described in Section 3.1
is possible. This would not have been the case if we had taken conditions of
the forms v = p and v > p, where v is a variable ranging over R, as basic
conditions instead.

The signature and axioms of this extension of ACP%*'I, called ACP**IC, are

19

as follows. The signature of ACP**IC is simply the signature of ACP%'IvC
without the initial abstraction operators for conditions and processes. The
axioms of ACP®*'IC consists of the axioms of ACP*I, the equations given in
Tables 7 and 8 except SASGC3, SASGC10 and SASGCI11, and the following

equation:

Ugbs(b n Ugbs (.’L‘) + Ugbs((;)) = _fbs(o.gbs (Ufbs(b) n :L‘)) SASGCB,

Note that axiom SASGC3 can be replaced by axiom SASGC3’ in ACP*IvC
as well; it follows immediately from axiom SIA5.

We treated ACP**'IvC first, despite the fact that it is a conservative exten-
sion of ACP**IC. The reason is that semantically the conditionals with time-
dependent conditions are simpler to deal with in case of ACP*'IvC. A model
of ACP*IC can be obtained from the model of ACP***IvC presented in Sec-
tion 3.1 by taking a subalgebra of the reduct that leaves out initial abstraction,
viz. the subalgebra of bisimulation equivalence classes of f € RTTS*(A) for
which B9, (f) = f. An isomorphic model can be obtained by using the variant

abs
of real time transition systems described below.

A real time transition system with initialization times over A consists of a set
of states S, a root state p € S and four kinds of relations on states:

a binary relation (_,p) =, (_,p) for each a € A, p,p’ € Ry where p' < p,
a unary relation (_,p) %, (y/,p) for each a € A, p,p" € Rsy where p’ <p,
a binary relation (_,p) v, (_,q) for each r € R.g, p,p',q¢ € Ry where
pP<pandqg=p+r,

e a unary relation (_,p) 1, for each p,p’ € R>y where p’ < p;

satisfying

o if (s,p) nﬂﬁ,/ (s',q), r,7" > 0, then there is a s” such that (s,p) ¥,
(s",p+r)yand (s",p+r) »r—,>p: (s',q);
o if (s,p) =y (s",p+r)and (s",p+r) lr—,>p/ (s',q), then (s,p) ILT,W (s',q).

We write RTTS™(A) for the set of all real time transition systems with initial-
ization times over A.

We can associate a transition system in RTTS(A) with a closed term ¢ of
ACPs*'IC like before. The action step, action termination, time step and
deadlocked relations can be explained by adding the proviso “provided t is
initialized at time p’” to the explanation given for the case of the original real
time transition systems in Section 2.1.

The structural operational semantics of BPASC is described by the rules

20

Table 11
Rules for BPAS®*C (a € A, r > 0, p,p’,q,¢',7' >0, p' <p, ¢ <q,r" <)

(57p>Tp’ <S7T>Tr’ (6'7()) i>0 <\/7 0> <d7r>Tr’

(z,p) >y (z',p) (z,p) = (VD)
0. (@), p) Sy (2, p) (08 (2),p) Bp (VD)

(o

!

<x,p) i>p’ <.’t 7p> <x,p) i>p’ <\/7p>

(U:bs(.’t),p + T‘) _>p’ <0’:b5(£12’),p + 7‘> <0’:b5(12),p + T‘) i>p’ <\/7p + 7'>

q>p =({z,0) 1)

(685" (@), p) o (08 (@), p+ 1) (08T (),) Drgr (00T (@), g+ 1)

<x,p) ’;p’ (il?,p-l—?‘) (il?,p>Tp/
(0%, (@),p+q) =y (0 (@) p+a+7) (0 (2),p+)1y

(z,p) Sy (2',p) (,p) S (VD) (z,p) ¥ (z,p+7) (@, D) Ty (4, P) Ty
(@+y,p) By (@,0), (2+y,0) Dy (Vop), (T+y,p) =y (@+y,p+7), (x+y,p) Ty
(y+az,p) Sy ('p) (y+zp) Dy (Vop) y+zp) oy (y+az,p+r)

(z,p) =5 (2',p) (,p) =p (VD) (z,p) =y (m,p+7) (z,p) T,

(-y,p) Dy (@ -y,p) (@up) Dy WD) (Tup) Dy (@oyptT) (Tey,p)ty

(z,p) S (2',p),p' €[b] (z,p) Sy (V,p),p € [b]

(b a,p) =y (@p) (bu—ra,p) = (V,p)
(m,p) =y (x,p+1),p €[] (z,p) 1y, 0" €[] p' & [b]
(b= z,p) ri>p/ (bu—z,p+r) (b= z,p) T,y (br—z,p) T,

Table 12
Rules for BPAS®C (a € A, r >0, p,p’,q,¢ > 0,9 <p, ¢ <q)

(z,p) i>p’ (:L",p),q >p (z,p) i>p’ (Vsp)a>p
<Ugb5($)ap> i>p’ <$,7p> <Ugb5($):p> i>p’ <\/ap>

(T,p) Dy (mp+71),0>p+T a<p (Z,p)1prsq>p
(UZbS(I),M ép’ <Ufbs($):p +) <Ufbs(l‘):p> Tp’ <Ufbs(l‘):p> Tpl

a !

(z,p) Sy (2',p) (,p) Sp (VD)

@ (@),p) S (@) (B0 (2),9) o (VD)

qg>p “(z,q+r)ty)
@ (@),p) Do @ET (@), p+ 1) (@LE (@), 0) g (T (@), 0 + 1)
(T,p) =y (z,p+T) (T, p) Ty

@ (2),p) =y (@5 (@),p+7) (5 (), p) 1y

given in Tables 11 and 12. In the rules for the conditional operator, use is
made of unary relations p € [_] on conditions (for p € R5(). In Table 13, these
relations are defined using rules in the style of structural operational semantics
as well. The intended meaning of p € [b] is that p belongs to the time points at
which condition b holds. Apart from the rules for the initialization operator
U,ps, the rules for the operational semantics of BPA® (Table A.1) have been

21

Table 13
Rules for condition evaluation (p,q € R>g, s € R)

p>s pg[b] peblpet] p € [b] q€b]
peft] pelptlp)] peElpts(s)] pe-b) pELAY] peVY],pe[t/ VD pe [T (b)]

adapted in a simple uniform way. The rules for the conditional operator (::—)
express that the capabilities of a process b::— x are those of x if it is initialized
when b holds; and those of § if it is initialized when b does not hold. The rules
for the initialization operator (7,,,) have been adapted to deal with the fact
that the capabilities of z at time p are not necessarily taken over by ©¥, (z) for
all p" < p in the presence of conditionals. The additional rules for ACP**IC are
obtained by adapting the additional rules for ACP*'T (Tables A.2 and A.3)

in the same way.

Bisimulation on RTTS*(A) is defined similar to bisimulation on RTTS(A). Like
before, we obtain a model for ACP*'IC by identifying bisimilar processes.

3.3 Recursion

In this paper, we do not treat the addition of recursion to any of the presented
versions of ACP with timing in detail. However, we describe in this subsection
the addition of recursion to ACP*'IC in outline to make understanding of the
specifications given in Section 3.4 easier.

In case of ACP®*IC, recursive specification, solution and guardedness are
defined in a similar way as for ACP in Ref. [3].

Let V' be a set of variables of sort P. A recursive specification E = E(V)
in ACP®IC is a set of equations F = {X = tx | X € V} where each
tx is a ACP**IC term that only contains variables from V. A solution of a
recursive specification E(V) in ACP*IC is a set of processes {px | X € V}
in some model of ACP**IC such that the equations of E(V') hold if, for all
X €V, X stands for px. Mostly, we are interested in one particular variable
X € V. When adding recursion, we add constants (X |E): — P for all recursive
specifications F(V') and all X € V. For a fixed E(V), the constants (X|E) for
X € V make up a solution of E(V).

Let t be a term containing a variable X. We call an occurrence of X in ¢
guarded if t has a subterm of the form a -t or o, (t') with r € Ry and ¢’ a
term containing this occurrence of X. We call a recursive specification guarded
if all occurrences of all its variables in the right-hand sides of all its equations
are guarded or it can be rewritten to such a recursive specification using the
axioms of ACP®*IC and its equations. The Recursive Specification Principle

(RSP) states that every guarded recursive specification has a unique solution.

22

It is possible to obtain a model of ACP*'IC with recursion in which every
guarded recursive specification has a unique solution.

Let E = {X =tx | X € V} be a recursive specification in ACP**IC. Then
roughly, the additional rules for the operational semantics of ACP**'IC with
recursion come down to looking upon (X|E) as the process tx with, for all
Y € V, all occurrences of Y in ¢y replaced by (Y|E). In the model of ACP**IC
with recursion obtained in the same way as for ACP**IC (Section 3.2), every
guarded recursive specification has a unique solution.

In the recursive specifications given in Section 3.4, we use equations of the
form X(p) = t, with p ranging over some interval I of Ry, for a system
of equations with one equation for each p € I. The advantage of this view
is that the X (p) do not have free variables and no complications arise with
name clashes and a-conversion. It is possible to view such equations as single
ones instead, but in that case terms with parameters have to be understood
in detail.

3.4 Ezample

We will now use ACP*'IC in an example concerning railroad crossings. Con-
trolling a railroad crossing involves the behaviour of trains, a gate and a con-
troller. We shall give (guarded recursive) specifications of the behaviour that
is relevant to railroad crossing control. We take the following informal descrip-
tion of the time-dependent behaviour of the trains, the gate and the controller
from Ref. [22] as the starting-point of our specifications. The example origi-
nates from Ref. [23].

When a train approaches the gate from a great distance its speed is between
48 m/s and 52 m/s. As soon as it passes a detector placed at 1000 m backward
from the gate, an app signal is sent to the controller. The train may now slow
down, but its speed stays between 40 m/s and 52 m/s, and pass the gate. As
soon as it passes another detector placed at 100 m forward from the gate, an
exit signal is sent to the controller. A new train may come after the current
one has passed the second detector, but only at a distance greater than or
equal to 1500 m. The gate is able to receive lower and raise signals from the
controller at any time. As soon as the gate receives a lower signal, it lowers
from 90° to 0° at a constant rate of 20° per second. As soon as it receives a
raise signal, it raises from 0° to 90° at the same rate. The controller is able to
receive app and exit signals from the train detectors at any time. When the
controller receives an app signal, it takes at most 5 s before a lower signal is
sent to the gate. When it receives an ezit signal, it takes at most 5 s before a
raise signal is sent to the gate. Because of fault tolerance considerations, app

23

signals should always cause the gate to go down, and ex:it signals should be
ignored while the gate is going down.

In the specifications given below, actions are used to model the acts of sending
and receiving signals as well as the acts of passing the gate and completing
the opening or the closing of the gate. In the specification of the behaviour of
the gate, a ranges over the interval [0,90] of R>¢. In the specification of the
behaviour of the controller, d ranges over the interval [0, 5] of Rxg.

Trains = ftE[O,oo) (Ptg(400) = Uabs(apptr Tnear))

Tnear - fte[[}yoo)((ptg(1000) A pt>(1230)) = Uabs(pass ’ TPGSt))

Tpast = Jrejo,00) ((Pt<(t —) Apts(t — 4)) n— Uabs(exittr - Trains))

Some simple calculations give us the lower and upper bounds for the times
at which a train may pass the detectors and the gate. If a train goes at time
to from one point to another point at a distance d with a speed between v;
and vy, then the lower and upper bounds for the time ¢ at which the train
passes the latter point are couched by the assertions ¢y + % <tandt <t —l—vil,
respectively. The conditions used in the specification given above are modelled
on the equivalent assertions £y < t— < and ty >t — U— There is only a lower
bound in case of the first detector because the train that comes after the
current one may be at any distance greater than or equal to 400 m backward
from the first detector.

Gate = J}e[o,oo)aibs(lm - Ggn(90) + Eis\e/g - Gate)
Gan(@) = ficpo,00) (PE(E — 35) = Uabs(ready - Ga) +pto(t — 55) =
0lys(lowery - Gan(a — 20t) + raise, - Guyl(a — 201)))
Gt = fio) sl I0w0T - Got + Tuise, - Gy (0)
Gup(@) = fie0,00) (PE(E — Z55%) 51— o'y (ready - Gate) + pto(t — 25%) ==

—_

otps(lowery - Gy (a + 20t) + Ez\s?g Gup(a + 20t)))

While the gate is going up or down, its angle a is relevant to its behaviour.
When a controller signal is received, the time passed since the previous con-
troller signal was received determines the new angle.

Ontr = fyeio,)3vs (G, - Cin(0) + e = Cp(0))

Can(d) = Jie 0,00)(pt>(—(-d) =

S(lowerC Ontr + app, - Can(d +t) + exit, - Cao(d +1)))
)

Cup(d) = J"te[)oo(pt>(t—(5—d)) =

24

0 ys(raise, - Cntr + app, - Cun(0) + eite - Cup(d +1)))

While the controller is preparing for sending a signal to the gate in response
to a detector signal, the delay d of the response is relevant to its behaviour.
When another detector signal is received, the time passed since the previous
detector signal was received determines the new delay.

Let the communication function v be such that

v(app,,, app,.) = app, y(exity,, exit.) = exit,

v(lower,, lowery) = lower, y(raise., raise,) = raise

and v is undefined otherwise. Then the railroad crossing system is described
by

On (Trains || Cntr || Gate)

where

H = {app,,, app,, exity., exit., lower., lower,, raise,, raise,}

Analysis of this term can provide answers to various basic questions about the
system. It can, for example, be simplified to a term which shows that (1) a
train can only pass the gate when the gate is closed, (2) the gate opens after
a train has left the track unless a new train has entered the track and (3) the
system reacts adequately when a new train enters the track while the gate
is going up. We do not give an account of the simplification here. It involves
the use of various standard process algebraic techniques, such as linearization
of guarded recursive specifications and expansion of parallel composition (see
e.g. Ref. [22]), of which the treatment in the setting of ACP**'IC would go
beyond the scope of this paper.

4 Discrete time and time-dependent conditions

In this section, we briefly review ACP%%v, the discrete time counterpart of
ACP®**1v presented in Ref. [8], and add a conditional operator with time-
dependent conditions to it. In Section 5, we show that the resulting theory,
called ACP%%'v(C, can be embedded in ACP**'IvC. In ACP%!vC, the condi-
tions are essentially the same as the conditions introduced earlier in Ref. [15].
First, in Section 4.1, we review ACP%'v. After that, in Section 4.2, we extend
ACP%ty to ACPYVC,

25

4.1 Discrete time process algebra

In this subsection, we briefly review ACP%t, a discrete time process algebra
with absolute timing, and its extension with initial abstraction. A more de-
tailed account is given in Ref. [8]. The axioms — extracted from Ref. [8] — are
given in Appendix B.

ACPY¢t ig a conservative extension of ACP g [15]. In ACP%t time is measured
on a discrete time scale. The discrete time points divide time into time slices
and timing of actions is done with respect to the time slices in which they
are performed — “in time slice n + 1”7 means “at some time point p such that
n<p<n+1”.

In ACP% we have the constants @ and ¢ instead of & and 5. The constants a
and ¢ stand for @ in time slice 1 and a deadlock in time slice 1, respectively. The
operators o,,, U, and U, have a natural number instead of a non-negative
real number as their first argument. The process o () is the process x shifted
in time by n on the discrete time scale. The process vl (x) is the part of x
that starts to perform actions before time slice n+1. The process T () is the
part of x that starts to perform actions in time slice n+ 1 or a later time slice.
Recall that time point n is the starting-point of time slice n + 1. In ACPdat,
we do not have a discrete time counterpart of r,,s. Unlike before in the case
of real time, we can use v, instead. The initial abstraction operator v/ is
the discrete counterpart of /. This means that /i . F', where ¢ is a variable
ranging over N and F' is a term that may contain free variables, denotes a
function f: N — P that satisfies f(n) = U5 (f(n)) for all n € N. In the
resulting theory, called ACPYv, the sort P of processes is replaced by the
sort P* of parametric time processes.

We denote elements of N by m,m’,n,n’. We assume that an infinite set of
time variables ranging over N has been given, and denote them by ¢, j,.... We
denote terms of ACP%tv by F,G,. ...

Axiom systems

The axiom system of BPA" consists of the equations given in Table B.1. The
axiom system of ACP9" consists of the axioms of BPA* and the equations
given in Table B.2. The axiom system of ACPY%v consists of the axioms of
ACP and the equations given in Table B.3. For a discussion of the axioms
of BPAdt ACP92t and ACPYtv, see Ref. [8].

26

Semantics

In case a discrete time scale is used, we use a variant of real time transition
systems, called discrete time transition systems, with only relations {_,p) -
o) (o) (Vop), (5op) v (L,q) and (C,p) 1t for pg € N, 7 € Ny,
We write DTTS(A) for the set of all discrete time transition systems over A.
Associating a transition system in DTTS(A) with a closed term ¢ of BPAdat
and ACPY proceeds in essentially the same way as associating a transition
system in RTTS(A) with a closed term ¢ of BPA®" and ACP**. The only
difference is that in the rules for the operational semantics of BPA9 and
ACP%t all numbers involved are restricted to N. For ACPtv, we have to
extend DTTS(A) to the function space

DTTS*(A) ={f:N—=DTTS(A) | Vn € Ne f(n) =05(f(n))}

4.2 Conditionals with time-dependent conditions

We add a conditional operator with time-dependent conditions to ACPdaty/,
The time-dependent conditions introduced here were originally introduced in
Ref. [15] (see also Ref. [24]).

First of all, we introduce time-dependent conditions for the discrete time case.
We have the in time slice operator sl and the in time slice greater than operator
sl. instead of pt and pt.. The operator U,,, has a natural number instead of
a non-negative real number as its first argument.

For a time-dependent condition b, TZ (b) is either t or f, determined by
whether b holds in time slice n 4+ 1 or not. For n € N, the condition sl(n)
holds only in time slice n and the condition sls(n) holds in all time slices
greater than n. For m € Ny, the condition sl(—m) never holds and the con-
dition sls (—m) always holds. We also have the initial abstraction operator v/,
instead of y/, for conditions.

We join time-dependent conditions with parametric time processes by means
of the conditional operator ::—. In ACP%tvC, we have, in addition to the
above-mentioned constants and operators on B*, the constants and operators
of ACP%'v and the conditional operator ::— : B* x P* — P*.

Initialized in a time slice n+ 1 where the condition b holds, the process b::—x
proceeds as the process x initialized in time slice n + 1; and initialized in a
time slice n+ 1 where the condition b does not hold, it proceeds as the process
§ initialized in time slice n + 1.

27

Table 14
Axioms for conditions (n,n’ > 0, m > 0, 7 not free in D)

TR ()=t CDAIl \j.D = i.Dl[i/j] CDIA1
o (f)=f CDAI2 T (Vji.C) =37 (Cln/d) CDIA2
TR (sl(n+1)) =t CDAI3 i (v4j-C) = vji - Cli/j] CDIA3
T (sl((n+1) —m)) =f CDAI4 D=\4i.D CDIA4
o (sl((n+ 1) +m)) =f CDAI5 (YneNew2 (b) =70 (V)= b=t CDIAS
o (sls((n+1) — m)) =t CDAI6 —(v4i.C) = ji.~C CDIA6
o (sls((n+1)+n')) =f CDAI7T (V4i.C)AD = 4i.(CATi (D)) CDIAT
o1 (—b) = o7 (b) CDAI8 (\4i.C)V D =\4i.(CVT, (D)) CDIAS

(

(

n(bAY) = abs(b)wn(') CDAI9
%o (0) VIR(M) CDATIO

Table 15
Axioms for conditionals (n > 0, 7 not free in D and G)
tu—mzr== SGC1
fuoz=94 SGC2ID
T (b x) = TR (b) n— TR (z) + o (8) DASGC1
T = Zke[o,n] sl(k + 1) == 0k (2)) +sls(n+1) =—> 2 DASGC2
bu—md=90 SGC3ID
b= ol (x) + U;’bs(d) Vi - o (T8 (b) = T) DASGC3
bu—o(x+y)=buoz+buoy SGC4
buozx-y=(bu—>z)-y SGC5H
bvbd)u—sz=buoz+b oz SGC6
bus (b s)= (bAY) > SGC7
b= vl (x) =v] (b= x) DASGC4
bum(z|ly)=(bu—a)| (b:my) DASGC5
bu—=(z]y)=(bu—z)|(bu>y) DASGC6
b:— 0g(x) =0 (bu—x) DASGCT7
D (Vyi . F) = i (08, (D) =~ F) DASGC8
(Vai - C) i G = Vi . (C = Ty (G)) DASGC9

Axiom system

The axiom system of ACPY'vC consists of the axioms of ACP%v and the
equations given in Tables 6, 14 and 15.

Semantics

In Table 16, the conditional operator is defined on DTTS*(A) in terms of the
conditional operator, restricted to the conditions t and f, on discrete time tran-
sition systems (see also Section 3.1). Additionally, the operators introduced
for conditions are defined on B*. In this table, we use v to denote elements of
N — B* and ¢ is a variable ranging over N.

28

Table 16

Definition of conditional operator on DTTS* (n € N, k € Z)
cim f = AL (c(t) 5 f(1)) —e = At —(c(t))

t= M.t end =\ (c(t) Ad(t)

f=At.f evid =X . (c(t) v d(t)

sl(k) = At. (if t+ 1 = k then t else f) v} (c) =c(n)
sls(k) =At. (if t+ 1>k then telse f) \4"(v) = At. T (v(1))

Table 17

Definitions of discrete time operators (a € Ag, n € N, k € Z)
a= fve[o,l)ffﬁ,’bs(ﬁ) sl(k) = ptx(k — 1) A pto(k)

o (z) = o (x) si> (k) = pt> (k)

ot (x) = vl () Vit - C = v . C[[v] /1]

E:l’:s() - Uabs(m)

Vii - F = [v.Fllv]/i]

Table 18

Definition of discretization (a € As, p € R>p, s € R)
D) =4 D) =t

D(a) = D(f) = f

D(0%, (@ >> ol (D(x)) D(pt(s)) = sl(|s + 1)

D(z +y) = D(x) + D(y) D(pt,(s)) =sl>(Ls])

D(z-y) = D(z) - D(y) D(=b) = =D(b)

D(b:—xz) =Db) > D(x) D(bAY)=D(b)ADWY)

D(fvev)= fvev (F) DbV) =Db)VDW)

D(Vv. F) = v/v. D(F) D(T%,(b)) = T (D)

D(yv.C) = \[v.D(C)

5 Embedding

In this section, we will show that ACP9*vC can be embedded in ACP%*IvC.
We will establish the existence of an embedding as follows. We give explicit
definitions of the constants and operators in the signature of ACP%'vC that
are not in the signature of ACP**'IvC and we prove that for closed terms the
axioms of ACP9vC are derivable from the axioms of ACP**IvC and the
explicit definitions. The soundness of this method is discussed in Ref. [8]. The
explicit definitions needed are given in Table 17.

Before we establish the existence of an embedding, we first take another look at
the connection between ACP**'IvC and ACP9*vC by introducing the notion
of a discretized real time process. Discrete time processes can be viewed as
real time processes that are discretized. We define the notion of a discretized
real time process in terms of the auxiliary discretization operators D:P* — P*
and D:B* — B* of which the defining axioms are given in Table 18. In Ref. [8],
discretization is also defined on the domain of the model of ACP**'IvC from
Section 3.1. A real time process x is a discretized real time process, written

29

Table 19

Properties of discretized processes and conditions (a € As, n € N, k € Z)
§,a € DIS t,f,sl(k),sl> (k) € DIS

@ € DIS = o7t (), 0% (2),T%,(2), 0 (z) €DIS b€ DIS = =b,T% (b) € DIS

T,y €DIS=>z+y,z-y,z||y,x |y, x|y eDIS by €DIS=bAY,bVY €DIS
beDIS,z € DIS = b::—z € DIS (Vn € Ne Cln/i] € DIS) = i . C € DIS
(Vn € No F[n/i] € DIS) = i . F € DIS b € DIS = D(b) € DIS

(Vp € Ve Flp/v] € DIS) = [| F€DIS

z € DIS = D(z) € DIS

xz € DIS, if = D(x). The notion of a discretized real time condition is
defined in the same way. The relevant closure properties of discretized real time
processes and discretized real time conditions are given in Table 19. Hence,
restriction of the domain of the model of ACP**'IvC to the discretized elements
yields a subalgebra of that model. Because we will prove that for closed terms
the axioms of ACP%'vC are derivable from the axioms of ACP**'IvC and the
explicit definitions, this subalgebra induces a model of ACP%¢vC.

The following lemmas present other useful properties of discrete time pro-
cesses. These lemmas are used to shorten the calculations in the proof of
Theorem 11.

Lemma 8 In ACP*Iv(C:

(1) for each closed term b of sort B* genemted by the embedded constants and
operators of ACP¥VC, b= \[v.v ()

abs

(2) for each closed term t of sort P* generated by the embedded constants and
operators of ACP¥VC, ¢ = /v . ().

abs

Lemma 9 For eachp € Rs and closed term t of ACP*1VC generated by the
embedded constants and operators of ACPYVC, there exists a closed term t'
such that Uabs(t) - abs(t,) = Uabs(tl); and pr € [07 1) and Efbs(t) 7& Ufb5(5)7
th=t + Uabs (6) and Uabs (t + 5) - Uabs (t, + g)

Lemma 10 For each closed term t of ACP**1vC generated by the embedded
constants and operators of ACPIVC, there exists a term t' containing no
other free variable than w such that Uabs(t +8) = VW fye0,1)Tabs(Vabs(t') +).

Lemmas 8.2, 9 and 10 are lemmas 7, 9 and 10, respectively, from Ref. [§]
adapted to the case with conditionals. It suffices to extend the proofs of those
lemmas with the case that t is of the form b ::— t'. This is outlined in Ap-
pendix C.

Lemma 8 points out that for a real time process corresponding to a discrete

time process, the initialization time can always be taken to be a discrete point
in time. Lemma 9 shows that for a real time process corresponding to a discrete

30

time process, and for p € [0,1) such that the whole process is able to reach
time p, the part of the process that starts to perform actions at time p or later
is able to reach any time ¢ € [p,1). Lemma 10 indicates that for a real time
process corresponding to a discrete time process, the part of the process that
starts to perform actions before time 1 can be regarded as a real time process
that starts to perform actions at time 0 shifted in time by any p € [0,1) — and
parametrized by the initialization time of the whole process.

The existence of an embedding of ACP%'vC in ACP**IvC is now established
by proving the following theorem:.

Theorem 11 (Embedding ACP%'vC in ACP**IvC) For closed terms,
the azioms of ACPY*VC are derivable from the azioms of ACP*IvC and
the explicit definitions of the constants and operators a, O,ps, Vaps: Uabs: Vi
(for processes as well as conditions), sl and sls. in Table 17.

This is Theorem 12 from Ref. [8] adapted to the case with conditionals. Be-
cause some lemmas used in the proof of that theorem had to be adapted to the
case with conditionals as well, minor changes to the proofs for some axioms of
ACP%'y are needed. What remains to be shown is that the additional axioms
for conditionals are derivable for closed terms. This is outlined in Appendix C.

6 Concluding remarks

We extended the main real time version of ACP presented in Ref. [8] with
conditionals in which the condition depends on time. We illustrated how this
extension can be used by means of an example concerning a simple hybrid
system, namely a railroad crossing system. We also extended the main dis-
crete time version of ACP presented in Ref. [8] with conditionals in which the
condition depends on time. The conditions introduced in this case are essen-
tially the same as the ones originally introduced in Ref. [15]. We demonstrated
that the presented real time version of ACP with time-dependent conditions
and conditionals generalizes the presented discrete time version of ACP with
time-dependent conditions and conditionals.

The discrete time version of ACP with time-dependent conditions and condi-
tionals presented in Ref. [15] cannot be embedded in the one presented here —
although the conditions introduced are essentially the same. The reason is that
one of the auxiliary operators used in Ref. [15] for the axiomatization of the
time-dependent conditions and conditionals, viz. the spectrum tail operator u,
cannot be explicitly defined in the version presented here. We refrained from
introducing an additional operator making this operator explicitly definable
because its usefulness in practice remains doubtful.

31

In Section 5, we introduced the discretization operator to define the notion
of a discretized real time process. However, this is not the only application
of this operator. Having a closed term ¢ denoting some real time process, one
often obtains by apposite change of the time scale a closed term ¢’ denoting
a discretized real time process, i.e. ' = D(t'). In that case, the process can
safely be considered at a more abstract level where time is measured with
finite precision, i.e. on a discrete time scale. This means that analysis of the
real time process ¢t can be replaced by analysis of the discrete time process
D(t'). The point here is that the abstraction made in the discrete time case
makes processes better amenable to analysis.

It is frequently useful to abstract fully from the timing aspects of a process
at a certain stage of its analysis. This is, for example, the case in the analysis
of a railroad crossing system outlined in Section 3.4. Further extension of the
real time and discrete time versions of ACP presented in this paper with time
abstraction appears to be important to make them suitable for being applied
in a fully formal way.

A Semantics of ACP* and its extensions

The structural operational semantics of BPA® is described by the rules given
in Table A.1. The structural operational semantics of ACP®* is described by
the rules given in Tables A.1 and A.2. The additional rules for integration are
given in Table A.3.

In Table A.4, the constants and operators of ACP**'Iv are defined on RTTS*(A).
We use f and g to denote elements of RTTS*(A) and ¢ to denote elements
of Ryg — RTTS*(A). We use A-notation for functions, ¢ and t' are variables
ranging over R,. We write f(t)*g for the real time transition system obtained
from f(t) by replacing (s,p) = (\/,p) by (s,p) == (s',p), where s’ is the root
state of g(p), whenever s is reachable from the root state of f(t).

B Axioms of ACP%' and discrete initial abstraction

The axiom system of BPA%* consists of the equations given in Table B.1. The
axiom system of ACPY consists of the equations given in Tables B.1 and B.2.
The axioms for discrete initial abstraction are given in Table B.3.

32

Table A.1
Rules for operational semantics of BPA%3 (¢ € A, r > 0, p,q > 0)

(,p)1 (@,r)1 (@0) = (v,0) (@)t

(z,p) = (2',p (z,p) = (V)
(0% (@),p) = (z',p) (9. (),p) = (VD)
(z,p) = (', p) (z,p) = (V,p)

a

(s (@), 2+ 1) S (o (@) 1) (o (@) p 1) S (Vap +7)

q>p -({z,0)1)
(0% (@),p) ¥ (04T (@), p+ 1) (04T (@), q) > (0% (@), g+)
(z,p) > (z,p+T) (z,p) 1

(0% (z),p+a) > (0% (x),p+q+71) (0% (2),p+a)t

(z,p) = (2',p) (z,p) = (V) (z,p) ¥ (z,p+1) (z,p) 1, (v, p) 1
(m+y,p) 5 (@,p), (@+y,p) > (/op) (T+y,p) > (T+y,p+r), (z+y,p) T
(y+az,p) = (&',p) (W+ap) (b)) (y+zp) > (y+z,p+r)

(z,p) = (', p) (z,p) = (V,p) (z,p) > (z,p+T) (z,p) 1

a

(@-y,p) = (@ y,p) (x-y,p) S (p) (@oy,p) o (@oy,p+r) (woy,p)t

(z,p) = (@',p)g>p (2,p) = (V,p),q>p
Wi (x),p) = (',p) (W& (%),p) = (v/,D)

r

(z,p) = (z,p+ 1), >p+r g<p (z,p)T,q>p
(’Ugbs(.’t),p>)L> <Ugbs(1}),p + T‘) (vgbs(x)7p>T <Ugb5(i’?)7p>T

(z,p) = (&',p)a<p (x,p) = (V,p),a<p
@& (x),p) = (a',p) (0% (2),p) = (V,p)

q>p “((x,q+7)1)
@ (@),p) > @ (@), p 1) (@LT(@),q) > O (), g+ 1)

r

(z,p) = (z,p+r)g<p+7r (z,p)T,q<p
@ (2),p) ¥ @ (z),p+71) (O (2),p)T

33

Table A.2
Additional rules for ACP%* (a,b,c € A, r >0, p > 0)

(,p) 2 (2, p), ~((y, P) 1)
(@ ly,p) = (@ [y, p), (y 12, p) 2 (w2, p), (2 Ly, p) = (2 || v, p)
(,p) = (V,p), ~((y,p) 1)
(@ ly,p) = (u,p), Wl z,p) = (,p), (= L y,p) — (y,p)
(@,) 5 (&', p), (y,0) > (',p),7(a,b) =
(@ ly,p) = @ |y, p) (x| y,py = (' ||y, p)
(@,p) 2 (@,p), (y,9) 2> (Vop), Y@, b) = ¢ (&,p) 2 (D), (1,0) = (V/,p), v(a,b) = ¢

(x|ly,py = (=, p), (y || z,p) = (z',p), (lly,p) = (V,p), (x| y,p) = (VD)
(| y,p) = (=',p), (y | z,p) = (,p)

(z,p) > (z,p + 1), (y,p) ¥ (y,p+) (z,p)t
(@ ly,p) = (@ lysp+1), (@ Ly,p) — (@ Ly, p+7), (@lly,p)t @20t (= Ly)1,
(|y,p) > (z|y,p+7) Y Lz,p) T (z |y, p) T (y|z,p) T
(z,p) = (¢',p)ya ¢ H (z,p) = (V,p)a g H (z,p) ¥ (z,p+1) (z,p) 1

(O (@),p) = @u(@),p) (Om(@)p) = (Vop) (Ou(e),p) = @Ou(x),p+r) (9u(z),p)?

(z,0) = (2,0 (2,00 = (/,0) (z,0)1
(Vabs(m):()) i> (:L",U> <Vabs()a0> <\/ 0> <Vabs($)’0>T (Vabs(m)rr>T

Table A.3
Rules for integration (a € A, r > 0, p,q > 0)

(Plg/v],p) = (P',p),qa €V (P[g/v],p) = {V,P),qa €V

([,ey Pop) =5 (P',p) ([,ey P> 5 (V/op)
(P[g/v],p) > (Plg/v],p+7),¢ €V ((Pla/v],p) D) ev

oev Pop) = [y PrptT) (Joer PPIT
Table A .4
Definition of operators on RTTS" (a € As, p € Rxg)
§=xt.6 fllg=xt.(f(t) [l g(t))
a=At. v, (a) flg=xt.(f(t) L g(®))
ol () = A 0L (0L (F(0) flg=At.(f(t)]g(t)
f+g=xt.(f(t) +g(t) dm (f) = At . om (f(1))
frg=Xt.(f(t)*9) Vabs(f) = At . Tl (Vabs (£(1)))
Ui () = AT (R (F0) [T(Vie) = At [(VIM - o(t')(2)
Uhs () = f(p) VU (9) = AT, (9(1)

34

Table B.1

Axioms for BPAYY (g € Ay)

cty=y+a Al ot (8) =14 DATO0
(z+y)+z=z+ (y+2) A2 W) (z) =6 DATO1
r+r==zx A3 U:b:rl(ﬁ) =a DATO2
(@+y) z=z-z2+y-z A4 vt (on () = o (v (2)) DATO3
(- y)-z=x-(y-2) A5 vl (z+y) = vl (2) + v (y) DATO4
r+é=2 A6ID v (x-y) =v] (7) -y DATOb5
§x=4 A7ID
79, (8) = DAI0a
0%, (z) =75, (2) DAT1 ©lit(d) = ot (8) DAIOb
om (o7 (z)) = ol (z) DAT?2 abs(@) = @ DAIL
o (z) + ol (y) =on (z+y) DAT3 ot (a) = o T (5) DAI2
;s(x) on (y) = o7 (z-6) DAT4 T (o7 () = o7y (B (09, () DAI3
The(@) - (VI (1) + 07, (2)) = ol (x - TR, (2)) DATS Us(@ +y) =03 (x) + U3, () DAT4
all (5) r = abs(5) DAT®6 v (z-y) =05 (x) -y DAI5
ol (8) = DAT?
at+d=a A6DAa
Table B.2
Additional axioms for ACPY (a,b € As, c € A)
zlly=zlyt+ylet+zly CM1 alb=cify(a,b) =c¢c CF1DA
Slae=4 CMID1 a|b=4if v(a,b) undefined CF2DA
z||d=4 CMID2
al(z+d)=ga-(z+9) CM2DA 9y (8) =14 DO
a-zl(y+d) =a-(z| (y+9)) CM3DA 9y(a)=aifa g H DIDA
on (@) | (vh(y) + 0k (2) =0l (x| 2) DACM2 Op(a)=difacH D2DA
z+y)llz=z|lz+yl=z CM4 o (0% (x) =0l (Om(xz)) DAD
Sle=46 CMID3 o (z+y) = dm(z) + dx(y) D3
z|d=4 CMID4 Ou(z-y) =0u(x) 0y(y) D4
a-w|b=(alb)x CMS5DA
alb-z=(ald) = CM6DA
a-xlb-y=(ald) (zly) CM7DA
(V3o (2) +0) | ot (y) = & DACM3
ol (@) | (vh () +9) =8 DACM4
oohe(@) | ol (y) = o (= | y) DACM5
(z+y)|lz=z|z+y|=z CM8
z|ly+z)=z|y+tx]|z CM9

35

Table B.3

Axioms for discrete initial abstraction (i not free in G)

Vai - G = Vi - Gli/)

Ul (Vi - F) = Uy, (FIn /1)
Vi - (Vi - F) = i - Flifd)
G=\i.G

(Vn € Ne E;LS(:L‘) = E;S(y)) S>zr=y

one(@) -z =0} (a) - D] ()
olhe(vat -) = ol (F'[0/4])
(ot - F) + G = i (F 4+ Ty,
(Voi. F) -G = i (F-G)

(@)

DIA1
DIA2
DIA3
DIA4
DIAS
DIA6
DIAT7
DIAS
DIA9

v (Vi - F) = i .ol (F)

(Vai - F) LG = Vi (F | 73,(G))
G L (Vi - F) = vji - (03,(G) L F)
(Vai - F) | G = Vi . (F | T}, (G))
G| (Vyi - F) = vyi - (03 (G) | F)
A (Vi - F) = i . 8p (F)

DIA10
DIA11
DIA12
DIA13
DIA14
DIA15

36

C Outline of proofs

Proof of Lemma 8 Lemma 8.1: it is easy to prove by induction on the
structure of b that b = /v . vabi (b). Lemma 8.2: this is Lemma 7 from Ref. [§]
for the case with conditionals. Therefore, it suffices to extend the proof by

induction on the structure of ¢ with the case that ¢ is of the form b ::— ¢":

bt Bhis fv. Ol (t’) sasgoto

VU - (Tl (B) 1 abs@'))

VLU - (Tl (B) 1= T (1) + T <5>> pemme BLCSIASSIE

Vv (TR (0) > TRd(#) + Tl (8)) =

Vv (TR (b) = TRL() + 05l () PE v T (b 1)

(*) We make use of the proof for the case that # is of the form §. O

Proof of Lemma 9 Lemma 9 is Lemma 9 from Ref. [8] adapted to the case
with conditionals. The condition 7% (t) # 0%.(0) needed in the case with
conditionals implies the condition ¢ # & used in Ref. [8]. There, observing
that the lemma would follow immediately, we only proved by induction on the
structure of ¢ that there exists a ¢’ such that (1) D8 (t) = ohs(t') and (2) if

€ [0,1) and Th (1) # 0h(0), ' = t' + 0P (5). Here, it suffices to extend
that proof with the case that ¢ is of the form b ::— t':

(1) abs(b = t,) SASGCI Efbs(b) abs(tl) + O—abs((s) =
_fbs(b) abs(t”) + Uabs((;) SAS:GC?)
\/U : O.Ebs (U;}bs(@abs(b)) i t”) SII&:SIA4 O.Ebs (Efbs(b) s t”)
(2) abs(b NN t,) 7& O_abs(') SGCl,SGC%D,SASGCl
Uijbs(b) =tand Eabs (t,) 7& O—fbs((;)
By the induction hypothesis,
Ufbs(b) = t” - Uabs(b) . (t” + Uabs (6)) SG:Cl
Uijbs(b) . t” + Uabs (6)

37

Proof of Lemma 10 Lemma 10 is Lemma 10 from Ref. [8] adapted to the
case with conditionals. The form \[w . [,c(o 1)Taps(Vabs(') 4 9) realizable in the
case with conditionals generalizes the form [, ¢y 1) 0ans(Vabs(t') + 0) obtained in

Ref. [8]. Hence, it suffices to extend the proof by induction on the structure
of ¢ with the case that ¢ is of the form b::— "

vl (bt 4 8) TTENC p s ol (1) 4 vl (8) TR0
b vl (1) 4 b= vl () + vl () T
b he(t) + b1 vl (8) + 8 =T s 0l (F 4+ 8) + 6 &
b= Joep) abs (Vabs(t") + S) +0 SATSéNTlO
b= [oei0.1)(Taps(Vabs(t")) +9) + 0 SGC1L6,BOOLA6
0 EY [oy (b b (Vans(t"))) + 6 "=

bi— vE[O,l)Ugbs(VabS(tl,)

! 5)) A6ID£AT3
fve[m(b 1= Oabs (Vabs(t"))
fue 0,1) (\/w . Oy abs (Ezlxll})s(b) 1177 Vaps
quUl \/w Uabs(ul))

\/w vel0,1)9 O s (Vabs

(
Ugbs(f;) + agbs(g)) SASGC3,STA4
(tl’)) \/w . Ugbs(g)) DISTR+,SATS

(
(.

o4 (D) = t") 4 0)

Proof of Theorem 11 Theorem 11 is Theorem 12 from Ref. [8] adapted to
the case with conditionals. In Ref. [8], it is shown that the axioms of ACP%aty
are derivable for closed terms from the axioms of ACP**'Iv and the explicit def-
initions of the constants and operators @, 0, Vape, Uaps atd 1/ (for processes)
in Table 17. In Ref. [8], use is made of two lemmas that do not go through
for the extension with conditionals, viz. Lemmas 9 and 10 from that paper. In
the case with conditionals, Lemmas 9 and 10 from this paper have to be used
instead. Fortunately, this requires only minor changes to the proofs for four
axioms, viz. CM2DA, CM3DA, DACM3 and DACM4. What remains to be
shown is that the additional axioms for conditionals are derivable for closed
terms. This is nontrivial for the following axioms: CDAI3-CDAI7, CDIA1-
CDIAS8, DASGC2, DASGC3, DASGC8 and DASGC9. However, the proofs
for most of these axioms are either similar to proofs for axioms of ACPdaty
(CDIA1-CDIA8, DASGCS8 and DASGC9) or simpler than most of those proofs
(CDAI3-CDAI7 and DASGC3). Therefore, we only give an idea of the proofs.

The proofs for axioms CDAI3-CDAI7 require little effort. They involve short
calculations using axioms BOOL1-BOOL7 and CSAT1-CSAT10.

38

The proofs for axioms CDIA1-CDIA5 are analogous to the proofs for DIA1-
DIA5 in Ref. [8] — axioms CSIA1-CSIA5 are used instead of axioms STA1-STA5.
The proof for axiom CDIAG6 is similar to the proof for DIA10 in Ref. [8] — ax-
iom CSTAG is used instead of axiom STA10.

The proof for axioms CDIA7 and CDIAS are similar to the proof for DIAS in
Ref. [8] — axioms CSIAT and CSIAS are used instead of axiom SIAS8. Distribu-
tivity of initial abstraction over A and V is needed, but that can be derived
as in the case of +.

The proof for axiom DASGC2 goes as follows. First, prove (1) sl(n+1):—z =
Joemns1y(Pt(v) =), mainly by short calculations using axioms BOOLI-
BOOLT and CSAI1-CSAI10, and (2) x = 2+ b::— x, by application of axioms
SGC1, SGC6 and BOOL4. Then, having proven equations (1) and (2), the
proof for axiom DASGC2 involves mainly application of axiom SASGC2, these
equations and the following immediate consequence of Lemma 8.2 and axiom
SIA2: D (Vs (1)) = Vs (Tt (1))-

The proof for axiom DASGC3 is very easy. It consists of applying axiom
SASGC3 and the following immediate consequence of Lemma 8.1 and axioms
CSIA2 and SI18: T%, (b) = T2 (b).

The proofs for axioms DASGCS8 and DASGC9 are again similar to the proof
for DIA8 — axioms SASGC10 and SASGCI11 are used instead of axiom SIAS.
Distributivity of initial abstraction over ::— is needed, but that can be derived
as in the case of +.

References

[1] J.A. Bergstra, J.W. Klop, Process algebra for synchronous communication,
Information and Control 60 (1984) 109-137.

2] J.C.M. Baeten, W.P. Weijland, Process Algebra, Cambridge Tracts in
Theoretical Computer Science 18, Cambridge University Press, 1990.

3] J.C.M. Baeten, C. Verhoef, Concrete process algebra, in: S. Abramsky,
D. Gabbay, T.S.E. Maibaum (Eds.), Handbook of Logic in Computer Science,
Volume TV, Oxford University Press, 1995, pp. 149-268.

[4] R. Milner, A Calculus of Communicating Systems, LNCS 92, Springer-Verlag,
1980.

[5] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

[6] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe, A theory of communicating
sequential processes, Journal of the ACM 31 (1984) 560-599.

[7] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

39

8] J.C.M. Baeten, C.A. Middelburg, Process algebra with timing: Real time and
discrete time, in: J.A. Bergstra, A. Ponse, S.A. Smolka (Eds.), Handbook of
Process Algebra, Elsevier, 2001, Ch. 10.

[9] J.C.M. Baeten, J.A. Bergstra, Real time process algebra, Formal Aspects of
Computing 3 (2) (1991) 142-188.

[10] J.C.M. Baeten, J.A. Bergstra, Real space process algebra, Formal Aspects of
Computing 5 (6) (1993) 481-529.

[11] X. Nicollin, J. Sifakis, The algebra of timed processes ATP: Theory and
application, Information and Computation 114 (1994) 131-178.

[12] L. Chen, An interleaving model for real-time systems, in: A. Nerode, M. Taitslin
(Eds.), Symposium on Logical Foundations of Computer Science, LNCS 620,
Springer-Verlag, 1992, pp. 81-92.

[13] F. Moller, C. Tofts, A temporal calculus of communicating systems, in:
J.C.M. Baeten, J.W. Klop (Eds.), CONCUR’90, LNCS 458, Springer-Verlag,
1990, pp. 401-415.

[14] Wang Yi, Real-time behaviour of asynchronous agents, in: J.C.M. Baeten,
J.W. Klop (Eds.), CONCUR’90, LNCS 458, Springer-Verlag, 1990, pp. 502-520.

[15] J.C.M. Baeten, J.A. Bergstra, Discrete time process algebra, Formal Aspects
of Computing 8 (2) (1996) 188-208.

[16] G.D. Plotkin, A structural approach to operational semantics, Tech. Rep.
DAIMI FN-19, University of Aarhus, Department of Computer Science (1981).

[17] A.S. Klusener, Completeness in real-time process algebra, in: J.C.M. Baeten,
J.F. Groote (Eds.), CONCUR’91, LNCS 527, Springer-Verlag, 1991, pp.
376-392.

[18] J.A. Hillebrand, The ABP and CABP — a comparison of performances in real
time process algebra, in: A. Ponse, C. Verhoef, S.F.M. van Vlijmen (Eds.),
Algebra of Communicating Processes 1994, Workshop in Computing Series,
Springer-Verlag, 1995, pp. 124-147.

[19] J.J. Vereijken, Fischer’s protocol in timed process algebra, in: A. Ponse,
C. Verhoef, S.F.M. van Vlijmen (Eds.), Algebra of Communicating Processes
1995, Report 95-14, Eindhoven University of Technology, Department of
Computing Science, 1995, pp. 245-284.

[20] W.J. Fokkink and C. Verhoef. A conservative look at operational semantics
with variable binding, Information and Computation, 146 (1998) 24-54.

[21] C.A. Middelburg, Variable binding operators in transition system specifications,
Journal of Logic and Algebraic Programming 47 (2001) 15-45.

[22] J.F. Groote, J.J. van Wamel, Analysis of three hybrid systems in timed uCRL,
Science of Computer Programming 39 (2001) 215-247.

40

23] R. Alur, T.A. Henzinger, P.-H. Ho, Automatic symbolic verification of
embedded systems, IEEE Transactions on Software Engineering 22 (1996)
181-201.

[24] J.C.M. Baeten, J.A. Bergstra, Discrete time process algebra: Absolute time,
relative time and parametric time, Fundamenta Informaticae 29 (1/2) (1997)
51-76.

41

