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Abstract

We shortly review the framework of process algebras with timing presented by
Baeten and Middelburg [Handbook of Process Algebra, Elsevier, 2001, Chapter 10].
In order to cover processes that are capable of performing certain actions at all points
in some time interval, we add integration to the process algebra with continuous
relative timing from this framework. This extension happens to reveal some points
that are peculiar to relative timing. We go into these points. The most flagrant
point is that, unlike in case of absolute timing, discretization cannot be added to
the extension without first adding a mechanism for parametric timing like initial
abstraction.
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1 Introduction

In [1], a coherent collection of four algebraic theories about processes, each
dealing with timing in a different way, is introduced. The timing of actions
is either relative (to the time at which the preceding action is performed) or
absolute and the time scale on which the time is measured is either discrete
or continuous. The theories concerned are extensions of ACP [2-4] which
originate mainly from the work on process algebra with timing presented in [5—
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Process algebras with relative timing are generally considered simpler than
ones with absolute timing. Nearly all process algebras with timing offer relative
timing, e.g. the different versions of CCS with timing [10-12], Timed CSP [13],
TPL [14], ATP [15] and TIC [16]. Experience of applying the versions of ACP
with timing presented in [1], e.g. to data communication protocols, a mutual
exclusion protocol and controllers of various systems, was acquired during the
preparation of [17]. It has shown that the versions with absolute timing are not
more difficult to use in describing and analysing the time-dependent behaviour
of systems, witness various examples given in [17]. Additionally, further work
on the framework introduced in [1] has revealed some points that are peculiar
to relative timing and as a matter of fact shortcomings of relative timing.

In this paper, we will first shortly review the framework of process algebras
with timing introduced in [1]. This covers the four principal process algebras
(Section 2), the addition of the integration operator to the process algebra with
continuous absolute timing (Section 3) and the addition of a mechanism for
parametric timing to both process algebras with absolute timing (Section 4).
Next, we will go into the following points peculiar to relative timing:

e the rules for the operational semantics concerning the integration operator
are far more intricate than the ones in case of absolute timing (Section 5);

e the operational semantics of the extension with a time-dependent state op-
erator requires an operational semantics as detailed as in case of absolute
timing (Section 6);

e the version of ACP with discrete relative timing cannot be embedded in
the version with continuous relative timing (Section 7);

e the discretization operator cannot be added to the version of ACP with
continuous relative timing (Section 8).

If there exists an embedding of one version of ACP with timing in another one,
those versions may be integrated. A notational distinction is made between a
constant or operator of one version and its counterparts in another version,
by means of different decorations of a common symbol, if they should not be
identified in case the versions are integrated. Of course, so long as one uses a
single version, one can safely omit the decorations.

2 Principal Process Algebras with Timing

In this section, we give an overview of the four principal versions of process
algebra with timing introduced in [1]. In these versions, execution of actions
and passage of time are separated. Versions in which execution of actions and
passage of time are combined can simply be regarded as specializations.



Measuring time on a discrete time scale does not mean that the execution of
actions is restricted to discrete points in time. It means that time is divided
into time slices and timing of actions is done with respect to the time slices in
which they are performed: if an action can be performed in time slice n + 1,
it can be performed at any time r € R,, such that n < r < n + 1. Thus,
the versions of ACP with timing where time is measured on a discrete time
scale permit to consider systems at a more abstract level, a level where time
is measured with finite precision, than the versions where time is measured on
a continuous time scale.

The possibility of two or more actions to be performed consecutively at the
same point of time is not excluded. This urgency is useful in practice when
describing and analysing systems in which actions occur that are entirely
independent, such as actions that happen at different locations in a distributed
system.

Timing with respect to points of time on a continuous time scale is generally
considered to be the standard way of timing. Therefore, the versions with
continuous relative timing and continuous absolute timing are alternatively
called the versions with standard relative timing and standard absolute timing.

We only consider the basic process algebras, which are the subtheories that
do not cover parallelism and communication, because they are sufficient for
the points we want to make. In the case of ACP, the basic process algebra is
called BPAs. BPA is the subtheory of BPA; that does not cover deadlock.
In [1], models for the axioms of the theories considered are presented using
structural operational semantics and bisimulation. For each of the theories
concerned, the axioms form a sound and (relative) complete axiomatization
of the corresponding model. Besides, under a mild syntactic restriction on the
defining equations of recursively defined processes, known as guardedness, the
defining equations have unique solutions in these models.

2.1 Discrete Relative Timing

The atomic processes are undelayable actions. Let a be an action. Then unde-
layable action a, written g, is the process that performs action a in the current
time slice and then terminates successfully. Undelayable actions are idealized
in the sense that they are treated as if they are performed instantaneously.

The basic way of timing processes is relative delay. Let p be a process and
n € N. Then the relative delay of p for n time slices, written o’ (p), is the
process that idles till the n'® next time slice and then behaves like p. In other

words, it is p after a delay of n time slices.



The basic ways of combining processes are alternative composition and sequen-
tial composition. Let p; and py be processes. Then the alternative composition
of p; and py, written p; + po, is the process that behaves either like p; or like
P2, but not both. In other words, there is an arbitrary choice between p; and
p2. The choice is resolved on one of them performing its first action, and not
otherwise. Consequently, the choice between two idling processes will always
be postponed until at least one of the processes can perform its first action.
Only when both processes cannot idle any longer, further postponement is not
an option. If the choice has not yet been resolved when one of the processes
cannot idle any longer, the choice will simply not be resolved in its favour.
The sequential composition of p; and po, written py - po, is the process that first
behaves like p;, but when p; terminates successfully it continues by behaving
like po. That is, p; is followed by ps. If p; never terminates successfully, the
sequential composition of p; and p, will behave like p;.

In order to deal with unsuccessful termination, we need an additional process
that is neither capable of performing any action nor capable of idling till
the next time slice. This process, written 9, is called undelayable deadlock. In
order to handle situations in which processes exhibit inconsistent timing, it is
preferable to have an additional process that can be viewed as (a trace of) a
process that has deadlocked before the current time slice. This process, written
d, is called the deadlocked process. The deadlocked process after a delay of one
time slice and undelayable deadlock are considered to be indistinguishable
from each other.

In order to capture timing fully, we have, in addition to relative delay, relative
time-out and relative initialization. Let p be a process and n € N. The relative
time-out of p after n time slices, written v}, (p), behaves either like the part of p
that does not idle till the n'" next time slice or like the deadlocked process after
a delay of n time slices if p is capable of idling till that time slice. Otherwise,
it behaves like p. The relative initialization of p after n time slices, written
% (p), behaves like the part of p that idles till the n'® next time slice if p is
capable of idling till that time slice. Otherwise, it behaves like the deadlocked

process after a delay of n time slices.

We use the sum notation > ;.7 t;, where Z = {iy,...,i,}, for the alternative
composition t;, +...+1; .

Azioms of BPAY" The axiom system of BPAY" consists of the equations
given in Table 1.

Axioms A1-Ab are the axioms of BPA. Axioms A6ID and A7ID are simple
reformulations of axioms A6 and A7 of BPA;. Axioms DRT1 and DRT2 point
out that a delay of 0 time slices has no effect and that consecutive delays count
up. Axiom DRTS3, called the time-factorization axiom, shows that a delay by



Table 1

Axioms of BPAY™ (q € Ag, m,n > 0)

r+y=y+z Al o (x) =1 DRT1
(z+y)+z=a+ (y+2) A2 o (o7 (2)) = om " (2) DRT2
ztr=zx A3 oy (@) + oy (y) = ol (x+y) DRT3
(x+y)-z=z-2+y-z A4 oy(@) -y =0 (z-y) DRT4
(x-y)-z=z-(y-2) A5 arlel(t;) =4 DRT7
zT+o=2x A6ID at+d=aga A6DRa
§-x=4 ATID

v (8) =4 DRTO0 o (8) = o7y (9) DRIO
v (z) =14 DRTO1 v(z) = DRIl
v (e) =g DRTO2 ot (e) = o(9) DRI2
v (o1 () = o7y (vE (z)) DRTO3 ot (on (z) = o7y (U (x)) DRI3
viy(z +y) = vy (z) + v (y) DRTO4 vy +y) =vg(z) +v(y) DRI4
vz -y) = v (z) -y DRTO5 vy (z-y) =0 (x) -y DRI5

itself cannot determine a choice. Axiom DRT4 reflects that timing is relative.

This axiom makes the equation ol (0) - © = o7y (0) (DRT6) derivable. Axiom
DRTT7 expresses that the deadlocked process after a delay of one time slice
cannot be distinguished from undelayable deadlock. This axiom makes the
equations o™ ' (x) + & = o' (2) (A6DRb) and § - x = § (ATDR) derivable.
The equation ¢4 = ¢ is only derivable for closed terms ¢ # §. Axioms DRTO0-
DRTO5 and DRIO-DRI5 are the defining equations of the relative time-out
operator and relative initialization operator, respectively. These axioms reflect

the intended meaning of these operators clearly.

Example 1 We consider a process that polls on two input ports (ports 1
and 2) by repeatedly enabling each of them in turn for 1 millisecond. When a
datum d 1s offered at a port while it is enabled, the polling process delivers it at
its single output port (port 3). It is assumed that the set D of all possible data
is finite. This polling process can be recursively defined in BPAY as follows:

Poll =" ri(d) - s3(d) + o, (Z ra(d) - ﬁ) + o2, (Poll) .

deD deD

Notice that we are not able to describe that an accepted datum is immediately
delivered.

2.2 Discrete Absolute Timing

The constants and operators of BPA differ from the ones of BPAY! as
follows. In BPA%t we have the constants ¢ and ¢ instead of ¢ and ¢, and



Table 2
Axioms of BPAY (q € As, m,n > 0)
Ue?bs(w) - Uabs(m) DAT1 U;L (5) CT = U;Lbs((;) DAT®6
o (2)) = ol " (2) DAT2 ol (8 =4 DAT7?
)+ abs( ) = U;Lbs(x +y) DAT3 at+d=a A6DAa
x) v (y) = ol (@ - 8) DAT4
) - (Wi (W) + ol (2) =

alt (z -E;)bs(z)) DAT5

m
(Ta bs

x

v

x

79 (8) =4 DAI0a
ot (8) =4 DATO0 ot () = ol () DAIOb
v (z) =6 DATO1 9.(a) =a DAIL
vt (a) =a DATO2 ol (a) = oltt'(d) DAI2
ng:—n (Uabs(x)) = U:bs(U;Es(x)) DATO3 ﬁ;ﬁjn((f;bs@?)) = ;Lbs(_;gs(_gbs( ))) DAI3
Uabs( y) abs( ) + Uabs( ) DATO4 Eanbs (:L‘ + y) = Eabs( ) + Uabs( ) DAI4

vl (T y) = vl (2) -y DATO5 v (wey) =0] () y DAI5

the operator o,,, (absolute delay) instead of o, (relative delay). The con-
stant @ stands for the process that performs a in the first time slice and then
terminates successfully. The constant § stands for the process that is neither
capable of performing any action nor capable of idling till after the first time
slice. We also have absolute counterparts of the relative time-out and initializa-
tion operators: v,,, (absolute time-out) and T, (absolute initialization). The
deadlocked process can now be viewed as a process that has deadlocked before
the first time slice. There is no reason to distinguish it from the deadlocked
process in the case of relative timing, as explained in Section 7.

The operator v,,, makes it relatively easy to state the fundamental facts con-
cerning the interaction of absolute delay with sequential composition in the
form of equational axioms. The operator v, is used to anticipate in the for-
mulation of these facts the addition of a mechanism for parametric timing by
which a process cannot only to be started up at time 0, but also at other
discrete points of time. Without this parametrization mechanism, we have for
any process p that the absolute initialization of p at time 0 behaves like p.

Azioms of BPA9 The axiom system of BPA%* consists of axioms A1-A5,
AG6ID and A7ID from Table 1 and the equations given in Table 2

Axioms DAT1-DAT3, DAT7, A6DAa and DATO0-DATOS5 are simple refor-
mulations of axioms DRT1-DRT3, DRT7, A6DRa and DRTO0-DRTO5 of
BPAY!, Instead of axioms DAIO-DAI5, we could have taken simple refor-
mulations of axioms DRIO-DRI5. However, those alternative axioms do not
accomodate the addition of the mechanism for parametric timing mentioned
before. Striking is the replacement of axiom DRT4 by the axioms DAT4 and
DATS5 as well as the addition of axiom DAT6. Axioms DAT4 and DATS5 reflect
that timing is absolute. These axioms become easier to understand by realizing
that for all closed BPA%_terms ¢ and for all n > 0 either there exists a closed



term ¢’ such that ¢ = vl (¢') is derivable or there exist closed terms ¢’ and t"
such that ¢ = v}

n () +oh (t") is derivable. Besides, Do, () = t is derivable for
all closed BPA%t_terms ¢. Unlike its counterpart in BPAY* axiom DAT6 is
not derivable. The cause of this is the absence of a true counterpart of axiom

DRT4.

Example 2 We consider the polling process of Example 1 again. It can be
recursively defined in BPAY as follows:

Poll = ri(d) - s3(d) + 0as (Z ra(d) - Sg(d)) + 02 (Poll) .

deD deD

If the process Poll from Example 1 is started up at time 0, that process behaves
exactly the same as the process defined above.

2.8  Continuous Relative Timing

The constants and operators of BPA™" differ from the ones of BPAY" as
follows. In BPA® we have the constants a and ¢ instead of a and §. The
constant a stands for the proces that performs a at the current point of time
and then terminates succesfully. The constant o stands for the process that
is neither capable of performing any action nor capable of idling till after the
current point of time. The operators o, v, and v, have a non-negative real
number instead of a natural number as their first argument. The deadlocked
process can now be viewed as a process that has deadlocked before the current
point of time. We do not bother about distinguishing it from the deadlocked
process in the case that time is measured on a discrete time scale for reasons
that become clear later in Section 7.

Azioms of BPA®™® The axiom system of BPA®" consists of axioms A1-A5,
A6ID and ATID from Table 1 and the equations given in Table 3.

Axioms SRT1-SRT4, A6SRa, SRTO0-SRTO5 and SRIO-SRI5 are simple re-
formulations of axioms DRT1-DRT4, A6DRa, DRTO0-DRTO5 and DRIO-
DRI5 of BPAY!, Unlike their counterparts in BPAY", axioms A6SRb and

AT7SR are not derivable. The cause of this is the absence of a counterpart of
axiom DRTYT.



Table 3
Axioms of BPAS™ (a € A, p,q >0, r > 0)
a a

o (7)== SRT1 it5— 6SEa
ol (o (@) = ol (x) SRT?2 or (2) + 5 = o7, (z) AGSRD
ob\(x) + o8 (y) = %y (z +y) SRI3 5.o—3 ATSR
o)y =of(z-y) SRT4

v (8) =4 SRTO0  %,(8) = o, (4) SRI0
vd(@) =4 SRTO1  ©0(x) = SRIL
U (@) = @ SRTO2  w7,(a) = ojy(b SRI2
Vit *(01y(2)) = ofy(vfy(2))  SRTO3 oh (0% (2)) = ofy(Uiy(x)  SRI3
vl (z+y) =08 (z) + 02 (y) SRTO4 o2 (x +y) = 07, (¢) + OF,(y) SRI4
vl (@ -y) = v (x) -y SRTO5 o2 (- y) =02, (x) -y SRI5

2.4 Continuous Absolute Timing

The constants and operators of BPA® differ from the ones of BPA%" a5
follows. In BPA® we have the constants @ and ¢ instead of @ and . The
constant a stands for the proces that performs a at point of time 0 and then
terminates succesfully. The constant 0 stand for the process that is neither
capable of performing any action nor capable of idling till after point of time
0. The operators o,,, v, and 7, have a non-negative real number instead
of a natural number as their first argument. The deadlocked process can now
be viewed as a process that has deadlocked before point of time 0. There is no
reason to distinguish it from the deadlocked process in the case that time is
measured on a discrete time scale. This can be explained as follows: a process
has deadlocked before the first time slice if and only if it has deadlocked before
point of time 0.

Azioms of BPA® The axiom system of BPA®" consists of axioms A1-A5,
A6ID and A7ID from Table 1 and the equations given in Table 4.

Axioms SAT1-SATG6, A6SAa, SATOO0-SATO5 and SAIO-SAI5 are simple re-
formulations of axioms DAT1-DAT6, A6DAa, DATO0-DATO5 and DAIO-
DAI5 of BPAdYt, Unlike their counterparts in BPA4 axioms A6SAb and
AT7SA are not derivable. The cause of this is the absence of a counterpart of
axiom DATY7. Like in the case of BPA we have that for all closed BPAS-
terms ¢ and for all p > 0 either there exists a closed term ¢’ such that ¢t = v%, (')
is derivable or there exist closed terms ¢’ and ¢ such that ¢t = vb, (') +of, (")

is derivable. Besides, 03, (t) = t is derivable for all closed BPA®*-terms t.



Table 4
Axioms of BPAS3 (q € As, p,q >0, r > 0)

gbs(w) =13(2) SAT1 Ufbs(5) sr = Ufbs(5) SAT6
ol (0% (2)) = oFoi? (@) SAT?2 itd=a A6SAa
The(@) +ob (y) = of (z+y) SAT3 ol (@) +d =07, (2) A6SAb
oh (@) vl (y) =0l (z- 8) SAT4 5-x=4 ATSA
Ufbs(x) ( abs( )+Uabs( )) =
abs( abs(z)) SATS
9. (8) =14 SAI0a
vh (8) =4 SATOO o7, (8) = o7, (8) SAIOb
v (z) =6 SATO1 ©9.(a) = a SAT1
V3 (@) = @ SATO2 ol (@) = ol () SAI2
Uft;:q(o—fbs(x ) = 05 (Vs (x))  SATO3 Efbtq(gfbs(x = s (Tgbs(Tghs(2)))  SAI3
Ufbs(w +y) = U::bs(w) + Ufbs(y) SATO4 E;Dbs (z+y) = E;Dbs (z) + E;Dbs (y) SAI4
Ufbs(w y) = Ufbs(a:) -y SATO5H E;Dbs(a: ~y) = E;Dbs z)-y SAIH
Table 5
Additional axioms for BPAST (p > 0)
fvevF(v) = fwevF(w) INT1 sup V =p=
JocpF ) =6 INT2 oy The(®) = 0% () INTT7SAa
fve{p}F(v) = F(p) INT3 V, W unbounded =
SoevowF®) = Loy @25 (®) = [ 05 () INTTSAD
fvevF(v) + [ ewFv) INT4 supV=p,pgV = ] .
V= [ o=a INT5 [cv0hs(8) = 0% (§) INT8SAa
(Vp € Ve F(p) =G(p)) = V, W unbounded =
[oeyF0) = [, Gv) INTG Locv i) = [y 0ts(8) INTSSAD
fveV(F(v) + G(v)) = supV =p, peV =
s
[y FO) + [, ,Gv) INT1I Joer 73s(9) = 04 (8)  INTOSA

[y F@) )= ([, F@) o INT12 [y Tms(F(0) =05, ([ ey F(v)  INTI0SA

Ve[ ey F0) = [ 0 (F0) SATO6  Tps([,ey F(0)) = [, o T3, (F(0)) SAL6

3 Integration

In order to cover processes that are capable of performing an action at all
points in a certain time interval, we add integration to BPA®*. The integra-
tion operator [ provides for alternative composition over a continuum of al-
ternatives. The process [, _it, where v is a variable ranging over R,,, V' C R,,
and t is a term that contains no other free variable than v, behaves like one
of the alternatives t[p/v] for p € V.

The extension of BPA®* with the integration operator is called BPA®T.

Azioms of BPA®*] The axiom system of BPAS] consists of the axioms of
BPA®* and the equations given in Table 5. We use F' and G as variables rang-



ing over functions from non-negative real numbers to processes with standard
absolute timing — which are represented by terms that contain a designated
free variable ranging over the non-negative real numbers.

Axiom INT1 is similar to the a-conversion rule of A-calculus. Axioms INT2-
INT4 show that integration is a form of alternative composition over a set of
alternatives. Axiom IN'TH can be regarded as the counterpart of axiom A3 for
integration. Axiom INT6 is an extensionality axiom. The remaining axioms are
easily understood by realizing that integration is an form of alternative com-
position over a set of alternatives. Axioms INT10SA, INT11, INT12, SATO6
and SAI6 can simply be regarded as variants of axioms SAT3, A2, A4, SATO4
and SAI4, respectively. Axioms INT7-INT9 from [1] have been reformulated
to obviate the need of the assumption that R, is bounded by an infinite posi-
tive number (00). Notice that [, _,,0%,(8) and f,.,-0%(0) are indistinguishable
if V' is unbounded or the supremum of V' is not in V.

Example 3 We consider the polling process of Examples 1 and 2 again. It
can be recursively defined in BPAS'T as follows:

roi= | (S @-50) + [ o (5 00500

tef0,1) deD 1.2) deD
+ 02, (Poll) .

Notice that, unlike in BPAY and BPAY we are able to describe that an
accepted datum s immediately delivered.

4 Initial Abstraction

We introduce the concept of initial abstraction in the setting of BPA%* and
BPA®, It is considered to be the primary way of forming processes with
parametric timing. The ways of combining and timing processes available in
BPA%t and BPA® can simply be lifted to processes with parametric timing.
Initial abstraction is the basis for an alternative way to deal with relative
timing. Because it builds upon process algebra with absolute timing, we can
thus integrate absolute timing and relative timing.

The behaviour of processes with parametric timing depend on their initial-
ization time. They can be perceived as functions from natural numbers to
processes with discrete absolute timing that map each natural number n to a
process initialized at time n in the discrete case and as functions from non-
negative real numbers to processes with continuous absolute timing that map

10



Table 6
Axioms for discrete initial abstraction (n > 0)

Vi - F(i) = +j - F(j) DIA1 o (a) -z =0l (a) v} (z) DIA6

o1 (Vi - F(i)) = T (F(n)) DIA2 0% (vji. F(i)) = o (F(0)) DIA7

Vai - (V4 - K(i,7)) = vji - K(i,i) DIA3 (Voi - F(i)) + @ = i - (F(i) + Ty () DIAS

T =iz DIA4 (Vyi- F(i)) - @ = i . (F(i) - z) DIA9

(VneNev} () =03 (v) = v (Wit - F(3) = Vi - vl (F (7)) DIA10
r=y DIA5

each non-negative real number p to a process initialized at time p in the con-
tinuous case. Initial abstraction is an abstraction mechanism to form such
functions. It is reminiscent of A-abstraction in the A-calculus, but specific to
the case where the parameter is process initialization time: the process /i . t,
where 7 is a variable ranging over N and ¢ is a term that contains no other
variable than i, behaves like ¢[n/i] when initialized at time n; and the process
VLv . t, where v is a variable ranging over R,, and ¢ is a term that contains no
other variable than v, behaves like ¢[p/v] when initialized at time p.

First, we extend BPA" with the discrete initial abstraction operator V- The
resulting theory is called BPA%ty/,

Azioms of BPA%y The axiom system of BPAty consists of the axioms of
BPA%t and the equations given in Table 6. We use F' and G like before in
Table 5.

Axioms DIA1 and DIA2 are similar to the a- and [-conversion rules of \-
calculus. Axiom DIA3 shows that multiple discrete initial abstractions can be
replaced by one. Axiom DIA4 points out that processes with discrete absolute
timing are special cases of processes with discrete parametric timing: they
simply do not vary with different initialization times. Axiom DIAS5 is an ex-
tensionality axiom. Axiom DIA6 expresses that in case a process performs an
action and then proceeds as another process, the initialization time of the lat-
ter process is the time at which the action is performed. The remaining axioms
concern the lifting of the ways of combining and timing processes available in
BPA" to processes with discrete parametric timing.

Next, we extend BPA®T with the standard initial abstraction operator /.
The resulting theory is called BPAS*Iv.

Azioms of BPA®'Iv The axiom system of BPAS*IV consists of the axioms
of BPA®] and the equations given in Table 7.

Except for axiom SIA17, the axioms for standard initial abstraction are simple
reformulations of axioms for discrete initial abstraction. Axiom SIA17 concern
the lifting of integration, which is not available in BPA9'V, to processes with
standard parametric timing.

11



Table 7
Axioms for standard initial abstraction (p > 0)

Vv . F(v) = Jw . F(w) SIA1 ot (Vv . F(v)) = ol (F(0)) SIAT7

Tl (Vv . F(v)) =05 (F(p)) SIA2 (Mv.Fv) +z=

Vv - (Vw . K(v,w)) = [v. K(v,v) SIA3 Vv . (F(v) + 0% () SIA8

T=\v.x STA4 (Mv.F()) -z =+v.(F()-z) SIA9

(Vp € Ryo o U4 (2) =08 (v)) = vl (Vv . F(v)) = v . v (F(v)) SIA10
z =y SIAH fuev(\/sw .K(v,w)) =

oh (@) -z =of, () vl (z) SIA6 vew - (f, o K(v,w)) if v#w SIALT

Table 8
Additional axioms for BPAS™T (p > 0)
sup V =p = V, W unbounded =

[ ey o) = oy(8) INTTSRa Joevoi(® = [ cypom(8) INTSSRD
V, W unbounded = sup V=p,peV =

[cvou@ = [ o) INTTSRb fvevaye,(ﬁ) =0o?,(3) INTISR

supV =p, pgV = fvevail(F(’U)) = o’f’el(fvevF U)) INT10SR

Joey o0 = ofy(8) INT8SRa

V([ ey F0) = [, v (F(v)) SRTO6 ([, F) = [, 0h(F(v)) SRI6

5 Integration Revisited

We now return to integration. It will be added to BPA®™ as well. The rules
for the operational semantics concerning integration will be given both for the
case of absolute timing and the case of relative timing. This will show that the
rules for the operational semantics concerning integration are simple in case
of absolute timing, but complex in case of relative timing. The origin of this
complexity turns out to be that, unlike in case of absolute timing, in case of
relative timing a process always changes into another process while idling.

First, we extend BPA®" with the integration operator [. The resulting theory
is called BPA®™T.

Azioms of BPAS'T The axiom system of BPAS™I consists of the axioms of
BPA®" axioms INT1-INT6, INT11 and INT12 from Table 5 and the equa-
tions given in Table 8.

Axioms INT7SR-INT10SR, SRTO6 and SRI6 are trivial reformulations of
axioms INT7TSA-INT10SA, SATO6 and SAI6 of BPA®*'I. In other words, the
axioms concerning integration in case of relative timing are essentially the
same as the ones in case of absolute timing.

Example 4 We consider the polling process of Examples 1, 2 and 3 again. It
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Table 9
Additional rules for BPAS'I (a € A, p,q >0, 7 > 0)

F(q) & af ce Fg) &
fvevF(U) L fvevF(U) N Vv
{F(9) > Fi(q) | g € Vil . {F(q) > Fn(q) | ¢ € Vi,

{F(q) £ | ¢ € Vay1}
fvevF(v) s fvevlFl(v) +oot [y Fu(v)

{F(@)tlgeV}

Ly F0)1

qev

{Vi,...,Va} partition of V. — V41, Vo1 CV

can be recursively defined in BPAST as follows:

tE[U,l) deD [1,2) deD
+ o2,(Poll) .

If the process defined above is started up at time 0, this process behaves exactly
the same as the process Poll from Example 3.

Next, we give the rules for the operational semantics of integration in case of
relative timing.

Semantics of BPAS'T The structural operational semantics of BPAS™T is
described by the rules for BPA®*" and the rules given in Table 9.

As for BPA®'", the following transition predicates are used in Table 9: a binary
predicate - % _ and a unary predicate - - / for each a € A, a binary
predicate _ +» _ for each 7 € Ry, such that r > 0, and a unary predicate _ 1.
The transition predicates can be explained as follows:

t % t': process t is capable of first performing action a at the current
point of time and then proceeding as process t';

t = /: process t is capable of first performing action a at the current
point of time and then terminating successfully;

t + t': process t is capable of first idling for a period of time r and
then proceeding as process t';

t1: process t has deadlocked before the current point of time.

We write ¢ +&> for the set of all transition formulas —(t v #') where ¢’ is a
closed term of BPA™®.
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Table 10
Additional rules for BPAS®T (a € A, p,q > 0, 7 > 0)

(F(q),p) = (2',p) . (F(q),p) = (Vsp) cev
([ ey F0),p) = (', p) ([,ey F0),p) = (V/,p)
(F(q),p) > (F(q),p+7) .c {(F(q),p)t| g€V}
([ FO),p) D ([ F),p+1) fyer F@).o)1

In case of relative timing, a process changes into another process while idling.
The complexity of the third rule for integration is caused by the fact that the
processes F'(p) with p € V that are capable of idling need not change uniformly
while idling. This is illustrated in Example 5 below. The non-uniformity is in
all cases of a finite nature: the operational semantics gives for each operator
at most three ways in which the different processes obtained by means of the
operator may change while idling for a certain period of time. Hence, V' can
always be partitioned into a finite number of sets Vi,...,V, 1 (where V1,
may be empty) such that for each V' € {V;,...,V,} the processes F(p) with
p € V' change uniformly while idling, and the processes F'(p) with p € V4,
are not capable of idling.

Example 5 We illustrate that a process with relative timing need not change
uniformly while idling by showing how the process [,c(.6.1.8)(0re (@) + o2 (b))
has changed after 1.2 time units:

v (F v+1.5
fue[o.ﬁ,l.s)(”rel(a) o 7(0)
2

! +0.3F
% fv€[0.6,1.2)0—:’el @+ [

v6[1-2,1-2](a + U:JJ_O.?)(Z)) + v€(1.2,1.8)(0:’e|_1.2(a) + ”ﬁ’efo's(”)) .

Finally, we give the rules for the operational semantics of integration in case of
absolute timing. It turns out that the rules for integration in case of absolute
timing are much simpler than in case of relative timing.

Semantics of BPAS*'I The structural operational semantics of BPAS'I is
described by the rules for BPA®* and the rules given in Table 10.

As for BPA®*, see [1], the following transition predicates are used in Table 10:
a binary predicate (_,p) % (_,p) and a unary predicate (_,p) = (/,p) for
each a € A and p € R,,, a binary predicate (_, p) + (_,¢) for each p,q,r € Ry,
such that p+7 = ¢ and r > 0, and a unary predicate (_, p) 1 for each p € R,,.
The transition predicates can be explained as follows:
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(t,p) = (t',p): process t is capable of first performing action a at
point of time p and then proceeding as process t';

(t,p) % (\/,p): process t is capable of first performing action a at
point of time p and then terminating successfully;

(t,p) v (t,q): process t is capable of first idling from point of time p
to point of time ¢ and then proceeding as process t;

(t,p)1: process t has deadlocked before point of time p.

Here, it is worth remarking that the transition rules for BPAS] only define
transition relations for which (¢,p) % (¢, ¢) and (t,p) % (1/, ¢) never hold if
p # q; and (t,p) v (t', q) never holds if t # ¢'.

6 Time-Dependent State Operator

We now turn to a time-dependent version of the state operator from [3]. The
time-dependent state operator will be added to BPA®'I. It will become evi-
dent from this addition that, in case of relative timing, a more detailed opera-
tional semantics than the usual one is needed to deal with this operator. Thus,
a possible advantage of relative timing, viz. an intuitively clearer operational
semantics vanishes.

The state operator makes it easy to represent the execution of a process in a
state. The basic idea is that the execution of an action in a state has effect on
the state, i.e. it causes a change of state. Besides, there is an action left when
an action is executed in a state. For example, in case the states are queues
of data, when the action of instructing the addition or removal of a certain
datum is executed in a state, the action of adding or removing that datum
is left. The operator introduced here generalizes the state operator added to
ACP without timing in [3]. The main difference with that operator is that
the results of executing an action in a state may depend on time.

It is assumed that a fixed but arbitrary set S of states has been given, together
with functions act : A x Ry, x S = Asand eff :A X R, xS = S.

The state operator A\; (s € S) allows, given these functions, processes to
interact with a state. Let p be a process. Then A4(p) is the process p executed
in state s. The function act gives, for each action a, time ¢ and state s, the
action that results from executing a in state s at time ¢. The function eff gives,
for each action a, time t and state s, the state that results from executing a
in state s at time ¢. The functions act and eff are extended to A; such that
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Table 11
Axioms for state operator (a € Ag, p >0, s € S)

Xs(0h (8)) = oF (9) SATSO00
(0%, (@) = o, (act(a, p, 5)) SATSO1
As(08, (@ - ) = 0%, (act(a, P, 8)) - Ae(a.p.s) (0% (7))  SATSO2
As(z 4 y) = Xs(@) + As(y) SATSO3
/\s(fUEVF(v)) = fuev)\s(F(v)) SATSO4
Table 12

Rules for state operator (a € A, p > 0,7 >0, s € 5)
(z,p) = (2',p)

act(a,p,s) aCt(a,p,S) 71: 4

(As(@),p) ——" (Nefi(a,p,5)(@"), P)
(z,p) = (V>p)
(a(@),p) 2P, ()
(z,p) = (z,p+ 1) (z,p) 1
)

(
As(@),p) = As(@),p+1)  (As(2),p) T

act(a,p,s) # 6

act(d,t,s) =6 and eff(d,¢,s) = s forall t € Ry, and s € S.
First, we extend BPAS*] with the time-dependent state operators ).

Axioms for state operator The additional axioms for the state operators A
(for each s € S) are given in Table 11.

These axioms reflect the intended meaning of the state operator clearly. They
are reformulations of the axioms for the state operator added to ACP without
timing in [3] which reflect the possible dependence on time.

Next, we give the rules for the operational semantics of the time-dependent
state operator in case of absolute timing.

Semantics for state operator The structural operational semantics of BPAS'T
extended with the state operator is described by the rules for BPAS*I and
the rules given in Table 12.

In case of absolute timing, the operational semantics gives the capabilities of
processes related to points of time (see Section 5). Therefore, the operational
semantics is detailed enough to deal with the time-dependent state operator,
which requires that the points of time at which actions are performed are
available. However, in case of relative timing, the usual operational semantics
is less detailed: all capabilities are implicitly at the current point of time (see
Section 5), which may be any point of time. Neither the points of time at which
actions are performed nor the periods of time passed since previous actions
were performed are available. Therefore, the usual operational semantics is
not detailed enough to deal with the time-dependent state operator. In order
to add this operator to BPAS"'I, a more detailed operational semantics of
BPA®] is needed with transition predicates that are virtually the same as
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Table 13
Explicit definition constants/operators of BPAY® in BPAdaty/
=i a;bs(g) for each a € As

() =i - 5;:;"(90)
i+n —i

)
Urel(x) = \/dl * Vabs (Uabs(x))
)

T (%) = Vi - T (T ()

abs abs

the ones used for BPAS*I. The operational semantics would be much like the
operational semantics of the version of ACP with continuous relative timing
described in [5]. The rules for the state operator would be almost the same
as the ones given above. The only difference is that the second occurrence of
the variable z in the premise and the conclusion of the third rule must be a
fresh variable z’. It is clear that a possible advantage of relative timing, viz.
an intuitively clearer operational semantics, vanishes.

Of course, there is always the alternative to extend BPA®I with a different
state operator with which the original one can be mimiced rather directly:
one for which the results of executing an action in a state do not depend on
time, but for which idling may cause a change of state. We can also add a
time-dependent version of the process creation operator from [3] to BPA®'I
and BPA®*]. Again, the addition to BPA®*I requires the more detailed op-
erational semantics of BPAS'I mentioned above. Unlike in the case of the
state operator, there is not the alternative to extend BPAS'I with a different
process creation operator with which the original one can be mimiced.

7 Embeddings

It is interesting to know how the different process algebras introduced in this
paper are related to each other. We establish formal connections in the form
of embeddings. An embedding is a term structure preserving injective map-
ping from the terms of one process algebra to the terms of another process
algebra such that what is derivable for closed terms in the former process al-
gebra remains derivable after mapping in the latter process algebra. As usual,
we characterize each embedding by explicit definitions of the constants and
operators of the source process algebra that are not available in the target
process algebra (see [1] for details). Perhaps rather unexpectedly, there does
not exist an embedding of BPAY" in BPAS™].

The following constants and operators of BPAY" are not present in BPAdty:
a (a € As), 0,4, U, and U,. Explicit definitions of these constants and opera-
tors in BPA4%* are given in Table 13. These definitions induce an embedding
of BPAY" in BPAY'/. The proof is essentially the same as the proof of

Theorem 6 in [1]. The embedding demonstrates that there is no reason to dis-
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Table 14
Explicit definition constants/operators of BPASI in BPASA*Ty/
a=+v.o4(a) foreacha € As

o (@) = Vv - Tl P ()

U () = v - U;fsrp( Uabs (7))

rel( ) \/U vabs ( abs(‘z))

Table 15
Explicit definition constants/operators of BPA4ty/ in BPAS*Iv

a= fv€[0 1 ols(@) foreach a € As
U;Lbs(w) - abs(

z)
U;Lbs(w)f abs( )
)

E;Ls ( ) abs (

vai - F(i) = v . F([v])

tinguish the deadlocked process in case of absolute timing from the deadlocked
process in case of relative timing. This can be explained in BPAY!v by the
derivability of & = \/ji . 0ps(8), which looks like a definition of the deadlocked
process of BPAYt in BPAdaty,

The following constants and operators of BPA®™[ are not present in BPASIv:
a (a € As), 0., Uye and T, Explicit definitions of these constants and opera-
tors in BPA®*Iv are given in Table 14. These definitions induce an embedding
of BPA®T in BPA®*Iv. The proof is given in [1] (Theorem 6).

The two above-mentioned embeddings correspond to the view that, for a pro-
cess with relative timing, the execution of its first action is always timed
relative to the initialization time of the process.

The following constants and operators of BPAYty are absent in BPASIv:
a (a € A;) and /;. Besides, the operators o,,, v,,s and T,y have a natural
number instead of a non-negative real number as their first argument. Explicit
definitions of these constants and operators in BPA®*[v are given in Table 15.
Notice that the explicit definitions of the operators o,,,, v,,, and U, express
that they are the restrictions of the corresponding operators of BPAS*Iv to
N. The definitions given in Table 15 induce an embedding of BPAYY in
BPA®*Iv. The proof is given in [1] (Theorem 12).

The embedding concerned corresponds to the view that, for a discrete time
process, the execution of its first action is always timed with respect to a time
interval with discrete bounds (left closed, right open).

In summary, there exists an embedding of BPAY* in BPA%v, an embedding
of BPA%tY in BPASIv and an embedding of BPAS"I in BPA**Iv. Thus,
we have established a formal connection between BPAY* and BPA®™I.

However, there does not exist an embedding of BPAY" in BPAS™I. The term
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Table 16

Axioms for discretization (a € Ag, p > 0)
D(§) =4

D(a) = f'u€[0 1) abs( a)

(075(@) = o422 (D(2))

(z+y) =D(z) + D(y)

( )

(

(

@U

D(z-y) = D(x) - Dly
D, F() = [, D(F®)
Do 1)) = v - D(F(w)

Table 17
Rules for discretization (a € A, r,7’ > 0)

(z,p) = (', p) (z,p) = (V,p)
)

(D(x),q) % (D), q) g €[lp]; lp] +1) D).a i><\/7q>qe[LPJ7LPJ+1)

(D
(m,p) ¥ (2',p+1) (z,p)t
— (

e ),p+r>p+r elp+rlp+r]+1) D@t

D) S @i T E@ Rl

structure preservation required for an embedding fails due to the lack of a
general mechanism for parametric timing in BPA®*I. The heart of the problem
is that we cannot produce explicit definitions in BPAS®™I for the constants g
(a € As) of BPA™". The plausible definition a = [,y )07 (@) for each a € A;
is incorrect. According to these definitions, the process g - b does not have to
perform both g and b in the current time slice: b may also be performed in the
first next time slice. The point is that the maximal relative delay of b should
be less than 1 depending on what @ has left over. To express that dependency,
we need a mechanism for parametric timing like initial abstraction.

This suggests that a discretization operator cannot be added to BPA®'I. By
the lack of an embedding, it is not even clear what processes in the model of
BPA®*T are to be considered discretized.

8 Discretization

Consider the subset of processes in the model of BPA®*Iv generated by the
embedded constants and operators of BPAdy. This set can be character-
ized as the set of those processes with standard parametric timing that are
discretized.

We define the notion of a discretized process with standard parametric timing
in terms of the discretization operator D of which the defining axioms are given
in Table 16. The transition rules for discretization on processes with standard
absolute timing are given in Table 17. These rules show that discretization
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extends the capabilities of a process at any point of time to the whole time
slice in which the point of time occurs. Discretization can simply be lifted to
processes with standard parametric timing, viz. pointwise.

A process with standard parametric timing x is discretized if v = D(z). For any
such process, the following holds: if an action can be performed at some time
p, it can also be performed at any other time p’ such that |p| <p' < |p| + 1.

The set of discretized processes with standard parametric timing is closed un-
der the embedded operators of BPA'v. It is even the smallest such set that
includes the embedded constants of BPAYty/. This suggests the construction
of a model of BPA42ty. That model happens to be isomorphic to the standard
model of BPA%'y. In point of fact, the discretization operator turns the pro-
cesses that are considered in BPAS*Iv into the processes that are considered
in BPAdaty,

We introduced the discretization operator in order to define the notion of a
discretized process. However, that is not the only application of this operator.
Having a closed term ¢ denoting some process with standard absolute timing,
apposite change of the time scale may yield a closed term t' such that ¢’ =
D(t'). A change of the time scale is apposite if the process can faithfully be
considered at the more abstract level where time is measured on a discrete time
scale. The point here is that the abstraction obtained by the discretization
makes the process better amenable to analysis.

Example 6 The polling process defined in Example 2 behaves exactly the same
as the discretization of the polling process defined in Example 3. After dis-
cretization, immediate delivery of data becomes delivery while the input port
15 still enabled. This was to be expected because the time unit used is the time
that an input port is enabled without a pause.

Unfortunately, the discretization operator cannot be added to BPAS™I. The
problem of adding discretization to BPA®™'I is closely related to the problem
of finding an embedding of BPAY® in BPAS*I. We cannot discretize the
constants a (a € A;) of BPA™'T in a satisfactory way. The plausible axiom
D(a) = [,e0,1)0re(@) for each a € A; is incorrect. According to these axioms,

the process D(a) - D(b) does not have to perform both D(a) and D(b) in the
current time slice: D(b) may also be performed in the first next time slice.
Obviously, like in case of the embedding of BPAY" in BPAS], discretization
cannot be added to BPA®*I without first adding a mechanism for parametric

timing.
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9 Concluding Remarks

I have presented some points that are peculiar to relative timing. These points
shed a new light on the merits of relative timing. As far as I know, they have
not been presented before.

The intricacy of the rules for the operational semantics concerning integration
in case of relative timing, as demonstrated in Section 5, remained unnoticed
in [5] because wrong rules were given there. In [1], integration is only presented
for the case of absolute timing. A state operator for which idling may cause a
change of state, as mentioned at the end of Section 6, is presented in [18] for
the case that the time scale is discrete.

The rules for the operational semantics concerning integration in case of rel-
ative timing (Section 5), as well as the rules for the operational semantics
concerning discretization in case of absolute timing (Section 8), have not been
presented before.
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