An alternative formulation of operational
conservativity with binding terms

C.A. Middelburg
Computing Science Department, Findhoven University of Technology,
P.O. Boz 513, 5600 MB Eindhoven, Netherlands

Department of Philosophy, Utrecht University, P.O. Box 80126, 3508 TC Utrecht,
Netherlands

Abstract

In a previous paper, the approach to structural operational semantics using transi-
tion system specifications (T'SSs) was extended to deal with variable binding oper-
ators. It was shown that in the new setting a generalization of the transition rule
format known as the panth format guarantees that bisimulation equivalence is a
congruence for meaningful T'SSs. In the current paper, it is shown that certain syn-
tactic criteria to determine whether a TSS is an operational conservative extension
of another TSS, originating from Fokkink and Verhoef, are applicable to the new
setting as well. This result can for example be used to simplify proofs of axiomatic
conservativity and completeness in the case where an existing process calculus is
extended with new features.

Key words: structural operational semantics, operational conservative extension,
transition system specification, variable binding operator, source dependency

1 Introduction

Transition system specifications (TSSs) are used in an approach to structural
operational semantics (SOS) that considers transition systems where the states
are the closed terms over a given signature. The notion of TSS was first in-
troduced in Ref. [1]. The original T'SSs define binary transition relations by
means of transition rules with positive premises. The notion of TSS was gener-
alized in Refs. [2-5] to TSSs that define unary and binary transition relations
by means of transition rules with positive and negative premises.

Email address: keesm@win.tue.nl (C.A. Middelburg).
URL: http://www.win.tue.nl/ keesm (C.A. Middelburg).

Preprint submitted to Elsevier Science 2 July 2002

In Ref. [6], it was generalized further to cover variable binding operators. The
new TSSs can amongst other things deal with: the integration operator [of
real time ACP [7], the sum operator Y. of uCRL [8], and the recursion opera-
tor 1 of CSP [9] and CCS [10]. It was found that the notions of bisimulation
equivalence and panth format generalize naturally to the new TSSs, and more-
over that in the new setting bisimulation equivalence is still a congruence for
meaningful T'SSs in panth format.

The notion of TSS was first generalized to cover variable binding operators in
Ref. [11]. In Ref. [6], an alternative extension was introduced that keeps the
new T'SSs more closely related to the original ones. In Ref. [11], no transition
rule format is given that guarantees that bisimulation equivalence is a congru-
ence. However, in that paper syntactic criteria are given to determine whether
a TSS is an operational conservative extension of another TSS. In this paper,
it is shown that those syntactic criteria are applicable to the new setting as
well.

The explanation of the meaning of TSSs given in this paper differs from the
one given in Ref. [6]. The new explanation uses less model-theoretic notions
and more proof-theoretic notions. In that way, it conveys a more intuitive
understanding of the meaning of T'SSs.

It was recently found that the generalized panth format given in Ref. [6] could
be made somewhat less restrictive. In this paper, the new relaxed version
of the format is presented. In various applications of TSSs, it is impractical
and unnecessary to provide the terms of certain sorts with an operational
semantics because there exists a fully established semantics for them. The sort
that represents the time domain in process calculi with timing, usually N or
R.,, is a typical example. By distinguishing such sorts, the generalized panth
format can be relaxed further and transition relations can be parametrized.
In Ref. [6], where such sorts are called given sorts, these matters have been
discussed. In this paper, that discussion is adapted to the new explanation of
the meaning of T'SSs.

The TSSs introduced in Ref. [6] are TSSs that define transition relations
on binding terms. Binding terms, first introduced in Ref. [12], are basically
second-order terms of a restricted kind, suitable to deal with variable bind-
ing operators. As a result, binding terms are not meant to deal with gen-
eral second-order operators. They do not support higher-order operators other
than the second-order operators that can be regarded as variable binding op-
erators. Consequently, the new TSSs are for example not intrinsically appro-
priate to provide higher-order process calculi with an operational semantics.
Approaches to structural operational semantics for the higher-order case have,
for example, been studied in Refs. [13,14].

The structure of this paper is as follows. Section 2 covers the preliminaries
needed in the remainder of the paper. In Section 3, the basic approach to
structural operational semantics using TSSs, which does not cover variable
binding operators, is presented. The extension to deal with variable binding
operators is introduced in Section 4. In Section 5, operational conservativity
of TSSs is defined and syntactic criteria to determine whether a TSS is an op-
erational conservative extension of another T'SS are given which are applicable
to the setting with variable binding operators. The adapted discussion about
given sorts can be found in Section 6. Finally, in Section 7, some concluding
remarks are made.

2 Preliminaries

In this section, we briefly review the basic notions on which the material
presented in this paper is founded and establish the notation and terminology
used.

2.1 Signatures, terms and equations

We assume a set S of sorts (type symbols), a set O of operators (function
symbols) and a set V of wvariables. Each operator o € O has a sequence of
argument sorts (si,...,s,) € 8* and a result sort s € S. Each variable z € V
has a sort s € §. It is assumed that the sets V and O are disjoint. We use the
notation o: sy X ... X s, — s to indicate that o is an operator of which the
sequence of argument sorts is (si, ..., s,) and the result sort is s. We use the
notation x : s to indicate that x is a variable of which the sort is s.

Constants are regarded as nullary operators, i.e. operators of which the se-

quence of argument sorts has length 0.

A (many-sorted) signature is a pair X' = (S, 0), with S C § and O C O, such
that forallo € O,ifo:s; X ... X s, — s, then s1,...,5,,5 € S.

Let X = (S,0) be a signature. Then the variable domain for ¥, written Vy,
is the set {x € V |ds € Sex:s}.

Let X' = (S,0) be a signature and X C Vy. For each s € S, there is a set
Ts(X), of terms over ¥ and X of sort s. These sets are the smallest sets
satisfying:

(1) ifx € X and x : s, then z € Ty(X),;

(2) ifo€O,0:8 x... x5, = s, and t; € Tx(X), , ..., tn € Tx(X), , then
o(ty,...,ty) € Te(X),.

Nullary operators are used as terms: we write o for the term o(). The set Tz (X)
of terms over X' and X is the set U{7x(X), | s € S}. For each t € T5(X), we
write s(t) for the sort s € S such that ¢t € T5(X),. We write Ty for the set
T5(Vs). The set Ty is called the set of terms over X. A term over X is also
called a Y-term.

A term t is closed if it does not contain variables. We write CTy, for the set
T5(0), of closed X-terms of sort s and we write CT; for the set Tx(0) of closed
Y-terms.

A substitution of terms over X and X for variables in X is a sort-respecting
function o : X — Tx(X). A substitution o extends from variables to terms
in the obvious way: o(¢) is the term obtained by simultaneously replacing in
t all occurrences of variables x by o(x). We usually write to for o(t). We
write [t1,...,t,/x1,...,2z,] for the substitution o such that o(z;) = ty, ...,
o(z,) =t, and o(z) = x if x € {z1,...,2,}. A substitution 0 : X — Tx(X)
is closed if o(x) € CTy for all v € X.

Let X' = (S, 0) be a signature and X C Vy. Then the set Ex(X) of equations
over X and X is the smallest set satisfying:

if t1,t, € Tx(X), for some s € S, then t; =t € Ex(X).

We write £5 for the set £5(Vy). The set €y is called the set of equations over
J). An equation over J is also called a X-equation.

An equation e is closed if both terms occurring in it are closed. We write CE5;
for the set Ex(0) of closed Y-equations.

Let E C Ex(X) and e € Ex(X). Then e is derivable from E, written E F e, if
it is justified by the following rules:

(1) ift; =ty € E, then E F t; = to;

(2) if t € T (X), then E F1t =t;

(3) if EFt; = ty, then E'ty =ty;

(4) if EFt; =ty and E =ty = t3, then F -t = t3;

b)if EFty =ty EFt) =t), v € X and z :s(t}), then E F [t} /2] =
to[th/x].

2.2 Algebras

Let X = (S,0) be a signature. Then an algebra A with signature X consists
of:

(1) for each s € S, a non-empty set A, called the carrier of s;
(2) for each 0 € O, 0:8, X...X s, — s, a function 0 : A, x ... x A, — A,,
called the interpretation of o.

An algebra with signature X' is also called a Y-algebra. Sometimes, we loosely
write A for the set J{A; | s € S}.

Let A be an algebra with signature ¥ = (S,0) and X C Vy. Then an
assignment in A for variables in X is a sort-respecting function o : X — A.
For every assignment a: X — A, x € X, z:s,and d € A, (s € S), we write
a(x — d) for the assignment o/ : X — A such that o/(y) = a(z) if y # x and
o (z) =d.

Let A be a Y-algebra, X C Vg, and a: X — A be an assignment in A for
variables in X. Then the term evaluation function extending « is the sort-
respecting function o* : Tg(X) — A recursively defined by

D) = oA e (t), k()

Let A be a X-algebra, X C Vy, and t; =ty € Ex(X). Then t; =ty holds in
A, written A =t = o, if a*(t1) = o*(ty) for all assignments a: X — A.

Let E C Ex(X). Then A is a model of E, written A = E, if A |= e for all
ec kL.

Let A be a X-algebra and F be a set of Y-equations. Then E is a sound
axiomatization of A (for closed terms) if for alle € Cy: EFe = A ¢
and E is a complete axiomatization of A (for closed terms) if for all e € CEy:

EFtre <« AfEe.

Let ¥ = (S, 0) be a signature and X C Vy such that for all s € S, Tx(X), #
(). Then the algebra of terms over X and X, written Ty (X), is the Y-algebra
where

(1) for each s € S, the carrier of s is Ty (X),;
(2) foreach o € O, 0:51 X ...x s, — s, the interpretation of o is the function
o) T(X),, x...xTg(X), — Tz(X), such that for allt; € Ty (X)

oty € Te(X), o= Xty) = o(ty, ..).

s17?

The algebra of closed terms over X, written CTy, is the algebra of terms over

X and 0.

Let A be an algebra with signature ¥ = (S,0). Then a (sort-respecting)
equivalence relation ~ C A x A is a congruence on A if for each o € O,
0:51 X ...X s, = s, we have for all ay,d| € Ay ,...,a,,a], € As,:

A(A

ay,...,al) .

ap ~ay,...,a, ~a, = o*ay,...,a,) ~ o0
Let ~ be an equivalence relation on a set A. Then we write [a]., where a € A,
for the equivalence class {a' € A | a ~ a'}; and we write A/~ for the quotient

set {[a]. | a € A}.

Let A be an algebra with signature X' = (S, 0) and ~ C Ax .4 be a congruence
on A. Then the quotient algebra of A by ~, written A/~, is the Y-algebra
where

(1) for each s € S, the carrier of s is Ay /~;

(2) for each 0o € O, 0:5, x...x s, — s, the interpretation of o is the function
oA~ Ay [~ XX Ay, [~ — Ay~ such that for all a; € Ay, ...,
an € As,, 0™ ([a1]~, ..., [an]o) = [0 ay, ..., ay)]~.

3 The basic approach

In this section, we introduce the approach to structural operational semantics
using T'SSs that define unary and binary transition relations by means of tran-
sition rules with positive and negative premises. In this approach, developed
in Refs. [1-5], variable binding operators are not covered.

3.1 Transition system specifications

The main constituent of a transition system specification is a collection of
transition rules defining certain transition relations. Each transition rule is
made up of transition formulas. We will define transition formulas and tran-
sition rules over a signature and a domain of transition predicates. Therefore,
we first define the notion of domain of transition predicates. Roughly speak-
ing, a domain of transition predicates consists of unary and binary predicates
(relation symbols), each predicate being given a sequence of argument sorts.

We assume a set P of predicates. Each predicate p € P has a sequence of
argument sorts (sq,...,s,) € 8*. It is assumed that the sets V, O and P are
mutually disjoint. We use the notation p:s; X ... X s, to indicate that p is a
predicate of which the sequence of argument sorts is (si, ..., sp).

Let X' = (S,0) be a signature. Then a domain of transition predicates on
Y-terms is a set II C P such that for all p € II, if p:s; X ... X s,, then
S1y...,8, € Sand n =1 or 2.

Transition predicates are defined here in an uncommon way to anticipate the
generalization to parametrized transition predicates discussed in Section 6.

Next, we define the notions of positive and negative transition formula. We
also introduce the notion of denial of a transition formula and make the notion
of closed transition formula precise.

Let II be a domain of transition predicates on X-terms. Then the set fg,n
of positive transition formulas over X and II and the set F ; of negative
transition formulas over X and II are the smallest sets satisfying:

ifpell,p:syx...xsy,and t; € Tyg, .., ty € Txs, s
then p(t1,...,tn) € Fi 3

ifpell,p:sgx...xs,,and t; € Ty, ..., tn € Txy,,
then —p(t1,...,t,) € Fy 1.

Bear in mind that p € Il implies 1 < n < 2. We use in general postfix notation
for unary predicates and infix notation for binary predicates. We write Fy ;
for fg,n UFy - For ¢ € Fy i, ¢, the denial of ¢, is defined as follows:

p(tl,---,tm) = _'p(tlaatm)) _'p(tlaatm) :p(tlaatm) .

A positive or negative transition formula ¢ is closed if all terms occurring in
it are closed. We write CFy ; for {¢ € Fy | ¢ is closed} and CFy j; for
{¢ € F5 ;1 | ¢is closed}. Furthermore, we write CFy, j for CF3, ; U CFy p7.

In the following definition, the notion of transition rule is defined. The notions
of substitution instance and closed substitution instance of a transition rule
are also introduced.

Let II be a domain of transition predicates on Y-terms. Then the set Ry
of transition rules over X' and IT is the smallest set satisfying:

it & C Fyy and ¢ € F5 7, then % € Ry

Let r = 2 be a transition rule. Then the transition formulas in @ are the

premises of r and the transition formula 1) is the conclusion of r. A transition
rule r is closed if all formulas occurring in it are closed. Substitution extends
from terms to formulas and rules as expected. For every substitution o:Vy —
75 and transition rule 7, the transition rule o(r) is a substitution instance of
r. If o is a closed substitution, the transition rule o(r) is a closed substitution

instance of r.
We are now ready to define the notion of transition system specification.
A transition system specification (TSS) is a triple P = (X, II, R), where

(1) X is a signature;
(2) II is a domain of transition predicates on X-terms;
(3) RCRyn-

We write si(R) for the set of all substitution instances of r € R and csi(R) for
the set of all closed substitution instances of r € R.

Example 1 We consider the signature Yc = ({C},{0c,sc}), with 0c: — C
and s, : C — C, and the transition predicate domain Ilc = {Lc>, dec, L
with 2% :C x C, 2 :C x C and =% :C x C. The signature Yc introduces
terms intended to be used as expressions for counters. A counter can freely
be incremented, but it can only be decremented once for each time it has been
incremented. The idea is that the term 0. represents a counter that cannot be
decremented and that the term sc(t), where t € CTs., represents a counter that
can be decremented once more than the counter represented by t. In addition,
it can be checked whether a counter can be decremented for an even number of
times. This operational behaviour is modeled by the TSS Pc = (X¢, ¢, Re),
where Re consists of the following transition rules:

inc even)

Yy > -(r =5z

even even

TS s(r) @Sy 0= 0 se(w) = se()

An example of a closed substitution instance of a transition rule from R¢ is

0c "% s.(0,)
sc(0c) 250,

It is obtained from the second transition rule by means of a closed substitution
o such that o(x) = s.(0.) and o(y) = 0.

3.2 Proofs from TSSs

In the following definition, we introduce a general notion of proof from a
TSS by allowing to prove transition rules. The proof of a transition rule %

corresponds to the proof of the transition formula ¢ under the assumptions
P.

Let P = (X, I, R) be a TSS. Then a proof of a transition rule % from P is

a well-founded, upwardly branching tree of which the nodes are labelled by
formulas in Fx j, such that

(1) the root is labelled by ;
(2) if a node is labelled by ' and @' is the set of labels of the nodes directly
above this node, then

either ¢’ € dand &' =0 or % €si(R) .

A transition rule r is provable from P, written P - r, if there exists a proof of
r from P. A positive transition formula ¢ is provable from P, written P ¢,

if there exists a proof of % from P.

In the following definition, we introduce the notion of well-supported proof
from a TSS. It incorporates a form of negation as failure.

Let P = (X,II,R) be a TSS. Then a well-supported proof of a closed tran-
sition formula ¢ from P is like a proof of % from P, but admitting under 2

additionally

or 7' is negative and for all sets N C CFy; ;; such that
P+ % there exists a ¢’ € ® such that ¢/ € N .

A closed transition formula ¢ is ws-provable from P, written P tg 1, if there
exists a well-supported proof of ¢ from P.

In a well-supported proof, it is allowed to infer the denial of a closed positive
transition formula ¢, if it is manifestly impossible to infer ¢ because every con-
ceivable proof of ¢ involves a negative premise of which the denial has already
been proved. This fits in with the idea that the only closed positive transition
formulas that hold in the intended model of a TSS are those inferable from
the transition rules under assumption of closed negative transition formulas
that do not lead to inconsistencies. However, in the case where this principle
is applied, it is not precluded that there still exists a closed positive transition
formula of which it is not possible to establish whether it holds in the intended
model or not. Therefore, we also introduce the notion of complete TSS.

Let P = (X, 1, R) be a TSS. Then P is complete if for all ¢ € CFy jr, either

P s ¢or Ply o

Only complete T'SSs are considered to be meaningful in this paper. This choice
is dictated by the observation that in virtually all applications of TSSs, it is
essential that it can be established for every closed positive transition formula
whether it holds in the intended model or not. It is, for example, the case
with transition rule formats guaranteeing that bisimulation equivalence is a

congruence and syntactic criteria to determine operational conservativity.

Example 2 We consider the TSS Pc of Example 1. The following is a well-
supported proof of sc(sc(0c)) = sc(sc(0c)) from Pc:

even

0. — O,
=(sc(0c) =% s¢(0c))

Se(sc(0c)) = sc(sc(0c))

3.3 Models of TSSs

The models of a TSS are known as transition systems. We define transition
systems with respect to a signature and a domain of transition predicates.

Let II be a domain of transition predicates on Y-terms. A transition system
TS for X and II consists of:

for each p € II, p:s; X ... X s,, a relation p78 C CTy,, X ... x CTy, ,
called the interpretation of p.

So transition predicates are interpreted as relations on sets of closed terms.

The following definition makes precise what it means for a closed transition
formula to hold in a transition system.

Let 7S be a transition system for signature X' and domain of transition pred-
icates II. For ¢ € CFy g, ¢ holds in TS, written 7S = ¢, is defined as follows:

(1) TS Ep(ty, ..., t,) if (t1,...,t,) €75,
(2) TS &= —p(ty, ... tn) if (t1,...,t,) €975,

For ¢ C CFy 1, we write 7S |= @ to indicate that 7S |= ¢ for all ¢ € &.

A transition system 7S for X and IT corresponds to the set F' C CFy ;; such
that, for all p(t1,...,t,) € CF g, p(t1,....ty) € F & TS | plty, ... ty).
Hence, in the light of the last definition, a transition relation on X-terms
can be regarded as a set of closed positive transition formulas over Y and
II. Therefore, closed positive transition formulas are sometimes loosely called
transitions. This correspondence also clarifies the value attached in Section 3.2
to T'SSs being complete.

Now, we can make precise what it means for a transition system to be a model
of a TSS and what it means for a transition system to be well-supported by a

10

TSS.

Let P = (X,1I,R) be a TSS and 7S be a transition system for X and II.
Then 78 is a model of P, written 7S |= P, if for all ¢ € CFy;

TSy « ngcsi(R).TS):qﬁ,

and TS is well-supported by P if for all ¢ € CF3,

TSEy = 3¢§Cf§7H.PI—%/\TS):¢>.

If 7S is a model of P that is well-supported by P, we say that 7S is a well-
supported model of P. For ¢ € CFy , we write P |= . ¢ to indicate that
TS [¢ for all well-supported models 7S of P.

The definition of model expresses that a transition system is a model of a T'SS
if it obeys the transition rules of the TSS. The definition of well-supportedness
expresses that a transition system is well-supported by a TSS if each of its
transitions is justified by the transition rules of the T'SS and this justification
is founded, i.e. it does not make use of the transition itself. We have that
is sound for all well-supported models of a TSS, that is Py ¢ = P =, ¢
(Proposition 11 in Ref. [15]).

Suppose that P = (X, II, R) is a complete TSS and 7S is a transition system
for X and II. It is easy to check that the notion of well-supported proof is
defined in such a way that 78 is well-supported by P iff for all ¢ € C]:;,H,
TS =1 = P Fys 1. From this and the soundness result for s, it follows
that a complete TSS has a unique well-supported model. Its transitions are
exactly the ones justified by a well-supported proof.

Let P = (X, II, R) be a complete TSS. Then the intended model of P, written
TS p, is the unique well-supported model of P. 7Sp is also called the transition
system associated with P.

Notice that every TSS without negative premises is complete. Moreover, for
TSSs without negative premises, - and k4 coincide on closed transition for-
mulas.

Example 3 We consider again the TSS Pc of Example 1. Let £ be the small-
est subset of CTs. satisfying (1) 0c € € and (2) if t € &, then sc(sc(t)) € £.
The intended model TSp. has {(t,sc(t)) | t € CTs.}, {(sc(t),t) | t € CTs.}, and

t,t) | t € £} as interpretations of the transition predicates ncy - dec and
{() P p , ;

even

—, respectively.

11

3.4 Bisimulation equivalence and the panth format

Bisimulation equivalence is a frequently used equivalence to abstract from
irrelevant details of operational semantics. We define bisimulation equivalence
with respect to a TSS.

Let P = (X,II,R) be a TSS. Then a bisimulation B based on P is a sort-
respecting symmetric binary relation B C CTy; X CTy such that:

(1) if B(ty,t)) and TSp E p(ty,ta), then 3t « TSp = p(t),t,) and B(ts, th);
(2) if B(ty,t}) and TSp = p(t1), then TSp = p(t)).

Two closed X-terms t and t' are bisimulation equivalent in P, written t £p t',
if there exists a bisimulation B such that B(t,t).

The transition rule format known as the panth format guarantees that bisim-
ulation equivalence is a congruence.

Let P = (X, II,R) be a TSS. Then a transition rule r € R is in panth format
if it satisfies:

(1) the second argument of each premise of r that has the form p(¢,t,) is a
variable;

(2) the second argument of each premise of r that has the form —p(t, ;) is
a closed term,;

(3) the first argument of the conclusion of r has one of the following forms:

r or o(xy,...,Tp);

(4) the variables that occur as second argument of a premise that has the
form p(ti,t3) or in the first argument of the conclusion are mutually
distinct.

The TSS P is in panth format if each transition rule » € R is in panth format.

Theorem 4 (Congruence) Let P = (X, I, R) be a complete TSS in panth
format. Then <p is a congruence on the algebra of closed terms over Y.

Proof. In the one-sorted case, it follows immediately from Theorem 4.5 in
Ref. [4] and Corollary 5.7 in Ref. [16]. However, it is immediately clear that
those theorems go through in the many-sorted case seeing that their proofs
do not depend on the lack of many-sortedness. O

Consider a TSS P = (X, I, R) in panth format. Then it is certain that we can
construct CTg/<p, the quotient algebra of the algebra of closed terms over

12

2 by bisimulation equivalence. If this X'-algebra is intended to be a model of
some set of Y-equations, then this algebra is usually called its bisimulation
model.

Example 5 We consider once more the TSS Pc of Fxample 1. It is not in
panth format because its second and fourth transition rule are not in panth
format. We can replace those two rules by rules in panth format such that
the transition system associated with the resulting TSS is the same as the
transition system associated with the original TSS. The transition rules of the
new TSS are as follows:

{o(x =% 1) [t € CTuc}
even .

x Lc) Sc(.’L‘) Sc(.’L‘) E) z O = 0c sc(l‘) E— sc(l‘)

It is easy to see that the new TSS, say P, is also complete. Hence, Stpr 1S
a congruence on the algebra of closed terms over Xc. In this particular case,
this result is not really relevant because Spr is the identity relation on CTsc.

4 Variable binding operators

The generalization of the relevant notions — such as signature, term, equation,
algebra, transition rule, bisimulation equivalence and panth format — needed
to deal with variable binding operators is rather straightforward. Additional
rules to derive equations ensue from it.

4.1 Signatures, terms, equations and algebras

For clearness’ sake, we now call the elements of S base sorts. To begin with,
we need other sorts, which are built up from base sorts. If S C S and
S1y...ySn, S €S, then sq,...,s,.5sis a binding sort over S. We write B(S) for
the union of S and the set of all binding sorts over S. The carrier of a base
sort s consists of objects which are called ordinary objects. The carrier of a
binding sort si,..., s, .s consists of functions from the cartesian product of
the carriers of the base sorts s, ..., s, to the carrier of the base sort s. Binding
sorts are used for variable binding in arguments of operators. Argument sorts
of operators may be binding sorts; result sorts must be base sorts. Suppose
that 0:81 X ... x 8, = s. If ; = s;1,...,8in, . 8 (1 < i < n), then o binds
n; variables, of base sorts s;i,. .., sip,, in the ¢th argument. Otherwise, i.e. if
s; € S, it does not bind any variable in the ith argument. Sorts of variables
may also be binding sorts.

13

A binding signature is now a pair X' = (S,0), with S C § and O C O, such
that for allo € O, if 0:8; X ... X 8, — s, then s1,...,5,,s € B(S).

For a binding signature X', the variable domain Vy; is the set {x € V | 3s €
B(S)ex:s}.

Let X' = (S, 0) be a binding signature and X C V. For each s € B(S), there
is a set Tx(X), of binding terms over X and X of sort s. These sets are the
smallest sets satisfying:

(1) ifx € X and x : s, with s € S, then x € T (X),;

2)ifx e X, x:81,...,8,.5 and t; € Tg(X)s,...,tn € Tg(X)s,, then
x(tyy ... tn) € T(X)s;

(3) ifxy,...,xp € X, 1 :81,...,%pn: Sy, t € T(X)s, With s1,...,8,,8 €5,
and w1, ..., r, are mutually distinct, then zq,..., 2z, .t € Ty (X)s,,. 5055

(4) ifo€e O,0:8, x...xX8, = s,and t; € Tx(X), , ..., t, € Tg(X), , then
o(tr,...,tn) € Tx(X),.

Rule 2 shows that variables of binding sorts have arguments. Notice that bind-
ing terms formed by application of rule 3 serve only as argument of operators.
Binding terms of which the sort is a base sort are ordinary terms.

In the case of binding terms, the notion of closed term must be generalized.
An occurrence of a variable x in a binding term ¢ is bound if the occurrence is
in a subterm of the form xy,..., 2, .t with x € {zy,...,2,}; otherwise it is
free. If x has at least one bound occurrence in ¢, it is called a bound variable
of t. If x has at least one free occurrence in %, it is called a free variable of t.
A binding term ¢ is closed if it is a binding term without free variables. We
still write CTy for the set of closed binding terms.

The extension of a substitution ¢ from variables to binding terms differs in two
ways from the extension of a substitution from variables to ordinary terms.
First of all, only free occurrences of variables are replaced and bound variables
are renamed if needed to avoid free occurrences of variables in the replacing
terms becoming bound. Secondly, if o(x) = xy,...,2, ., a term of the form
x(t1,...,t,) is replaced as a whole by the term t[o(t1),...,0(t,) /1, ..., z,].
Substitution is only defined up to change of bound variables. This is justified
because binding terms that can be obtained from each other by change of
bound variables are not distinguished semantically.

In the case of binding signatures, the definition of the notion of equation has
to be adapted to include equations of which both sides are terms of a binding
sort. Two additional rules are available to derive such equations:

(1) if xq,...,20 .t € Te(X), y1,---,yn € X, y1:8(x1), ..., Yn :s(zy), and
Yi,--.,Y, are mutually distinct, then £ = xy,...,2, .t = y1,...,Yn -

14

tyr, s Yn/@1s - Tl
(2) if EFty =ty 8(t1) € S, x1,...,2, € X and s(x1),...,s(z,) € S, then
El—xl,...,xn.tl:xl,...,xn.tg.

In the case of binding signatures, an algebra differs in two ways from an ordi-
nary algebra. Firstly, there are also carriers for the binding sorts, as explained
above. That is, the algebra with signature X = (S, O) consists of:

(1) for each s € B(S), a non-empty set A, called the carrier of s, such that
ifseB(S)—S,6=s1,...,8,.5 then A, C A, x ... x A, — Ay;

(2) for each 0 € O, 0:8; X ... x5, — s, a function 0 : A, X ... x A, — A,
called the interpretation of o.

Secondly, the algebra must satisfy the restriction that each assignment o can
be extended to a term evaluation function such that:

(z) = a(z) ;

(altr, ., ta) = a(@) (@ (1), .- 0(t))

“(@1,..., 0, . 1) is the f € Agay),...s2n).sp) Such that, for all dy € Ay,),
oty € Ay, fldy, oo dy) = (a(zy — dy) .. (2 = dy) (8)

(4) a*(o(ty,. .., tn)) = oA (a*(tr),...,a%(t,)) .

The restriction concerning term evaluation is automatically satisfied by ordi-
nary algebras. Frequently used ways to construct algebras, such as the term
algebra construction and the quotient algebra construction, still work in the
presence of variable binding operators. For a formal treatment of algebras in
the presence of variable binding operators, the reader is referred to Ref. [6].

Henceforth, we usually say signature and term instead of binding signature
and binding term, respectively, if it is clear that the latter are meant.

Example 6 In CCS [10], the operator i is used to define processes recur-
swely. For example, the expression px .ax denotes the solution of the equation
x = ax, i.e. the process that will keep on performing action a forever. The op-
erator |4 1S in essence a unary variable binding operator that binds one variable
in its argument. In the current setting, pux .t becomes simply an abbreviation

for p(z . t).
4.2 Transition systems, bisimulation equivalence and the panth format

In this subsection, we only consider transition predicates that do not bind
variables in their arguments. In Ref. [6], we consider transition predicates that
may bind variables in their second argument. That yields a slightly weaker
congruence result: if transition predicates that bind variables in their second

15

argument are used, the congruence result is limited to T'SSs that are well-
founded (see Ref. [6] for details).

In the case of binding signatures, a transition system differs in one way from
an ordinary transition system: terms are identified if they can be obtained
from each other by change of bound variables. This is formalized as follows.
First of all, we introduce =, the (sort-respecting) congruence on terms induced
by change of bound variables. Next, we adapt the definition of the notion of
transition system such that transition predicates are interpreted as relations
on equivalence classes of closed terms with respect to &. That is, a transition
system for signature 2 and domain of transition predicates II consists of:

for each p € II, p:s; X ... X 8, a relation p’® C CTg, /& x ... xCTg, /~.

For closed transition formulas ¢, ¢ holds in TS, still written 7S = ¢, is now
defined as follows:

(1) TS = plty, ... t) if (o [tale) €
(2) TS = =p(te, ... t) if ([t .- [talz) € P75,

The definitions of the notions of TSS, model of a TSS, well-supported model of
a TSS, complete TSS and TSS in panth format do not have to be adapted. A
bisimulation based on a TSS P = (X, I, R) must have the following additional
properties:

(3) if t = t', then B(t,t);
(4) if B(x1, ..., %0 - ty1, ... Y0 - 1), then Vi, € CTygp,),---stn € CTag(g,)e
B(t[tl,...,tn/xl,...,xn],t’[tl,...,tn/yl,...,yn]).

With these adaptations, Theorem 4, the congruence theorem, goes through
in the presence of variable binding operators. However, that theorem goes
even through in the case where we relax the panth format as follows (see
Corollary 4.10 in Ref. [6]). A transition rule r € R is in generalized panth
format if it satisfies:

(1) the second argument of each premise of r that has the form p(t;,ts) has
one of the following forms:
x or xz(t),...,th)
where each ¢} (1 < i <mn) is a closed term;
(2) the second argument of each premise of r that has the form —p(t, ;) is
a closed term;
(3) the first argument of the conclusion of r has one of the following forms:
x or x(up,...,up) or o(u,...,uy)
where each u; (1 <4 <n) has the form y or z1,...,z, . y(x1,...,2,);
(4) the variables that occur as a free variable in the second argument of a
premise or the first argument of the conclusion are mutually distinct.

16

This transition rule format is a minor improvement of the one from Defini-
tion 4.3 in Ref. [6].

Example 7 We consider again the recursion operator u from Example 6.
The transition rules anticipated for this operator include for each action « the
following transition rule concerning a transition predicate < capturing “is

capable of first performing action o« and then proceeding as”:

z(px . z(x)) = 2
px . z(x) =S o

This transition rule is in generalized panth format.

5 Conservative extensions

Frequently, bisimulation models, and their axiomatizations, seem to extend
other bisimulation models, and their axiomatizations, smoothly. If the bisim-
ulation models extend in a certain way, proofs of axiomatic conservativity and
completeness can be simplified. This kind of extension is conveyed by the no-
tion of operational conservativity. First, we will define what an operational
conservative extension of a T'SS is and give syntactic criteria to determine
whether a TSS is an operational conservative extension of another TSS. Af-
ter that, we will define what an axiomatic conservative extension of a set of
equations is and give results explaining the relationship between operational
conservativity, axiomatic conservativity and completeness.

5.1 Operational conservativity

First the notions of sum of signatures and sum of T'SSs are introduced.

Let X = (5,0) and X' = (5',0'") be signatures and P = (X, I, R) and
P'= (X', 1I',R’) be TSSs. Then the sum of X and X', written X' & X', is the
signature (S U S, O U O') and the sum of P and P’, written P & P’, is the
TSS (XY@ X', IUIl' RUR').

Next we make precise what an operational conservative extension of a TSS is.

Let P = (X,II,R) and P' = (X', II',R') be TSSs. Then P & P’ is an op-
erational conservative extension of P if P & P’ is a complete TSS and for
all ¢ € CFxgs mum such that the first argument of ¢ is a XY-term we have

TSp E ¢ & TSpap = ¢.

17

Suppose that P = (X, I, R) and P’ = (X', II', R") are TSSs and that P @ P’
is complete. It is straightforward to check that P@® P’ is an operational conser-
vative extension of P iff for all N C CFyq 5 i and for all ¢ € CFiy 5 o

such that the first argument of) is a Y-term we have P % < Po P E %

This characterization of operational conservativity can also be used as its def-
inition in the case where the restriction is dropped that P & P’ is complete.
This is done in Ref. [11]. However, as explained at the end of Section 3.2,
only complete TSSs are considered meaningful in this paper. Besides, it fol-
lows immediately from the definition given in this paper that <p C ©pep
if P ® P’ is an operational conservative extension of P, whereas it does not
follow immediately from the definition given in Ref. [11].

Next, we will introduce the notion of source-dependency of a transition rule.
After that, source-dependency is used in formulating a sufficient condition for
a TSS to be an operational conservative extension of another TSS. In the
definition of source-dependency and the following theorem, an occurrence of a
variable in a (binding) term ¢ is called firmly free if the occurrence is free and
not in one of the terms ¢y, .. ., ¢, of a subterm of the form x(¢1, ..., t,). Besides,
a term t is called firmly fresh for a signature X', if there is an occurrence of a
subterm ¢’ with ¢ ¢ Ty in ¢ (possibly ¢ itself) that is not in one of the terms
t1,...,t, of a subterm of the form z(¢y,...,1%,).

Let r be a transition rule. Then the set of source-dependent variables in r,
written sd(r), is the smallest set satisfying:

(1) if z occurs firmly free in the first argument of the conclusion of r, then
x € sd(r);

(2) if p(t,t') is a premise of r, for all variables z’ that occur free in ¢ we have
2" € sd(r), and y occurs firmly free in ¢, then y € sd(r).

The transition rule r is source-dependent if for all variables x that occur free
in r we have z € sd(r).

Notice that, because of the way in which substitution works for terms of
the form z(t1,...,t,), substitution instances of a term may contain no trace
of certain occurrences of subterms of the term. Firmly free occurrences of
variables and firmly fresh terms are without this vanishing character. The
following theorem does not go through if firmly free is replaced by free or firmly
fresh is replaced by fresh anywhere in the definition of source-dependency or
in the theorem itself.

Theorem 8 (Operational conservativity) Let P = (X,II,R) and P' =
(X' I',R') be TSSs such that P & P’ is complete. Let, for each r € R/,
p(r) be r with the premises restricted to those premises of which the first
(and possibly only) argument is a X-term. Then P & P’ is an operational

18

conservative extension of P if the following conditions are satisfied:

(1) for each r € R, r is source-dependent;

(2) for each r € R', either the first argument of the conclusion of r is firmly
fresh for X or there exists a premise p(t,t") or p(t) of r such that:
(a) tis a X-term;
(b) for each variable x that occurs free in t we have that x € sd(p(r));
(c) either t' is firmly fresh for X orp & II.

Proof. We prove a more general result, namely that P@® P’ satisfies the char-
acterization of operational conservativity given before even in the case where
P @ P’ is not complete. This result is the counterpart of Theorem 3.20 in
Ref. [11] in a different setting for variable binding operators. The essential
differences are in the details of the structure of terms and the details of sub-
stitution. The proof presented in Ref. [11] makes use of three lemmas. It is
only through those lemmas that the proof depends on the details of the struc-
ture of terms and the details of substitution. Adapted to the notations and
terminology used in this paper, the lemmas concerned are as follows:

(1) for t € Txay, if t is firmly fresh for X, then o(t) & Ty;

(2) for t € Ty, if o(z) € Ty for all free variables = of ¢, then o(t) € Ty;

(3) for t € Ty, if o(t) € Ty, then o(x) € Ty for all free variables x of ¢ with
at least one firmly free occurrence.

The proofs of these lemmas are straightforward by structural induction on
t. O

For completeness, we discuss the subordinate differences between Theorem 3.20
in Ref. [11] and Theorem 8 in this paper. The distinction between formal and
actual variables, formal and actual terms, formal and actual substitutions, and
formal and actual transition rules is irrelevant in the case of Theorem 8. Be-
sides, Theorem 8 is not as refined — the special position of sorts for which there
are no firmly fresh terms is not taken into account — and it does not cover
parametrized transition relations. The refinement referred to does not pose
any problem, but it will clutter up the definition of source-dependency and
the formulation of the operational conservativity theorem. For analogous rea-
sons, parametrized transition relations are not dealt with here (cf. Section 6).
In order to grasp the proof presented in Ref. [11], it is useful to know that the
following notations and terminology are used. The set of all free variables of
t is denoted by F'V (t) and the set of all free variables of ¢ that have a firmly
free occurrence in ¢ is denoted by EV (t). Firmly fresh terms are simply called
fresh terms.

Example 9 We consider a fragment of CCS without restriction, relabeling,

19

and recursion. CCS assumes a set N of names. The set A of actions is defined
by A= NUNU {7}, where N = {@ | a € N}. Elements @ € N are called
co-names and T s called the silent step. The signature of the TSS for this
fragment of CCS consists of the sort P of processes, the inaction constant
0: — P, an action prefix operator ac: P — P for each action o € A, the choice
operator + : P x P — P, and the composition operator | : P x P — P. The
transition predicate domain consists of a binary transition predicate = :P x P
for each oo € A. The transition rules are the ones given below (o € A, a € N):

e y =y
ar % x r+y-5a r+y -y
% g y %y 52,y Sy 52,y Sy
[0 ! (6] / T ! ! T ! !
vly=a2|ly x|y >x|ly x|y >aly x|y =o' ly

We can extend this fragment of CCS with the recursion operator ju:P.P — P.
This requires the addition of the transition rules for this operator given in Ez-
ample 7. This addition satisfies the conditions of Theorem 8. Consequently, the
extension with the recursion operator is an operational conservative extension.

5.2 Aziomatic conservativity and completeness

First we make precise what an axiomatic conservative extension of a set of
equations is.

Let X and Y’ be signatures. Let E be a set of equations over X and E" be
a set of equations over X @ X' such that £ C E”. Then E” is an aziomatic
conservative extension of E (for closed terms) if for all e € C€5; we have
Eres E'Fe.

The following two theorems suggest how operational conservativity of ex-
tensions can be used in proofs of axiomatic conservativity and completeness
proofs.

Theorem 10 (Axiomatic conservativity) Let P = (X,II,R) and P' =
(X' IT",R') be TSSs. Let E be a set of equations over X and E" be a set of
equations over X ® X' such that E C E". Then E" is an axiomatic conservative
extension of E if the following conditions are satisfied:

(1) P& P' is an operational conservative extension of P;

(2) E is a complete axiomatization of CTy [<p;
(8) E" is a sound axiomatization of CTsas [pap:-

20

Proof. Suppose that E” - ¢t; = ty for t1,t2 € CTx. Soundness of E” implies
t1 ©pgp ta. Operational conservativity of P @ P’ implies t; £ p t5. Complete-
ness of F/ implies F - t; = t5. The other direction is trivial. O

Theorem 11 (Complete axiomatization) Let P = (XY, II,R) and P' =
(X' IT",R') be TSSs. Let E be a set of equations over X and E" be a set of
equations over X ® X' such that E C E". Then E" is a complete axiomatization
of CTsas [Spap if the conditions of Theorem 10 as well as the following
condition are satisfied:

(4) for each t € CTggy, there exists a t' € CTy such that E" =t =1t'.

Proof. Suppose that t| &pgp ty for t1,t9 € CTgas. Because of condition 4,
there exist uy, us € CTx such that E” - t; = u; and E” F t5 = uy. Soundness
of E" 1mphes tl ﬁp@p/ U1 and tz ﬁp@p/ Ug. Together with tl ﬁp@p/ t2, we
have u; ©pgp ue. Operational conservativity of P & P’ implies u; ©p us.
Completeness of F implies F - u; = uy. Because E C E”, also E" F uy = us.
Together with E” -t = u; and E" -ty = uy, we have E" Ft; =ty,. O

Example 12 We consider again the fragments of CCS of Example 9. Suppose
that we have a set E of axioms that is complete for the bisimulation model of
the fragment without the recursion operator and a set E' of additional axioms
concerning the recursion operator that are all sound for the bisimulation model
of the fragment with the recursion operator. The sets in question can easily be
found in Ref. [17] and Ref. [10], respectively. It is already known that the TSS
for the fragment with the recursion operator is an operational conservative ex-
tenston of the TSS for the fragment without the recursion operator. Therefore,
it follows immediately that E U E' is an axiomatic conservative extension of

E.

6 Given sorts

In various applications of TSSs, it is impractical and unnecessary to provide
the terms of certain sorts with an operational semantics because there exists
a fully established semantics for them. We will call such sorts given sorts. The
sort that represents the time domain in versions of process calculi with timing
is a typical example of a given sort. In the case of given sorts, a transition
system differs in one way from a transition system as defined before: terms of
given sorts are identified if they are semantically equivalent. This is formalized
as follows. First of all, we introduce &, the least (sort-respecting) congruence
on terms that includes both &~ and the equivalence induced by the semantics
for the terms of given sorts. Next, we adapt the definition of the notion of

21

transition system such that a transition system consists of relations on equiv-
alence classes of closed terms with respect to &~. That is, a transition system
for signature X' and domain of transition predicates IT consists of:

for each p € II, p:s; X ... X 8, a relation p’® C CTg,, /& X ... xCTg, /%.

For closed transition formulas ¢, ¢ holds in TS, still written 7S = ¢, is now
defined as follows:

(1) TS = p(ti, ..., t) if ((tilz, - - ., [ta]
(2) TS E —p(ty, ..., t,) if ([t1], - - -, [ta]x

The definitions of the notions of T'SS, model of a TSS, well-supported model
of a TSS, complete TSS, TSS in panth format, and bisimulation equivalence
in a TSS do not have to be adapted.

With these adaptations, we still have the following result. If P = (X, I, R)
is a complete TSS in generalized panth format, then $p is a congruence on
the algebra of closed terms over Y. However, this result goes through in the
case where we relax the generalized panth format as follows. A transition rule
r € R is in relaxzed generalized panth format if it satisfies the restrictions for
the generalized panth format with restriction 3 modified as follows:

(3) the first argument of the conclusion of r has one of the following forms:
r or x(up,...,u,) or o(u,...,up)
where each u; (1 < i < n) has the form y or z1,..., 2, .y(z1,...,2,) or
is a term of a given sort.

This modification permits, for each given sort s, that a term of sort s is used
where the original generalized panth format only permits that a variable of
sort s is used.

Distinguishing given sorts does not only make it possible to relax the panth
format. It also allows for TSSs with transition predicates parametrized by
closed terms of given sorts. We can relax the restriction that a transition
predicate p is a predicate p:s; X ...x s, with 1 < n < 2 to the restriction that
a transition predicate p is a predicate p:s; X ... X s, with at most two sorts
among si,...,S, that are not given sorts. Suppose that p is a parametrized
transition predicate p:s; X ... X s, and iy,...,i (n—2 < k <n—1) are the
indices of the given sorts in increasing order. We can take a fresh predicate
pry,..., for each equivalence class 77 of closed terms of sort s;,, ..., equivalence
class T}, of closed terms of sort s;,. It is easy to see that carrying on in this
way, we can reduce any TSS with parametrized transition predicates to a
TSS without them, while preserving bisimulation equivalence. Consequently,
the congruence and operational conservativity results given in this paper can
be generalized to cover transition predicates parametrized by closed terms of

22

given sorts.

Example 13 We consider the signature Xt = ({T}, {0, st}) ® X, with 0y: —
T ands.: T — T, where ¥y = ({N},{0,1,+,-}) is the signature of the theory
of natural numbers. We declare N to be a given sort. We also consider the
transition predicate domain Il = {—} with — :TxXNxT. So — is a transition
predicate parametrized by closed terms of the given sort N. The signature Yt
introduces terms intended to be used as expressions for timers. The idea is that
the term Oy represents a timer that expires immediately and that the term s(t),
where t € Clx,, represents a timer that erpires one time unit later than the
timer represented by t. After idling for one time unit, the timer represented
by si(t) behaves like the timer represented by t. The operational behaviour of
timers is modeled by the TSS Pt = (X1,Ilt,Rt), where Rt consists of the
following transition rules:

Ot |£> Ot St(:L‘) 'n—+1> Y St(x) 'l> St

(y)

Two examples of closed transition formulas over Yt and Ilt are

s¢(0y) = 0p and s¢(0;) — 0, .

Both transition formulas refer to the same transition because 1 and 0+ 1 are
semantically equivalent.

7 Concluding remarks

I have been able to reformulate an operational conservativity theorem from
Ref. [11] in my preferred setting to deal with variable binding operators, viz.
the setting introduced in Ref. [6]. This is not a very deep result. Yet, for several
reasons, it is surely worth making mention of. In the first place, different from
the setting to deal with variable binding operators introduced in Ref. [11],
the one introduced in Ref. [6] does not require to make a distinction between
two kinds of variables, terms, substitutions, etc. Such a distinction hinders
smooth generalizations of definitions and results concerning TSSs without
support for variable binding operators. Secondly, the question whether variable
binding operators fit in with the basic concepts, constructions, and results
concerning algebras has only been answered affirmative in the case of the
setting introduced in Ref. [6] (see e.g. Ref. [12]). Because my need to extend
the approach to structural operational semantics developed in Refs. [1-5] to
deal with variable binding operators stems from the work on process algebra
with timing presented in Refs. [18,19], I found the second point very important.

23

Furthermore, I have given an alternative explanation of the meaning of TSSs
with negative premises. In my opinion, this explanation conveys a more in-
tuitive understanding of the meaning of TSSs with negative premises than
previous explanations. In general, those explanations put the emphasis on
rather artificial notions, such as the notion of a three-valued stable model,
which are difficult to grasp (see e.g. Ref. [5,6,11]). In the alternative explana-
tion given in this paper, [have made an attempt to introduce only notions
that are relevant to a clear understanding of such issues as the issue whether
bisimulation equivalence based on a TSS is also a congruence for that TSS and

the issue whether a TSS is an operational conservative extension of another
TSS.

Acknowledgements

The work presented in this paper has been partly carried out while the au-
thor was at Eindhoven Embedded Systems Institute, Eindhoven University of
Technology.

References

[1] J.F. Groote, F.W. Vaandrager, Structured operational semantics and
bisimulation as a congruence, Information and Computation 100 (1992) 202
260.

[2] J.C.M. Baeten, C. Verhoef, A congruence theorem for structured operational
semantics with predicates, in: E. Best (Ed.), CONCUR’93, LNCS 715, Springer-
Verlag, 1993, pp. 477-492.

3] J.F. Groote, Transition system specifications with negative premises,
Theoretical Computer Science 118 (1993) 263-299.

[4] C. Verhoef, A congruence theorem for structured operational semantics with
predicates and negative premises, Nordic Journal of Computing 2 (1995) 274
302.

[5] R.N. Bol, J.F. Groote, The meaning of negative premises in transition system
specifications, Journal of the ACM 43 (1996) 863-914.

[6] C.A.Middelburg, Variable binding operators in transition system specifications,
Journal of Logic and Algebraic Programming 47 (2001) 15-45.

[7] J.C.M. Baeten, J.A. Bergstra, Real time process algebra, Formal Aspects of
Computing 3 (2) (1991) 142-188.

24

8] J.F. Groote, A. Ponse, The syntax and semantics of yCRL, in: A. Ponse,
C. Verhoef, S.F.M. van Vlijmen (Eds.), Algebra of Communicating Processes
1994, Workshop in Computing Series, Springer-Verlag, 1995, pp. 26-62.

[9] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.
[10] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

[11] W.J. Fokkink, C. Verhoef, A conservative look at operational semantics with
variable binding, Information and Computation 146 (1998) 24-54.

[12] Sun Yong, An algebraic generalization of Frege structures — Binding algebras,
Theoretical Computer Science 211 (1999) 189-232.

[13] K.L. Bernstein, A congruence theorem for structured operational semantics of
higher-order languages, in: LICS '98, IEEE Computer Science Press, 1998, pp.
153-164.

[14] B. Bloom, CHOCOLATE: Calculi of higher order communication and lambda
terms, in: Symposium on Principles of Programming Languages, ACM Press,
1994, pp. 339-347.

[15] R.J. Glabbeek, The meaning of negative premises in transition system
specifications II, in: F. Meyer auf der Heide, B. Monien (Eds.), Proceedings
23th ICALP, LNCS 1099, Springer Verlag, 1996, pp. 502-513.

[16] W.J. Fokkink, R.J. Glabbeek, Ntyft/ntyxt rules reduce to ntree rules,
Information and Computation 126 (1996) 1-10.

[17] M. Hennessy, R. Milner, Algebraic laws for non-determinism and concurrency,
Journal of the ACM 32 (1985) 137-161.

[18] J.C.M. Baeten, C.A. Middelburg, Process algebra with timing: Real time and
discrete time, in: J.A. Bergstra, A. Ponse, S.A. Smolka (Eds.), Handbook of
Process Algebra, Elsevier, 2001, pp. 627-684.

[19] J.C.M. Baeten, C.A. Middelburg, Process Algebra with Timing, Springer
Verlag, EATCS Monographs Series, 2002.

25

