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Abstract. We present a first-order extension of the algebraic theory
about processes known as ACP and its main models. Useful predicates
on processes, such as deadlock freedom and determinism, can be added
to this theory through first-order definitional extensions. Model theory
is used to analyse the discrepancies between identity in the models of the
first-order extension of ACP and bisimilarity of the transition systems
extracted from these models, and also the discrepancies between dead-
lock freedom in the models of a suitable first-order definitional extension
of this theory and deadlock freedom of the transition systems extracted
from these models. First-order definitions are material to the formaliza-
tion of an interpretation of one theory about processes in another. We
give a comprehensive example of such an interpretation too.

1 Introduction

Model theory is for some time now a very active branch of mathematical logic.
Therefore, it looks to be worthwhile to introduce various techniques from model
theory into the field of process algebra. This forms the greater part of our mo-
tivation to take up the work presented in this paper. With great pleasure, we
contribute this paper to the Liber Amicorum in honor of the 60th birthday of
Jan Willem Klop.

Usually, theories about processes such as ACP [1, 2] and CCS [3, 4] are equa-
tionally axiomatized. However, it is also possible to give first-order theories. An
important advantage of a first-order approach is that it makes available the tool
of first-order definition of predicates and operations on processes.

In this paper, we present a first-order extension of ACP and its main models.
The first-order extension concerned includes a binary reachability predicate on
processes with an associated first-order axiom schema for subprocess induction.
The reachability predicate can be used to give first-order definitions of many
general properties of processes, such as deadlock freedom and determinism, and
the axiom schema for subprocess induction can then be used to verify whether



processes have these properties. This is one of the interesting applications of
first-order definitions of predicates on processes.

First-order definitions of predicates and operations on processes are generally
indispensable for the formalization of an interpretation of one theory about pro-
cesses in another. For example, a first-order definition of the deadlock freedom
predicate permits the formalization of the interpretation of BPA in BPAδ [2]
(both are subtheories of ACP). By first-order definitions of operations on pro-
cesses, we are able to formalize more complicated interpretations, such as the
interpretation of BPPA [5, 6] in the first-order extension of ACP. If one theory
is interpretable in another theory, then a model of the former theory can be
obtained from each model of the latter theory by taking a submodel of a re-
striction of an expansion by definitions. The expansion concerns the first-order
definable operations on processes needed in the formalization of the interpreta-
tion concerned; and the first-order definable predicate on processes needed in the
formalization of the interpretation determines the domain of the submodel. This
technique to construct models can be regarded as a first-order generalization of
the SRM-technique from [7].

In this paper, we analyse the discrepancies between identity in the models of
the first-order extension of ACP and external bisimilarity, i.e. bisimilarity of the
transition systems extracted from these models. Besides external bisimilarity,
we pay attention to observational equivalence; and we have a look at other
related issues such as bisimilarity based on structural operational semantics and
modal characterization of external bisimilarity. We also analyse the discrepancies
between deadlock freedom in the models of a suitable first-order definitional
extension of the first-order extension of ACP and external deadlock freedom,
i.e. deadlock freedom of the transition systems extracted from these models.
Additionally, we briefly consider the comparable discrepancies for determinism.

It happens that the first-order extension of BPAδ, which is a subtheory of
the first-order extension of ACP, gets great expressive power in case it is ex-
tended with restricted reachability predicates. Even the first-order extension of
ACP can be interpreted in it. In this paper, we formalize the interpretation con-
cerned. Thus, we provide a comprehensive example of the formalization of an
interpretation of one theory about processes in another.

The structure of this paper is as follows. First of all, we introduce BPAfo
δ ,

the (finitary) first-order extension of an important subtheory of ACP, to wit
BPAδ (Sect. 2). Next, we consider some useful infinitary and second-order ax-
ioms (Sect. 3). After that, we introduce transition systems, bisimilarity of tran-
sition systems (Sect. 4) and full bisimulation models, the main models of BPAfo

δ

(Sect. 5). Thereupon, we analyse the discrepancies between external bisimilarity
and identity in models of BPAfo

δ (Sect. 6) and investigate the related external
equivalence known as observational equivalence (Sect. 7). Following this, we have
a closer look at bisimilarity based on structural operational semantics (Sect. 8)
and the modal characterization of external bisimilarity (Sect. 9). Then, we ex-
tend BPAfo

δ with a deadlock freedom predicate and analyse the discrepancies
between external deadlock freedom and internal deadlock freedom in models



of the extension of BPAfo
δ concerned (Sect. 10). We also briefly consider the

extension with a determinism predicate (Sect. 11). After that, we consider the
addition of restricted reachability predicates to BPAfo

δ (Sect. 12). Next, we intro-
duce ACPfo, the first-order extension of ACP (Sect. 13) and the full bisimulation
models of ACPfo (Sect. 14). Thereupon, we consider interpretations of one the-
ory in another (Sect. 15) and give as an example the interpretation of ACPfo in
the extension of BPAfo

δ with restricted reachability predicates (Sect. 16). Finally,
we make some concluding remarks (Sect. 17).

Some familiarity with model theory is required. The desirable background
can be found in [8–10].

2 The First-Order Theory BPAfo

δ

In this section, we present BPAfo
δ , a first-order extension of an important sub-

theory of ACP, being known as BPAδ. In BPAfo
δ , it is assumed that there is a

fixed but arbitrary finite set of actions A with δ 6∈ A.
The first-order theory BPAfo

δ has the following nonlogical symbols:

– the deadlock constant δ;
– for each a ∈ A, the action constant a;
– the binary alternative composition operator + ;
– the binary sequential composition operator · ;
– the binary summand inclusion predicate symbol v ;
– for each a ∈ A, the unary action termination predicate symbol

a−→√;
– for each a ∈ A, the binary action step predicate symbol a−→ ;
– the binary reachability predicate symbol →→ .

We use infix notation for the binary operators, postfix notation for the unary
predicate symbols and infix notation for the binary predicate symbols. The fol-
lowing precedence conventions are used to reduce the need for parentheses. Oper-
ators bind stronger than predicate symbols, and predicate symbols bind stronger
than logical connectives and quantifiers. Moreover, the operator · binds stronger
than the operator +, the logical connective ¬ binds stronger than the logical
connectives ∧ and ∨ , and the logical connectives ∧ and ∨ bind stronger than
the logical connectives ⇒ and ⇔ . Quantifiers are given the smallest possible
scope. We often use t 6= t′, where t and t′ are terms of L(BPAfo

δ ), as a shorthand
for ¬ t = t′.

The constants and operators of BPAfo
δ are the same as the constants and

operators of BPAδ . The additional nonlogical symbols of BPAfo
δ are all predicate

symbols. In the context of BPAδ , the summand inclusion predicate symbol is
sometimes used in abbreviations for equations expressing summand inclusions.
The action termination and action step predicate symbols are used in the de-
scription of the structural operational semantics of BPAδ. That usage is related
to the usage in the theory BPAfo

δ , but the one should not be mistaken for the
other. A similar remark applies to the reachability predicate symbol.

Let t and t′ be closed terms of L(BPAfo
δ ). Intuitively, the constants and

operators can be explained as follows:



– δ cannot perform any action;

– a first performs action a and then terminates successfully;

– t+ t′ behaves either as t or as t′, but not both;

– t · t′ first behaves as t, but when t terminates succesfully it continues by
behaving as t′.

Intuitively, the predicates can be explained as follows:

– t v t′ means that t′ is capable of behaving as t;

– t a−→√ means that t is capable of performing action a and then terminating
successfully;

– t a−→ t′ means that t is capable of performing action a and then behaving as
t′;

– t →→ t′ means that t is capable of performing a number of actions and then
behaving as t′.

Before we give the axioms of BPAfo
δ , we introduce an important notational

convention which will be used throughout this paper. If we introduce a term t
as t(x1, . . . , xn), where x1, . . . , xn are distinct variables, this indicates that all
variables that have occurrences in t are among x1, . . . , xn. In the same context,
t(t1, . . . , tn) is the term obtained by simultaneously replacing in t all occurrences
of x1 by t1 and . . . and all occurrences of xn by tn. Similarly, if we introduce a
formula φ as φ(x1, . . . , xn), where x1, . . . , xn are distinct variables, this indicates
that all variables that have free occurrences in φ are among x1, . . . , xn. In the
same context, φ(t1, . . . , tn) is the formula obtained by simultaneously replacing
in φ all free occurrences of x1 by t1 and . . . and all free occurrences of xn by tn.
Bound variables are first renamed if needed to avoid free occurrences of variables
in the replacing terms becoming bound.

The axioms of BPAfo
δ are given in Table 1. Many axioms in this table are ac-

tually axiom schemas. RDPf and RSPf are axiom schemas where t1(x1, . . . , xn),
. . . , tn(x1, . . . , xn) are terms of L(BPAfo

δ ) in which all occurrences of variables
are guarded. We call an occurrence of a variable x in a term t guarded if t has
a subterm of the form a · t′ with t′ containing this occurrence of x. BS and RS
are axiom schemas where φ(x, y) is a formula of L(BPAfo

δ ). SI2–SI9, TR1–TR2
and R2 are axiom schemas where a and b are action constants. The instances of
axiom schema SI4 are restricted by a side condition to those in which a is not
(syntactically) identical to b.

Axioms A1–A7 are the axioms of BPAδ . So BPAfo
δ imports the (equational)

axioms of BPAδ. Axiom schemas RDPf and RSPf are relevant to the use of
recursion for describing (potentially) non-terminating processes. They will be
explained separately below. Axiom SI1 is the defining axiom of the summand in-
clusion predicate. Axiom schemas SI2–SI9 exclude models that identify processes
that cannot be related by a bisimulation (a precise definition of bisimulation is
given in Sect. 4). Axiom SI10 is an extensionality axiom for summand inclusion.
The instances of axiom schema TR1 are the defining axioms of the action ter-
mination predicates and the instances of axiom schema TR2 are the defining



Table 1. Axioms of BPAfo
δ (in t1, . . . , tn all occurrences of variables must be guarded)

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

∃x1, . . . , xn •
∧

1≤i≤n
xi = ti(x1, . . . , xn) RDPf

∧
1≤i≤n

xi = ti(x1, . . . , xn) ∧
∧

1≤i≤n
yi = ti(y1, . . . , yn) ⇒

∧
1≤i≤n

xi = yi RSPf

x v y ⇔ x+ y = y SI1

¬ a v δ SI2

¬ a · x v δ SI3

¬ a v b if a 6≡ b SI4

¬ a · x v b SI5

¬ a v x · y SI6

a · x v y · z ⇒ (a v y ∧ x = z) ∨ ∃y′ • (a · y′ v y ∧ x = y′ · z) SI7

a v x+ y ⇒ a v x ∨ a v y SI8

a · x v y + z ⇒ a · x v y ∨ a · x v z SI9
∧

a∈A
((a v x ⇒ a v y) ∧ ∀z • (a · z v x ⇒ a · z v y)) ⇒ x v y SI10

x
a−→√ ⇔ a v x TR1

x
a−→ y ⇔ a · y v x TR2

φ(x, y) ∧

∀x′, y′ • (φ(x′, y′) ⇒
∧

a∈A
((x′ a−→√ ⇔ y′

a−→√) ∧

∀x′′ • (x′ a−→ x′′ ⇒ ∃y′′ • (y′
a−→ y′′ ∧ φ(x′′, y′′))) ∧

∀y′′ • (y′
a−→ y′′ ⇒ ∃x′′ • (x′ a−→ x′′ ∧ φ(x′′, y′′))))) ⇒ x = y BS

x→→ x R1

x
a−→ y ∧ y →→ z ⇒ x→→ z R2

x→→ y ∧

∀x′, y′, z′ • (φ(x′, x′) ∧
∧

a∈A
(x′ a−→ y′ ∧ φ(y′, z′) ⇒ φ(x′, z′))) ⇒ φ(x, y) RS

axioms of the action step predicates. Axiom schema BS, called the bisimilarity
axiom schema, excludes models that do not identify processes that can be re-
lated by a first-order definable bisimulation. Axiom R1 and axiom schemas R2
and RS concern the reachability predicate. Axiom schema RS is an induction



schema, called the subprocess induction schema. It is unknown to us whether the
reachability predicate is implicitly defined by BPAfo

δ .
We do not claim that the axioms of BPAfo

δ are independent. For example,
axiom SI2 is derivable from axioms A7 and SI6. Axiom SI10 and axiom schema
BS are dependent in a weak sense: extensionality for equality, i.e.

∧
a∈A

((a v x ⇔ a v y) ∧ ∀z • (a · z v x ⇔ a · z v y)) ⇒ x = y ,

is not only derivable from SI10 and SI1, but also from BS, TR1 and TR2.
The axiom schemas RDPf and RSPf are called the recursive definition prin-

ciple and the recursive specification principle for finite guarded recursive spec-
ifications. A guarded recursive specification (over BPAfo

δ ) is a set of equations
E = {x = tx | x ∈ V } where V is a set of variables and each tx is a term
of L(BPAfo

δ ) in which only the variables in V may have occurrences and all
those occurrences are guarded. There is an instance of RDPf and an instance
of RSPf for each finite guarded recursive specification E. We write RDPfE for
the instance of RDPf for E and RSPfE for the instance of RDPf for E. RDPfE

expresses that E has at least one solution and RSPfE expresses that E has at
most one solution.

Because the implications from right to left are derivable, the (outmost) oc-
currence of “⇒ ” in SI7–SI10 and BS can be replaced by “⇔ ”. The equivalences

x = y ⇔ x v y ∧ y v x ,

x+ y v z ⇔ x v z ∧ y v z .

are easily derived from axiom SI1 and axiom SI10, respectively. Both equivalences
are used in the proof of Theorem 1 (see below).

Using the reachability predicate, we can give explicit definitions of other
properties of processes. For example, deadlock freedom, absence of termination,
and determinism can be explicitly defined as follows:

dlf(x) ⇔ ¬ x →→ δ ,

perp(x) ⇔ ¬ x →→ δ ∧
∧

a∈A

¬ ∃y •
(
x→→ y ∧ y

a−→√)
,

det(x) ⇔ ∀y •
(
x→→ y ⇒

∧

a∈A

((
y

a−→√ ⇒ ∀z • ¬ y
a−→ z

)
∧

∀z, z′ •
(
y a−→ z ∧ y a−→ z′ ⇒ z = z′

)))
.

Using the subprocess induction schema, we can derive a formula according to
which case distinction with respect to reachability can be made.

Proposition 1 (Case distinction for reachability). The following formula
is derivable from BPAfo

δ :

x→→ y ⇒

x = y ∨
∨

a∈A

x
a−→ y ∨ ∃z •

(
z 6= x ∧

∨

a∈A

(
x

a−→ z ∧ z →→ y
))

.



Proof. We use cdr(x, y) as an abbreviation for the right-hand side of the above
implication. We will apply RS, taking x →→ y ∧ cdr(x, y) for φ(x, y). When we
have shown that x →→ y ⇒ (x →→ y ∧ cdr(x, y)), we can immediately conclude
that x→→ y ⇒ cdr(x, y) and we are done.

It remains to be shown by means of RS that x→→ y ⇒ (x →→ y ∧ cdr(x, y)).
First of all, we conclude from R1, because obviously cdr(x, x), that

∀x′ • (x′ →→ x′ ∧ cdr(x′, x′)) .

Moreover, we easily derive the following implications:

x′ a′
−→ y′ ∧ y′ →→ z′ ⇒ x′ →→ z′ ,

x′ a′
−→ y′ ∧ y′ →→ z′ ∧ y′ = z′ ⇒

∨

a∈A

x′ a−→ z′ ,

x′ a′
−→ y′ ∧ y′ →→ z′ ∧

∨

a∈A

y′ a−→ z′ ⇒

∨

a∈A

x′ a−→ z′ ∨ ∃z •
(
z 6= x′ ∧

∨

a∈A

(
x′ a−→ z ∧ z →→ z′

))
,

x′ a′
−→ y′ ∧ y′ →→ z′ ∧ ∃z •

(
z 6= y′ ∧

∨

a∈A

(
y′ a−→ z ∧ z →→ z′

))
⇒

∃z •
(
z 6= x′ ∧

∨

a∈A

(
x′ a−→ z ∧ z →→ z′

))
.

The first implication is derived using R2, the second implication is derived by
elementary logical reasoning, the third implication is derived using R1 and R2
(with distinction between the cases x′ = y′, y′ = z′ and x′ 6= y′ ∧ y′ 6= z′),
and the fourth implication is derived by elementary logical reasoning (with dis-
tinction between the cases x′ = y′ and x′ 6= y′). The left-hand sides of the second,
third and fourth implication are conjunctions of x′ a′

−→ y′ ∧ y′ →→ z′ and one of
the disjuncts of cdr(y′, z′). The right-hand sides of these implication consists of
one or two of the disjuncts of cdr(x′, z′). Hence, we also conclude that

∀x′, y′, z′ •∧

a′∈A

(
x′ a′

−→ y′ ∧ (y′ →→ z′ ∧ cdr(y′, z′)) ⇒ x′ →→ z′ ∧ cdr(x′, z′)
)
.

Using the subprocess induction schema, it follows from these conclusions that
x →→ y ⇒ (x →→ y ∧ cdr(x, y)). ut

A well-known subtheory of BPAδ is BPA, which is BPAδ without the deadlock
constant and consequently without axioms A6 and A7. Analogously, we have a
subtheory of BPAfo

δ , to wit BPAfo. As to be expected, the first-order theory
BPAfo is BPAfo

δ without the deadlock constant and without axioms A6, A7, SI2
and SI3. In other words, the possibility that a process gets into a deadlock is
not covered by BPAfo.

To prove a statement for all closed terms of L(BPAfo
δ ), it is sufficient to

prove it for all basic terms over BPAfo
δ . The set B of basic terms over BPAfo

δ is
inductively defined by the following rules:



– δ ∈ B;
– if a ∈ A, then a ∈ B;
– if a ∈ A and t ∈ B, then a · t ∈ B;
– if t1, t2 ∈ B, then t1 + t2 ∈ B.

We can prove that all closed terms of L(BPAfo
δ ) are derivably equal to a basic

term over BPAfo
δ .

Proposition 2 (Elimination). For all closed terms t of L(BPAfo
δ ) there exists

a basic term t′ ∈ B such that BPAfo
δ ` t = t′.

Proof. This follows immediately from the elimination property for BPAδ : the
closed terms of L(BPAfo

δ ) are the same as the closed terms of L(BPAδ), and the
equational axioms of BPAfo

δ are the same as the axioms of BPAδ . ut

For closed equations, BPAfo
δ is a complete theory.

Theorem 1 (Complete theory for closed equations). For all closed terms
t1, t2 of L(BPAfo

δ ), we have either BPAfo
δ ` t1 = t2 or BPAfo

δ ` ¬ t1 = t2, but
not both.

Proof. In Sect. 5, we will show that there exist models of BPAfo
δ . From this,

it follows by the Extended Completeness Theorem (see e.g. [9]) that there are
no closed terms t1, t2 of L(BPAfo

δ ) such that both t1 = t2 and ¬ t1 = t2 are
derivable. Moreover, the equivalence x = y ⇔ x v y ∧ y v x is derivable.
For these reasons, and Proposition 2, it is sufficient to prove that for all basic
terms t1, t2 ∈ B, either BPAfo

δ ` t1 v t2 or BPAfo
δ ` ¬ t1 v t2. This is easily

proved by induction on the sum of the lengths of t1 and t2. All cases follow
immediately from axioms SI1–SI9, sometimes using the induction hypothesis,
except the cases a · t′1 v b · t′2 and t′1 + t′′1 v t2. Those cases follow immediately
from the derivable equivalences a · x v b · y ⇔ a v b ∧ x v y ∧ y v x and
x+ y v z ⇔ x v z ∧ y v z, using the induction hypothesis. ut

For arbitrary closed formula, BPAfo
δ is not a complete theory. This follows from

the fact that there are models of BPAfo
δ that are not elementary equivalent (see

Theorems 4 and 8).

3 Infinitary and Second-Order Axioms

It appears to be of use to add certain infinitary and second-order axioms to
BPAfo

δ . In this section, we consider those axioms.
The recursive definition principle and recursive specification principle for

finite guarded recursive specifications (RDPf and RSPf) do not exclude models
in which there are countably infinite guarded recursive specifications without a
unique solution. The infinitary axiom schemas RDP and RSP from Table 2 would
exclude all such models. Like in the case of axiom schemas RDPf and RSPf, we
write RDPE and RSPE for the instances of RDP and RSP, respectively, for
guarded recursive specification E.



Table 2. Infinitary first-order axioms

∃x1, x2, . . . •
∧

i≥1
xi = ti(x1, x2, . . .) RDP

∧
i≥1

xi = ti(x1, x2, . . .) ∧
∧

i≥1
yi = ti(x1, x2, . . .) ⇒

∧
i≥1

xi = yi RSP

The instances of axiom schema RSP are formulas of Lω1ω(BPAfo
δ ), the first-

order language of BPAfo
δ with conjunctions and disjunctions of countable sets of

formulas. The instances of axiom schema RDP are formulas of Lω1ω1
(BPAfo

δ ), the
first-order language of BPAfo

δ with conjunctions and disjunctions of countable
sets of formulas and quantification on countable sets of variables. RDP and RSP
are not axiomatizable in the usual finitary first-order language L(BPAfo

δ ).

Theorem 2 (RDP and RSP are not axiomatizable in L(BPAfo
δ )). There

does not exist a finitary first-order extension of BPAfo
δ of which all models satisfy

RDP and there does not exist a finitary first-order extension of BPAfo
δ of which

all models satisfy RSP.

Proof. First, we show that there does not exist a finitary first-order extension
of BPAfo

δ , say BPAfo
δ ∪H , such that BPAfo

δ ∪H |= RDP. Suppose that BPAfo
δ ∪

H |= RDP. A contradiction is found as follows. By the Downward Löwenheim-
Skolem Theorem (see e.g. [10]), there exists a countable model of BPAfo

δ ∪ H .
Take a countable model A |= BPAfo

δ ∪ H . Let a and b be different actions.
Consider the guarded recursive specifications EV = {Xi = a · Xi+1 | i ∈ V } ∪
{Xi = b · Xi+1 | i 6∈ V } for V ⊆ N. EV encodes the characteristic function of
V . Because BPAfo

δ ∪H |= RDP by our supposition, and A |= BPAfo
δ ∪H , there

exists a solution pV of EV for X0 in A for each V ⊆ N. There exist uncountably
many V such that V ⊆ N; and it is easily proved by induction on the smallest i
such that i ∈ V ⇔ i 6∈ V ′ that V 6= V ′ implies pV 6= pV ′ . Hence, A must be an
uncountable model, which contradicts the fact that A is a countable model.

Next, we show that there does not exist a finitary first-order extension of
BPAfo

δ , say BPAfo
δ ∪ H , such that BPAfo

δ ∪ H |= RSP. Suppose that BPAfo
δ ∪

H |= RSP. A contradiction is found as follows. Let c0, c1, c2, . . . and d0, d1, d2, . . .
be different new constants; and let a, a′, a′′ be different actions. Consider the
following sets of formulas:

H ′ = {c0 6= d0} ∪ {ci = a · ci+1 | i ≥ 0} ∪ {di = a · di+1 | i ≥ 0} ,

H ′
n = {c0 6= d0} ∪ {ci = a · ci+1 | 0 ≤ i < n} ∪ {di = a · di+1 | 0 ≤ i < n}

∪ {cn = a′, dn = a′′}

(for n ≥ 0) .

Take an arbitrary model A of BPAfo
δ ∪ H . It follows easily from the axioms

of BPAfo
δ that, for each n ≥ 0, H ′

n is satisfied in the definitional expansion of
A determined by the definitional extension of BPAfo

δ ∪ H with the constants
c0, . . . , cn, d0, . . . , dn and the equations ci = an−i · a′ for 0 ≤ i < n, cn = a′,



di = an−i · a′′ for 0 ≤ i < n, dn = a′′.4 Hence, for each n ≥ 0, H ′
n is consistent

with BPAfo
δ ∪ H . Each finite H ′′ ⊆ H ′ is consistent with BPAfo

δ ∪ H because
there is an n ≥ 0 for which H ′′ ⊆ H ′

n. From this, it follows by the Compactness
Theorem (see e.g. [9]) that H ′ is consistent with BPAfo

δ ∪ H . Now consider
an arbitrary model A′ of BPAfo

δ ∪ H ∪ H ′. Because A′ satisfies H ′, we have
cA

′

0 6= dA′

0 . Both cA
′

0 and dA′

0 are solutions of the guarded recursive specification
E = {Xi = a · Xi+1 | i ∈ N} for X0. Hence, by RSP, it must be the case that
cA

′

0 = dA′

0 , which contradicts the fact that cA
′

0 6= dA′

0 . ut

If we restrict ourselves to recursively enumerable theories, we can even give an
instance of RDP that is not axiomatizable.

Theorem 3 (Instance of RDP is not axiomatizable in L(BPAfo
δ )). Let T

be a finitary first-order extension of BPAfo
δ that is recursively enumerable, let a, b

be different actions, let V be a subset of N that is not recursively enumerable,
and let EV be the guarded recursive specification {Xi = a · Xi+1 | i ∈ V } ∪
{Xi = b ·Xi+1 | i 6∈ V }. Then T 6|= RDPEV .

Proof. Let ψn(x), for each n ≥ 0, be the following formula:

∃y • ∃z0, . . . , zn •
(
x = z0 · . . . · zn · y ∧

∧

i≤n,i∈V

zi = a ∧
∧

i≤n,i6∈V

zi = b
)
.

Let Ψ be the set of formulas {ψn(x) | n ∈ N}. It is easy to see that there does not
exist a solution of EV in a model of BPAfo

δ iff that model omits Ψ . Moreover, by
the Omitting Types Theorem (see e.g. [9]), there exists a model that omits Ψ if
T or some consistent extension of T locally omits Ψ . Thus, when we have shown
that T or some consistent extension of T locally omits Ψ , we can immediately
conclude that T 6|= RDPEV and we are done.

We prove that some consistent extension of T locally omits Ψ by constructing
such an extension of T . Let φ0(x), φ1(x), φ2(x), . . . be an enumeration of all
formulas of L(BPAfo

δ ) in which no variable other than x has free occurrences.
We start to construct a non-decreasing sequence T 0, T 1, T 2, . . . of consistent
extensions of T as follows:

T 0 = T ,

T 2k+1 = T 2k ∪ {φk(x)} if not T 2k ` ¬ φk(x) ,

T 2k+1 = T 2k ∪ {¬ φk(x)} otherwise ,

T 2k+2 = T 2k+1 if T 2k+1 ` ¬ ∃x • φk(x) ,

T 2k+2 = T 2k+1 ∪ {∃x • (φk(x) ∧ ¬ ψn(x))} otherwise ,

for some n ∈ N such that not T 2k+1 ` ¬ ∃x • (φk(x) ∧ ¬ ψn(x)) .

For all k, there exists an n such that not T 2k+1 ` ¬ ∃x•(φk(x) ∧ ¬ ψn(x)). This
is easily proved by contradiction. If it was not the case for some k, then we would

4 For each action a and each n ≥ 1, the term an is defined by induction on n as follows:
a1 is a and an+1 is a · an.



Table 3. Second-order axioms

∃R • (R(x, y) ∧

∀x′, y′ • (R(x′, y′) ⇒
∧

a∈A
((x′ a−→√ ⇔ y′

a−→√) ∧

∀x′′ • (x′ a−→ x′′ ⇒ ∃y′′ • (y′
a−→ y′′ ∧ R(x′′, y′′))) ∧

∀y′′ • (y′
a−→ y′′ ⇒ ∃x′′ • (x′ a−→ x′′ ∧ R(x′′, y′′)))))) ⇒

x = y B

∀R • (x→→ y ∧

∀x′, y′, z′ • (R(x′, x′) ∧
∧

a∈A
(x′ a−→ y′ ∧ R(y′, z′) ⇒ R(x′, z′))) ⇒

R(x, y)) R

have T 2k+1 ` ∀x • (φk(x) ⇒ ψn(x)). Because of the recursive enumerability of
T (and therefore also T 2k+1), it would follow that V is recursively enumerable.
This contradicts the fact that V is not recursively enumerable.

For each k ∈ N, T k is consistent by construction. Let T∞ =
⋃

k∈N
T k. Then

T∞ is also consistent by construction. Moreover, T∞ locally omits Ψ by con-
struction. ut

The bisimilarity axiom schema (BS) from Table 1 does not exclude all models
that distinguish between processes that can be related by a bisimulation. It only
excludes models that distinguish between processes that can be related by a
first-order definable bisimulation. The second-order axiom B from Table 3 would
exclude all such models. Axiom B is called the bisimilarity axiom. It is a second-
order axiom because of the existential quantification on R, which is a variable
ranging over binary relations on processes instead of a variable ranging over
processes.

The subprocess induction schema (RS) from Table 1 does not exclude all
models in which there are processes that have more reachable processes than
needed to satisfy axiom R1 and the instances of axiom schema R2. The second-
order axiom R from Table 3 would exclude all such models. Axiom R is called
the subprocess induction axiom.

Let A be a model of BPAfo
δ , i.e. A |= BPAfo

δ . Then A is a bisimulation model
if A |= B; and A is a model with standard reachability if A |= R.

4 Transition Systems and Bisimilarity

In this section, we introduce transition systems and bisimilarity of transition
systems. In Sect. 5, we will make use of transition systems and bisimilarity of
transition systems to construct the main models of BPAfo

δ .
A transition system T consists of the following:

– a set S of states ;
– a set a−→ ⊆ S × S, for each a ∈ A;



– a set a−→√ ⊆ S, for each a ∈ A;
– an initial state s0 ∈ S.

If (s, s′) ∈ a−→ for some a ∈ A, then we say that there is a transition from state
s to state s′. We usually write s

a−→ s′ instead of (s, s′) ∈ a−→ and s
a−→√ instead

of s ∈ a−→√. Furthermore, we write −→ for the family of sets (
a−→)a∈A and −→√ for

the family of sets ( a−→√)a∈A.
A transition system may have states that are not reachable from its initial

state by a number of transitions. Unreachable states, and the transitions between
them, are not relevant to the behaviour represented by the transition system.
We exclude transition systems with unreachable states as follows.

Let T = (S,−→,−→√, s0) be a transition system. Then the reachability relation
of T is the smallest relation →→ ⊆ S × S such that:

– s→→ s;
– if s

a−→ s′ and s′ →→ s′′, then s→→ s′′.

We write RS(T ) for {s ∈ S | s0 →→ s}. T is called a connected transition system
if S = RS(T ). Henceforth, we will only consider connected transition systems.
However, this often calls for extraction of the connected part of a transition
system that is composed of connected transition systems.

Let T = (S,−→,−→√, s0) be a transition system that is not necessarily con-
nected. Then the connected part of T , written Γ(T ), is defined as follows:

Γ(T ) = (S′,−→′,−→√′, s0) ,

where

S′ = RS(T ) ,

and for every a ∈ A:

a−→′ = a−→∩ (S′ × S′) ,

a−→√′ =
a−→√ ∩ S′ .

It is assumed that for each infinite cardinal κ a fixed but arbitrary set Sκ

with the following properties has been given:

– the cardinality of Sκ is greater than or equal to κ;
– if S1, S2 ⊆ Sκ, then S1 ] S2 ⊆ Sκ and S1 × S2 ⊆ Sκ.5

Let κ be an infinite cardinal number. Then TSκ is the set of all connected
transition systems T = (S,−→,−→√, s0) such that S ⊂ Sκ and the branching
degree of T is less than κ, that is, for all s ∈ S, the cardinality of the set
{(a, s′) ∈ A × S | s a−→ s′} ∪ {a ∈ A | s a−→√} is less than κ.

The condition S ⊂ Sκ guarantees that TSκ is indeed a set.

5 We write A ] B for the disjoint union of sets A and B, i.e. A ] B = (A × {∅}) ∪
(B × {{∅}}). We write µ1 and µ2 for the associated injections µ1 : A → A ] B and
µ2 :B → A ] B, defined by µ1(a) = (a, ∅) and µ2(b) = (b, {∅}).



A connected transition system is said to be finitely branching if its branching
degree is less than ℵ0. Otherwise, it is said to be infinitely branching.

The identity of the states of a connected transition system is not relevant to
the behaviour represented by it. Connected transition systems that differ only
with respect to the identity of the states are isomorphic.

Let T1 = (S1,−→1,−→
√

1, s
0
1) and T2 = (S2,−→2,−→

√
2, s

0
2) be connected transi-

tion systems. Then T1 and T2 are isomorphic, written T1
∼= T2, if there exists a

bijective function b : S1 → S2 such that

– b(s01) = s02;
– s1

a−→1 s
′
1 iff b(s1)

a−→2 b(s
′
1);

– s
a−→√

1 iff b(s)
a−→√

2.

Henceforth, we will always consider two connected transition systems essentially
the same if they are isomorphic.

Remark 1. The set TSκ is independent of Sκ. By that we mean the following. Let
TSκ and TS′

κ result from different choices for Sκ. Then there exists a bijection
b : TSκ → TS′

κ such that for all T ∈ TSκ, T ∼= b(T ).

Bisimilarity of transition systems from TSκ is defined as follows.
Let T1 = (S1,−→1,−→

√
1, s

0
1) ∈ TSκ and T2 = (S2,−→2,−→

√
2, s

0
2) ∈ TSκ (κ ≥

ℵ0). Then a bisimulation B between T1 and T2 is a binary relation B ⊆ S1 ×S2

such that B(s01, s
0
2) and for all s1, s2 such that B(s1, s2):

– s1
a−→√

1 iff s2
a−→√

2;
– if s1

a−→1 s
′
1, then there is a state s′2 such that s2

a−→2 s
′
2 and B(s′1, s

′
2);

– if s2
a−→2 s

′
2, then there is a state s′1 such that s1

a−→1 s
′
1 and B(s′1, s

′
2).

Two transition systems T1, T2 ∈ TSκ are bisimilar, written T1 ↔ T2, if there
exists a bisimulation B between T1 and T2. Let B be a bisimulation between T1

and T2. Then we say that B is a bisimulation witnessing T1 ↔ T2.
Note that ↔ is an equivalence on TSκ. Let T ∈ TSκ. Then we write [T ] for

{T ′ ∈ TSκ | T ↔ T ′}, i.e. the ↔-equivalence class of T . We write TSκ/↔ for the
set of equivalence classes {[T ] | T ∈ TSκ}.

In Sect. 5, we will use TSκ/↔ as the domain of a structure that is a model
of BPAfo

δ . As the domain of a structure, TSκ/↔ must be a set. That is the case
because TSκ is a set. The latter is guaranteed by considering only connected
transition systems of which the set of states is a subset of Sκ.

Remark 2. The question arises whether Sκ is large enough if its cardinality is
greater than or equal to κ. This question can be answered in the affirmative.
Let T = (S,−→,−→√, s0) be a connected transition system of which the branching
degree is less than κ. Then there exists a connected transition system T ′ =
(S′,−→′,−→√′, s0′) of which the branching degree is less than κ such that T ↔ T ′

and the cardinality of S′ is less than κ.

It is easy to see that, if we would consider transition systems with unreachable
states as well, each transition system would be bisimilar to its connected part.



This justifies the choice to consider only connected transition systems. It is easy
to see that isomorphic transition systems are bisimilar. This justifies the choice
to consider transition systems essentially the same if they are isomorphic.

In the construction of the main models of BPAfo
δ in Sect. 5, we also make use

of subsystems of transition systems.
Let T = (S,−→,−→√, s0) ∈ TSκ and s ∈ S. Then the subsystem of T with

initial state s, written (T )s, is defined as follows:

(T )s = Γ(S,−→,−→√, s) .

5 Full Bisimulation Models of BPAfo

δ

In this section, we introduce the full bisimulation models of BPAfo
δ . They are

models of which the domain consists of equivalence classes of connected transi-
tion systems modulo bisimilarity. The qualification “full” will be explained later
on.

The models of BPAfo
δ are structures that consist of the following:

– a non-empty set D, called the domain of the model;
– for each constant of BPAfo

δ , an element of D;
– for each n-ary operator of BPAfo

δ , an n-ary operation on D;
– for each n-ary predicate symbol of BPAfo

δ , an n-ary relation on D.

In the full bisimulation models of BPAfo
δ that are introduced in this section,

the domain is TSκ/↔ for some κ ≥ ℵ0. We obtain the models concerned by
associating certain elements of TSκ/↔, certain operations on TSκ/↔ and cer-
tain relations on TSκ/↔ with the constants, operators and predicate symbols of
BPAfo

δ . We begin by associating elements of TSκ and operations on TSκ with
the constants and operators, and a binary relation on TSκ with the reachability
predicate symbol. The result of this is subsequently lifted to TSκ/↔.

It is assumed that for each infinite cardinal κ a fixed but arbitrary function
chκ : (P(Sκ) \ ∅) → Sκ such that for all S ∈ P(Sκ) \ ∅, chκ(S) ∈ S has been
given.

We associate with each constant c of BPAfo
δ an element ĉ of TSκ and with

each operator f of BPAfo
δ an operation f̂ on TSκ as follows.

– δ̂ = ({s0}, ∅, ∅, s0) .
where

s0 = chκ(Sκ) .

– â = ({s0}, ∅,−→√, s0) ,
where

s0 = chκ(Sκ) ,

a−→√ = {s0} ,

and for every a′ ∈ A such that a′ 6= a:

a′
−→√ = ∅ .



– Let Ti = (Si,−→i,−→
√

i, s
0
i ) ∈ TSκ for i = 1, 2. Then

T1 +̂ T2 = Γ(S,−→,−→√, s0) ,

where

s0 = chκ(Sκ \ (S1 ] S2)) ,

S = {s0} ∪ (S1 ] S2) ,

and for every a ∈ A:
a−→ =

{
(s0, µ1(s))

∣∣ s01 a−→1 s
}
∪

{
(s0, µ2(s))

∣∣ s02 a−→2 s
}

∪
{
(µ1(s), µ1(s

′))
∣∣ s a−→1 s

′} ∪
{
(µ2(s), µ2(s

′))
∣∣ s a−→2 s

′} ,
a−→√ =

{
s0

∣∣ s01 a−→√
1

}
∪

{
s0

∣∣ s02 a−→√
2

}

∪
{
µ1(s)

∣∣ s a−→√
1

}
∪

{
µ2(s)

∣∣ s a−→√
2

}
.

– Let Ti = (Si,−→i,−→
√

i, s
0
i ) ∈ TSκ for i = 1, 2. Then

T1 ·̂ T2 = Γ(S,−→,−→√, s0) ,

where

S = S1 ] S2 ,

s0 = µ1(s
0
1) ,

and for every a ∈ A:
a−→ =

{
(µ1(s), µ1(s

′))
∣∣ s a−→1 s

′} ∪
{
(µ1(s), µ2(s

0
2))

∣∣ s a−→√
1

}

∪
{
(µ2(s), µ2(s

′))
∣∣ s a−→2 s

′} ,
a−→√ =

{
µ2(s)

∣∣ s a−→√
2

}
.

We associate with the reachability predicate symbol →→ a relation →̂→ on TSκ

as follows.

– Let Ti = (Si,−→i,−→
√

i, s
0
i ) ∈ TSκ for i = 1, 2. Then

T1 →̂→ T2 iff ∃s ∈ S1 • (T1)s = T2 .

In the definition of alternative composition on TSκ, the connected part of a
transition system is extracted because the initial states of the transition systems
T1 and T2 may be unreachable from the new initial state. The new initial state
is introduced because, in T1 and/or T2, there may exist a transition back to the
initial state. In the definition of sequential composition on TSκ, the connected
part of a transition system is extracted because the initial state of the transition
system T2 may be unreachable from the initial state of the transition system T1

– due to absence of termination in T1.
We do not associate relations on TSκ with the summand inclusion, action ter-

mination and action step predicate symbols. They have defining axioms, which
explicitly define them in terms of the other nonlogical symbols of BPAfo

δ . There-
fore, it is known how to obtain the relations on TSκ/↔ to be associated with
these predicate symbols from the elements of TSκ/↔, operations on TSκ/↔ and
relations on TSκ/↔ to be associated with the other nonlogical symbols of BPAfo

δ .



Remark 3. The elements of TSκ and the operations on TSκ defined above are
independent of chκ. Different choices for chκ lead for each constant of BPAfo

δ to
isomorphic elements of TSκ and lead for each operator of BPAfo

δ to operations
on TSκ with isomorphic results.

We can easily show that bisimilarity is a congruence with respect to alterna-
tive composition and sequential composition.

Proposition 3 (Congruence). For all T1, T2, T
′
1, T

′
2 ∈ TSκ (κ ≥ ℵ0), T1 ↔ T ′

1

and T2 ↔ T ′
2 imply T1 +̂ T2 ↔ T ′

1 +̂ T ′
2 and T1 ·̂ T2 ↔ T ′

1 ·̂ T ′
2.

Proof. Let Ti = (Si,−→i,−→
√

i, s
0
i ) and T ′

i = (S′
i,−→

′
i,−→

√′
i, s

0
i
′) for i = 1, 2. Let

R1 and R2 be bisimulations witnessing T1 ↔ T ′
1 and T2 ↔ T ′

2, respectively. Then
we construct relations R+̂ and R ·̂ as follows:

– R+̂ = ({(s0, s0′)}∪µ1(R1)∪ µ2(R2))∩ (S×S′), where S and S′ are the sets
of states of T1 +̂ T2 and T ′

1 +̂ T ′
2, respectively, and s0 and s0′ are the initial

states of T1 +̂ T2 and T ′
1 +̂ T ′

2, respectively;
– R ·̂ = (µ1(R1) ∪ µ2(R2)) ∩ (S × S′), where S and S′ are the sets of states of
T1 ·̂ T2 and T ′

1 ·̂ T ′
2, respectively.

Here, we write µi(Ri) for {(µi(s), µi(s
′)) | Ri(s, s

′)}, where µi is used to denote
both the injection of Si into S1 ] S2 and the injection of S′

i into S′
1 ] S

′
2. Given

the definitions of alternative composition and sequential composition, it is easy
to see that R+̂ and R ·̂ are bisimulations witnessing T1 +̂ T2 ↔ T ′

1 +̂ T ′
2 and

T1 ·̂ T2 ↔ T ′
1 ·̂ T ′

2, respectively. ut

The full bisimulation models Pκ, one for each κ ≥ ℵ0, consist of the follow-
ing:6

– a set P , called the domain of Pκ;
– for each constant c of BPAfo

δ , an element c̃ of P ;
– for each n-ary operator f of BPAfo

δ , an n-ary operation f̃ on P ;
– for each n-ary predicate symbol R of BPAfo

δ , a n-ary relation R̃ on P ;

where those ingredients are defined as follows:

P = TSκ/↔ ,

δ̃ = [ δ̂ ] ,

ã = [ â ] ,

[T1 ] +̃ [T2 ] = [T1 +̂ T2 ] ,

[T1 ] ·̃ [T2 ] = [T1 ·̂ T2 ] ,

[T1 ] ṽ [T2 ] iff [T1 ] +̃ [T2 ] = [T2 ] ,

[T1 ] ã−→ √ iff ã ṽ [T1 ] ,

[T1 ]
ã−→ [T2 ] iff ã ·̃ [T2 ] ṽ [T1 ] ,

[T1 ] →̃→ [T2 ] iff ∃T ∈ [T2 ] • T1 →̂→ T .

Alternative composition and sequential composition on TSκ/↔ are well-defined
because ↔ is a congruence with respect to the corresponding operations on TSκ.

6 P is the Gothic capital P.



Reachability on TSκ/↔ is well-defined because ↔ preserves reachability on TSκ

up to ↔ : if T1 ↔ T ′
1 and T1 →̂→ T2, then there exists a T ′

2 such that T2 ↔ T ′
2 and

T ′
1 →̂→ T ′

2.

The structures Pκ are models of BPAfo
δ .

Theorem 4 (Soundness of BPAfo
δ ). For all κ ≥ ℵ0, we have Pκ |= BPAfo

δ .

Proof. The soundness of all axioms, except RDPf and RSPf, follows easily from
the definitions of the ingredients of Pκ. The soundness of RDPf and RSPf follows
immediately from Theorem 5 (see below), which states the soundness of RDP
and RSP. ut

All finite and countably infinite guarded recursive specifications have a unique
solution in the full bisimulation models.

Theorem 5 (Soundness of RDP and RSP). For all κ ≥ ℵ0, we have
Pκ |= RDP and Pκ |= RSP.

Proof. This is essentially the proof of soundness of RDP and RSP in the graph
models of ACPτ given in [11] adapted to the case without silent steps. ut

Moreover, B and R are valid in the full bisimulation models.

Theorem 6 (Soundness of B and R). For all κ ≥ ℵ0, we have Pκ |= B and
Pκ |= R.

Proof. The soundness of B follows easily from the definitions of
ã−→ √ and

ã−→,
the definition of bisimilarity of transition systems and Proposition 4. The sound-

ness of R follows easily from the definitions of
ã−→ and →̃→, the definition of the

reachability relation of a transition system and Corollary 2.7 ut

As to be expected, the full bisimulation models are related by isomorphic
embeddings.

Theorem 7 (Isomorphic embedding). Let ℵ0 ≤ κ < κ′. Then Pκ is iso-
morphically embedded in Pκ′ .

Proof. It follows immediately from the definitions of TSκ, TSκ′ and ↔ that for
each p ∈ TSκ/↔, there exists a unique p′ ∈ TSκ′/↔ such that p ⊆ p′. Now
consider the function h : TSκ/↔ → TSκ′/↔ where for each p ∈ TSκ/↔, h(p)
is the unique p′ ∈ TSκ′/↔ such that p ⊆ p′. It follows immediately from the
definition of h that h is injective. Moreover, it follows easily from the definitions
of the operations and relations on TSκ/↔ and TSκ′/↔ that h is a homomorphism
from Pκ to Pκ′ . ut

7 Proposition 4 and Corollary 2 are in Sect. 6 and Sect. 10, respectively, because they
need definitions of auxiliary notions which are better in place in there.



In Sect. 6, we will show that every bisimulation model with standard reachability,
i.e. every model that additionally satisfies the second-order axioms B and R, is
isomorphically embedded in the models Pκ from some κ ≥ ℵ0. This explains
why the models Pκ are called full bisimulation models: within the bound on the
branching degree set by κ, Pκ is full.

The question whether all full bisimulation models are elementary equivalent
must be answered in the negative.

Theorem 8 (No elementary equivalence). We have Pℵ0
6≡ P2ℵ0 , Pℵ0

6≡
P

22
ℵ0 and P2ℵ0 6≡ P

22
ℵ0 .

Proof. Pℵ0
6≡ P2ℵ0 and Pℵ0

6≡ P
22

ℵ0 are proved as follows. Let a be an action.

Let φ be the following formula of L(BPAfo
δ ):

∃x •
(
x a−→ δ ∧ ∀y •

(
x a−→ y ⇒ ∃z •

(
z 6= y ∧ x a−→ z ∧ z a−→ y

)))
.

Clearly, Pℵ0
6|= φ, but P2ℵ0 |= φ and P

22
ℵ0 |= φ.

P2ℵ0 6≡ P
22

ℵ0 is proved as follows. Let a, a′, b, b′ be different actions. Let

φ(x) be the following formula of L(BPAfo
δ ):

∀y •
(
x →→ y ⇒ ∃!z • y a−→ z ∧ ¬

(
y

a′
−→√ ⇔ y

b′−→√))
.

For all κ ≥ ℵ0, there exist 2ℵ0 different x in the domain of Pκ for which φ(x).
Let ψ be the following formula of L(BPAfo

δ ):

∃w •
(
∀x •

(
φ(x) ⇒ w

b−→ x
))
.

Clearly, P2ℵ0 6|= ψ and P
22

ℵ0 |= ψ. ut

We conjecture that there exists a countably infinite set of infinite cardinal num-
bers U such that, for κ, κ′ ∈ U , Pκ 6≡ Pκ′ if κ 6= κ′.

We can summarize the state of affairs as follows. The full bisimulation models
Pκ are models of BPAfo

δ in which RDP, RSP, B and R are valid. If κ < κ′, then
Pκ is essentially included in Pκ′ . Moreover, not all full bisimulation models
satisfy exactly the same formulas of L(BPAfo

δ ). In subsequent sections, we will
see that the full bisimulation models have many more interesting properties.

6 External Bisimilarity

Each model of BPAfo
δ induces a transition system for each element of its domain.

Let A be a model of BPAfo
δ with domain P , a binary relation a−→′ on P for

each predicate symbol
a−→, and a unary relation

a−→√′ on P for each predicate
symbol a−→√. Moreover, let p ∈ P . Then the transition system of p induced by
A, written TS(A, p), is defined as follows:

TS(A, p) = Γ(P,−→′,−→√′, p) .

In each of the full bisimulation models, every element of the domain is an equiv-
alence class of transition systems. The transition system of an element induced
by the model is (up to isomorphism) a representative of that element.



Lemma 1 (Pκ induces representatives). Let p ∈ TSκ/↔ for some κ ≥ ℵ0.
Then TS(Pκ, p) ∈ p.

Proof. Let TS(Pκ, p) = (P,−→′,−→√′, p). Take an arbitrary transition system
T = (S,−→′′,−→√′′, s0) ∈ TSκ such that [T ] = p. Consider the relation B ⊆ P×S
defined as follows:

B = {([ (T )s ], s) | s ∈ S} .

It is easy to see that B is a bisimulation between TS(Pκ, p) and T . Hence,
TS(Pκ, p) ∈ [T ] = p. ut

Let A be a model of BPAfo
δ with domain P . Then bisimilarity on P is defined

as follows:

p1 ↔A p2 iff TS(A, p1)↔TS(A, p2) .

Bisimilarity on the domain of a model of BPAfo
δ as defined above is called ex-

ternal bisimilarity. In each of the full bisimulation models, external bisimilarity
coincides with identity.

Proposition 4 (External bisimilarity is identity in Pκ). Let p1, p2 ∈
TSκ/↔ for some κ ≥ ℵ0. Then p1 ↔Pκ

p2 iff p1 = p2.

Proof. Follows immediately from Lemma 1. ut

There does not exist a consistent extension of BPAfo
δ with first-order axioms that

has only models in which external bisimilarity coincides with identity.

Theorem 9 (Undefinability of external bisimilarity). Each first-order
consistent extension of BPAfo

δ has a model in which external bisimilarity is not
identity.

Proof. Suppose that there exists a first-order consistent extension of BPAfo
δ , say

BPAfo
δ ∪ H , that has only models in which external bisimilarity is identity. A

contradiction is found as follows. Let c0, c1, c2, . . . and d0, d1, d2, . . . be different
new constants; and let a, a′, a′′ be different actions. Consider the following sets
of formulas:

H ′ = {c0 6= d0} ∪ {ci = a · ci+1 | i ≥ 0} ∪ {di = a · di+1 | i ≥ 0} ,

H ′
n = {c0 6= d0} ∪ {ci = a · ci+1 | 0 ≤ i < n} ∪ {di = a · di+1 | 0 ≤ i < n}

∪ {cn = a′, dn = a′′}

(for n ≥ 0) .

Take an arbitrary model A of BPAfo
δ ∪ H . It follows easily from the axioms

of BPAfo
δ that, for each n ≥ 0, H ′

n is satisfied in the definitional expansion of
A determined by the definitional extension of BPAfo

δ ∪ H with the constants
c0, . . . , cn, d0, . . . , dn and the equations ci = an−i · a′ for 0 ≤ i < n, cn = a′,
di = an−i ·a′′ for 0 ≤ i < n, dn = a′′. Hence, for each n ≥ 0, H ′

n is consistent with



BPAfo
δ ∪H . Each finite H ′′ ⊆ H ′ is consistent with BPAfo

δ ∪H because there is
an n ≥ 0 for which H ′′ ⊆ H ′

n. From this, it follows by the Compactness Theorem
that H ′ is consistent with BPAfo

δ ∪ H . Now consider an arbitrary model A′ of
BPAfo

δ ∪H ∪H ′. Because A′ satisfies H ′, we have cA
′

0 6= dA′

0 . Since TS(A′, cA
′

0 )
and TS(A′, dA′

0 ) are isomorphic transition systems, we have cA
′

0
↔A′ dA′

0 . Hence,
because external bisimilarity is identity, it must be the case that cA′

0 = dA′

0 ,
which contradicts the fact that cA

′

0 6= dA′

0 . ut

We can summarize the state of affairs as follows. It is obvious that equality
derivable from BPAfo

δ implies external bisimilarity in each model of BPAfo
δ . In the

full bisimulation models, external bisimilarity coincides with identity. However,
there also exist models of which the domain contains pairs of different elements
that are externally bisimilar. Moreover, those models cannot be excluded by
extending BPAfo

δ with first-order axioms.
The above-mentioned discrepancy can for the greater part be eliminated in

second-order logic, as indicated below by Theorem 10. This theorem states that
each bisimulation model with standard reachability is isomorphic to a substruc-
ture of one of the full bisimulation models.

Theorem 10 (Isomorphic embedding). Let A be a model of BPAfo
δ such that

A |= R. Then A |= B iff A is isomorphically embedded in Pκ for some κ ≥ ℵ0.

Proof. The implication from left to right is proved as follows. Let P be the
domain of A, κ′ be the cardinality of P , and κ > κ′. It follows immediately from
the definitions of TS and TSκ that for each p ∈ P , TS(A, p) ∈ TSκ. Now consider
the function h:P → TSκ/↔ such that for each p ∈ P , h(p) = [ TS(A, p) ]. Because
A |= B, it follows immediately that h is injective. Because the implications from
right to left are derivable, the occurrence of “⇒ ” in axioms SI7–SI9 (Table 1) can
be replaced by “⇔ ”. It follows easily from these equivalences and the definitions
of alternative composition and sequential composition on TSκ/↔ (Sect. 5) that
h is a homomorphism with respect to these operations. From this, it follows
immediately by axioms SI1, TR1 and TR2 that h is also a homomorphism with
respect to the summand inclusion, action termination and action step relations.
Because A |= R, it follows immediately that h is a homomorphism with respect
to the reachability relation. The implication from right to left is trivial. ut

Models of BPAfo
δ other than bisimulation models with standard reachability

are to BPAfo
δ as nonstandard models of number theory are to number theory.

7 Observational Equivalence

In this section, we have a closer look at observational equivalence as defined
in [12]. This equivalence on the domain of models of BPAfo

δ is closely related to
external bisimilarity. Observational equivalence is defined in the following way.

Let A be a model of BPAfo
δ with domain P , a binary relation a−→′ on P for

each predicate symbol
a−→, and a unary relation

a−→√′ on P for each predicate
symbol a−→√. Then equivalences ∼n⊆ P×P for each n ≥ 0 are defined as follows:



Table 4. Approximation induction principle

x ∼0 y OBS0

x ∼n+1 y ⇔
∧

a∈A
((x

a−→√ ⇔ y
a−→√) ∧

∀x′ • (x
a−→ x′ ⇒ ∃y′ • (y

a−→ y′ ∧ x′ ∼n y
′)) ∧

∀y′ • (y
a−→ y′ ⇒ ∃x′ • (x

a−→ x′ ∧ x′ ∼n y
′))) OBSn+1

x ∼ y ⇔
∧

n≥0
x ∼n y OBS

x ∼ y ⇒ x = y AIP

– p1 ∼0 p2 for all p1, p2 ∈ P ;
– p1 ∼n+1 p2 if

• p1
a−→√′ iff p2

a−→√′;
• if p1

a−→′ p′1, then there is a p′2 ∈ P such that p2
a−→′ p′2 and p′1 ∼n p

′
2;

• if p2
a−→′ p′2, then there is a p′1 ∈ P such that p1

a−→′ p′1 and p′1 ∼n p
′
2.

Now, p1 and p2 are observationally equivalent in A, written p1 ∼A p2, if p1 ∼n p2

for all n ≥ 0.
If all transition systems that can be extracted from a model are finitely

branching, then observational equivalence and external bisimilarity coincide.

Theorem 11 (Observational equivalence vs external bisimilarity). Let
A be a model of BPAfo

δ with domain P . Then ∼A = ↔A if TS(A, p) ∈ TSℵ0
for

all p ∈ P .

Proof. The proof is analogous to the proof of the corresponding property for
process graphs given in [13]. ut

An interesting extension of BPAfo
δ is obtained as follows. We add to the

nonlogical symbols of BPAfo
δ , for each n ≥ 0, a binary observational equivalence

up to depth n predicate symbol ∼n and a binary observational equivalence
predicate symbol ∼ . Moreover, we add the axioms given in Table 4 to the
axioms of BPAfo

δ . OBSn+1 is actually an axiom schema with an instance for each
n ≥ 0.

Axiom OBS0 is the defining axiom of the observational equivalence up to
depth 0 predicate; and OBSn+1 is an axiom schema whose instances are the
defining axioms of the observational equivalence up to depth n + 1 predicates.
Axiom OBS is the defining axiom of the observational equivalence predicate.
Axiom AIP is called the approximation induction principle.

We write P∼
κ (κ ≥ ℵ0) for the unique definitional expansion of Pκ determined

by the definitional extension of BPAfo
δ with the binary predicate symbols ∼0, ∼1,

∼2, . . . and ∼ and axioms OBS0, OBS1, . . . and OBS. AIP is valid in P∼
ℵ0

, but
not in P∼

κ with κ ≥ ℵ1.

Theorem 12 (Soundness of AIP). We have P∼
κ |= AIP iff κ = ℵ0.



Proof. It follows immediately from Proposition 4 and Theorem 11 that P∼
κ |=

AIP if κ = ℵ0. For κ > ℵ0, we have the following counterexample. Fix an a ∈ A.
Consider the transition systems T1 = (S1,−→1, ∅, 0) and T2 = (S2,−→2, ∅, 0) where

S1 = {0} ∪ {(i, j) | i, j ∈ N, i ≥ j ≥ 1} ,

a−→1 = {(0, (i, 1)) | i ∈ N, i ≥ 1} ∪ {((i, j), (i, j + 1)) | i, j ∈ N, i > j ≥ 1} ,
a′
−→1 = ∅ for every a′ ∈ A such that a′ 6= a,

and

S2 = S1 ∪ N ,

a−→2 =
a−→1 ∪ {(i, i+ 1) | i ∈ N} ,

a′
−→2 = ∅ for every a′ ∈ A such that a′ 6= a.

Clearly, T1, T2 6∈ TSℵ0
. Because T1 has no infinite branch and T2 has an infinite

branch, T1 6↔P∼
κ
T2. However, T1 ∼P∼

κ
T2. ut

All models of BPAfo
δ ∪AIP satisfy B. Here, and in Theorem 23, we abuse the

name AIP for the set of axioms {OBSn | n ≥ 0} ∪ {OBS,AIP}.

Proposition 5 (AIP implies B). We have BPAfo
δ ∪ AIP |= B.

Proof. Take a model A of BPAfo
δ ∪AIP with domain P . Let p, p′ ∈ P . It is easily

proved by induction on n that p ↔A p′ implies p ∼n p′ (in A) for each n ≥ 0.
Because AIP is satisfied, it follows immediately that B is satisfied. ut

We can summarize the state of affairs as follows. In the models of BPAfo
δ from

which only finitely branching transition systems can be extracted, observational
equivalence coincides with external bisimilarity. It happens that observational
equivalence can be used to formulate AIP. The strength of AIP is witnessed
by the fact that P∼

ℵ0
is the only full bisimulation model in which AIP is valid.

Moreover, in all models in which AIP is valid, B is also valid.
AIP was first formulated in [14]. To the best of our knowledge, the formulation

given here is the first one using observational equivalence explicitly. In [15, 16],
more can be found on bisimulation models in which AIP is valid. However, in
those papers, only bisimulation models of PA, i.e. ACP without communication
(see also Sect. 13), are considered.

Note that the defining axiom of observational equivalence is a formula of
Lω1ω(BPAfo

δ ). Observational equivalence is not definable in L(BPAfo
δ ). It is shown

in [17] that external bisimilarity is not even definable in Lω1ω(BPAfo
δ ).

8 SOS-Based Bisimilarity

It is customary to associate transition systems with closed terms of the language
of an ACP-like theory about processes by means of structural operational se-
mantics and to identify closed terms if their associated transition systems are
bisimilar. In this section, we briefly dwell on this approach.



Table 5. Axiom schema for the constants 〈X|E〉

∧
1≤i≤n

〈Xi|E〉 = ti(〈X1|E〉, . . . , 〈Xn|E〉)

if E = {Xi = ti(X1, . . . , Xn) | 1 ≤ i ≤ n} RDPc

Table 6. Structural operational semantics of BPAfo
δc

a
a
−→

√

x
a
−→

√

x + y
a
−→

√
y

a
−→

√

x + y
a
−→

√
x

a
−→ x′

x + y
a
−→ x′

y
a
−→ y′

x + y
a
−→ y′

x
a
−→

√

x · y
a
−→ y

x
a
−→ x′

x · y
a
−→ x′ · y

ti(〈X1|E〉, . . . , 〈Xn|E〉)
a
−→

√

〈Xi|E〉
a
−→

√ E = {Xi = ti(X1, . . . ,Xn) | 1 ≤ i ≤ n}

ti(〈X1|E〉, . . . , 〈Xn|E〉)
a
−→ x′

〈Xi|E〉
a
−→ x′

E = {Xi = ti(X1, . . . , Xn) | 1 ≤ i ≤ n}

In the presence of recursion the approach requires a special provision, namely
constants for the solutions of recursive specifications.

We add to the nonlogical symbols of the first-order theory BPAfo
δ , for each

finite guarded recursive specification E and each variable X that occurs as the
left-hand side of an equation in E, a constant standing for the unique solution
of E for X . This constant is denoted by 〈X |E〉. Moreover, we add the axiom
(schema) given in Table 5 to the axioms of BPAfo

δ . We write BPAfo
δc for the

resulting theory. RDPc is an axiom schema with an instance for each guarded
recursive specification E. Note that the models of BPAfo

δc are simply the expan-
sions of the models of BPAfo

δ obtained by associating with each constant 〈X |E〉
the unique solution in the model concerned of E for X .

The structural operational semantics of BPAfo
δc is described by the transition

rules given in Table 6. It determines a transition system for each process that can
be denoted by a closed term of L(BPAfo

δc). These transition systems are special
in the sense that their states are closed terms of L(BPAfo

δc).

Let t be a closed term of L(BPAfo
δc). Then the transition system of t induced

by the structural operational semantics of BPAfo
δc, written TS(t), is the connected

transition system Γ(S,−→,−→√, s0), where:

– S is the set of closed terms of L(BPAfo
δc);

– the sets
a−→ ⊆ S × S and

a−→√ ⊆ S for each a ∈ A are the smallest subsets of
S × S and S, respectively, for which the transition rules from Table 6 hold;

– s0 ∈ S is t.



Clearly, the structural operational semantics does not give rise to infinitely
branching transition systems. In other words, for each closed term t of L(BPAfo

δc),
we have TS(t) ∈ TSℵ0

.
Let t1 and t2 be closed terms of L(BPAfo

δc). Then we say that t1 and t2 are
bisimilar, written t1 ↔sos t2, if TS(t1)↔TS(t2).

We have the following relationship between bisimilarity of terms, which is
based on structural operational semantics, and validity of equations in models
of BPAfo

δc.

Theorem 13 (SOS-based bisimilarity and validity of equations).

1. Let t1, t2 be closed terms of L(BPAfo
δ ). Then t1 ↔sos t2 implies A |= t1 = t2

for all models A of BPAfo
δc.

2. Let t1, t2 be closed terms of L(BPAfo
δc). Then t1 6↔sos t2 implies A |= t1 6= t2

for all models A of BPAfo
δc.

Proof.
Proof of part 1. It follows easily from the structural operational semantics of
BPAfo

δc that, for all closed terms t1, t2 of L(BPAfo
δ ), t1 ↔sos t2 iff BPAfo

δc ` t1 = t2
(see also [18]). From this, it follows immediately that, for all closed terms t1, t2
of L(BPAfo

δ ), t1 ↔sos t2 implies A |= t1 = t2 for all models A of BPAfo
δc.

Proof of part 2. It follows easily from the structural operational semantics of
BPAfo

δc that, for all closed terms t1, t2 of L(BPAfo
δc), t1 ↔sos t2 iff BPAfo

δc∪{OBSn |
n ≥ 0} ` t1 ∼n t2 for all n ≥ 0 (see also [18]). Moreover, for all closed terms
t1, t2 of L(BPAfo

δc) and n ≥ 0, either BPAfo
δc ∪ {OBSn | n ≥ 0} ` t1 ∼n t2 or

BPAfo
δc ∪ {OBSn | n ≥ 0} ` ¬ t1 ∼n t2, but not both. This is easily proved

by induction on n. As a consequence, for all closed terms t1, t2 of L(BPAfo
δc),

t1 6↔sos t2 iff BPAfo
δc ∪ {OBSn | n ≥ 0} ` ¬ t1 ∼n t2 for some n ≥ 0. From this,

it follows easily that, for all closed terms t1, t2 of L(BPAfo
δc), t1 6↔sos t2 implies

BPAfo
δc ` ¬ t1 = t2. From this, it follows immediately that, for all closed terms

t1, t2 of L(BPAfo
δc), t1 6↔sos t2 implies A |= ¬ t1 = t2 for all models A of BPAfo

δc.
ut

This theorem implies that, for closed equations of L(BPAfo
δ ), validity in all mod-

els coincides with (SOS-based) bisimilarity of the closed terms concerned.
We could have introduced constants for the solutions of unguarded recursive

specifications as well. In that case, the structural operational semantics would
have given rise to countably branching transition systems. Moreover, it would
have fixed a particular solution for each unguarded recursive specification. In
this paper, we do not consider unguarded recursion.

The following remark on fixing a particular solution in the case of unguarded
recursion is in order. Suppose that we also add to the nonlogical symbols of
the first-order theory BPAfo

δ a constant, denoted by 〈X |E〉, for each finite un-
guarded recursive specification E and each variable X that occurs as the left-
hand side of an equation in E. Consider the two unguarded recursive specifica-
tions X = a ·X +X and Y = b ·Y +Y , where a and b are different actions. The
structural operational semantics of BPAfo

δc described in Table 6 fixes the obvious



solution for each of these unguarded recursive specifications. However, as usual
with unguarded recursive specifications, both have more than one solution. The
problem is not so much that they have more than one solution, but that the sets
of solutions are not disjoint. For example, the solution of the guarded recursive
specification Z = a · Z + b · Z is a common solution of X = a · X + X and
Y = b · Y + Y . The common solutions exclude any possibility to achieve that
A |= 〈X |{X = a · X +X}〉 6= 〈Y |{Y = b · Y + Y }〉 for all models A, although
〈X |{X = a ·X +X}〉 6↔sos 〈Y |{Y = b · Y + Y }〉.

9 A Modal Fragment of L(BPAfo

δ
)

In this section, we have a closer look at a modal fragment of L(BPAfo
δ ). This

fragment corresponds to a variant of HML (Hennessy-Milner Logic), a simple
modal logic introduced in [12] to give a modal characterization of bisimilarity.

The set M of modal fragment formulas of L(BPAfo
δ ) is inductively defined as

follows:

– if x is a variable, then x = x ∈ M;
– if φ ∈ M, then ¬ φ ∈ M;
– if φ1, φ2 ∈ M, then φ1 ∧ φ2 ∈ M;
– if a ∈ A and x is a variable, then x a−→√ ∈ M;
– if a ∈ A, x, y are different variables and φ ∈ M, then ∃y •(x

a−→ y ∧ φ) ∈ M.

We write M1 for the subset of M that contains all formulas from M in which
exactly one variable occurs free. The set M1 of one-variable modal fragment
formulas has an interesting property: M1 is essentially the set of formulas of
L(BPAfo

δ ) that are invariant for external bisimulation.

Theorem 14 (Invariance for external bisimilarity). Let A be a model of
BPAfo

δ with domain P , and let φ be a formula of L(BPAfo
δ ). Then the following

are equivalent:

– A |= φ[p1] iff A |= φ[p2] for all p1, p2 ∈ P such that p1 ↔A p2;
– there exists a formula φ′ ∈ M1 such that φ ⇔ φ′.

Proof. The proof is analogous to the proof of the corresponding property for
first-order formulas that correspond to HML-like modal formulas given in [17].

ut

We have the following corollary of Theorem 14.

Corollary 1 (External bisimilarity implies indistinguishability). Let A

be a model of BPAfo
δ with domain P , and let p1, p2 ∈ P . If p1 ↔A p2, then for

all φ ∈ M1 we have A |= φ[p1] iff A |= φ[p2].

In general, we do not have the converse of Corollary 1. The transition systems
from the counterexample used in the proof of Theorem 12 provide a counterexam-
ple here as well. However, we do have the converse in the case of finite branching.



Theorem 15 (Indistinguishability implies external bisimilarity). Let A

be a model of BPAfo
δ with domain P , and let p1, p2 ∈ P . If for all φ ∈ M1 we

have A |= φ[p1] iff A |= φ[p2] and moreover TS(A, p1),TS(A, p2) ∈ TSℵ0
, then

p1 ↔A p2.

Proof. The proof is analogous to the proof of the corresponding property for
HML-like modal formulas given in [19]. ut

Now we come back to the variant of HML of which the formulas correspond
to the formulas in M. HML is a modal logic introduced in [12] to be used
in a setting where no distinction is made between successful termination and
deadlock. The variant of HML considered here is adapted to a setting where
distinction is made between successful termination and deadlock. This variant is
henceforth also called HML. The set H of HML formulas is inductively defined
as follows:

– T ∈ H;
– if ψ ∈ H, then ¬ ψ ∈ H;
– if ψ1, ψ2 ∈ H, then ψ1 ∧ ψ2 ∈ H;
– if a ∈ A, then 〈a〉√ ∈ H;
– if a ∈ A and ψ ∈ H, then 〈a〉ψ ∈ H.

There is a “standard translation” from HML formulas to formulas of L(BPAfo
δ ).

Let x be a fixed but arbitrary variable. Then the translation of HML formulas
is defined as follows:

T
• = x = x ,

(¬ ψ)• = ¬ (ψ•) ,

(ψ1 ∧ ψ2)
• = ψ1

• ∧ ψ2
• ,

〈a〉√• = x
a−→√ ,

(〈a〉ψ)• = ∃y •
(
x a−→ y ∧ ψ•(y)

)
where y is a fresh variable.

This translation is justified by the fact that satisfaction for HML formulas ψ is
defined such that A |= ψ iff A |= ∀x • ψ•.

Clearly, the image of the translation from HML formulas to formulas of
L(BPAfo

δ ) consists of all formulas from M1 of which the free variable is x. HML is
a modal logic which has been devised to complement the process algebra CCS [3,
4] with a formalism that allows one to express and verify properties of processes
which are definable directly in terms of the action steps that are possible at any
stage. Apparently, BPAfo

δ can be considered to include a process algebra and a
variant of HML as fragments.

10 Deadlock Freedom

In this section, we add a deadlock freedom predicate to BPAfo
δ . In Sect. 2, we

demonstrated that the deadlock freedom predicate can be explicitly defined by



Table 7. Axioms for deadlock freedom

¬ dlf(δ) DLF1
∧

a∈A
∀x, y • (dlf(x) ∧ x

a−→ y ⇒ dlf(y)) DLF2

¬ ψ(δ) ∧
∧

a∈A
∀x, y • (ψ(x) ∧ x

a−→ y ⇒ ψ(y)) ⇒ ∀x • (ψ(x) ⇒ dlf(x)) DLFS

using the reachability predicate. Here, the deadlock freedom predicate will be
implicitly defined without using the reachability predicate.

We add to BPAfo
δ the unary deadlock freedom predicate symbol dlf and the

axioms given in Table 7. We write DLF for this set of axioms. DLFS is an axiom
schema where ψ(x) is a formula of L(BPAfo

δ ∪DLF). Axiom schema DLFS is an
induction schema.

The deadlock freedom predicate that is implicitly defined by DLF is equiva-
lent to the one that is explicitly defined by using the reachability predicate.

Theorem 16 (Explicit definability of deadlock freedom). We have
BPAfo

δ ∪ DLF ` dlf(x) ⇔ ¬ x→→ δ.

Proof. We will apply RS, taking dlf(x) ⇒ y 6= δ for φ(x, y), to prove the implica-
tion dlf(x) ⇒ ¬ x→→ δ. When we have shown that x →→ y ⇒ (dlf(x) ⇒ y 6= δ),
we can first conclude by substitution of δ for y that x →→ δ ⇒ ¬ dlf(x), and
then by contraposition that dlf(x) ⇒ ¬ x →→ δ.

It remains to be shown by means of RS that x →→ y ⇒ (dlf(x) ⇒ y 6= δ).
First of all, we immediately conclude from DLF1 that

∀x′ • (dlf(x′) ⇒ x′ 6= δ) .

Moreover, we conclude from DLF2, using substitutivity of implication, that

∀x′, y′, z′ •
∧

a′∈A

(
x′ a′

−→ y′ ∧ (dlf(y′) ⇒ z′ 6= δ) ⇒ (dlf(x′) ⇒ z′ 6= δ)
)
.

Using the subprocess induction schema, it follows from these conclusions that
x →→ y ⇒ (dlf(x) ⇒ y 6= δ).

We will apply DLFS, taking ¬ x→→ δ for ψ(x), to prove the reverse implica-
tion ¬ x→→ δ ⇒ dlf(x).

First of all, we immediately conclude from R1 that

¬ (¬ δ →→ δ) .

Moreover, we conclude from R2, because (x
a−→ y ∧ y →→ z ⇒ x →→ z) ⇔

(¬ x →→ z ∧ x a−→ y ⇒ ¬ y →→ z), that
∧

a∈A

∀x, y •
(
¬ x→→ δ ∧ x

a−→ y ⇒ ¬ y →→ δ
)
.

Using DLFS, it follows from these conclusions that ∀x•(¬ x →→ δ ⇒ dlf(x)). ut

Using Proposition 1 and Theorem 16, we can easily prove that, for example, the
solution of the guarded recursive specification X = a ·X is deadlock free.



Proposition 6 (Solution of X = a ·X is deadlock free). We have BPAfo
δ ∪

DLF ` X = a ·X ⇒ dlf(X).

Proof. Suppose ¬ dlf(X). By Theorem 16, then also X →→ δ. We distinguish
three cases according to Proposition 1:

– X = δ. Then, because X = a ·X , also δ = a ·δ. This is equivalent to a ·δ v δ,
which contradicts axiom SI3.

– X
a−→ δ for some a ∈ A. Then a ·δ v X . Because X = a ·X , this is equivalent

to a · δ v a ·X . This in turn implies δ = X , which contradicts the conclusion
of the previous case that X 6= δ.

– X a−→ z for some a ∈ A and z 6= X with z →→ δ. Then a · z v X . Because
X = a · X , this is equivalent to a · z v a · X . This in turn implies z = X ,
which contradicts the fact that z 6= X .

So ¬ dlf(X) leads in all cases to contradiction. From this, we conclude that
dlf(X). ut

Let A be a model of BPAfo
δ ∪ DLF with domain P . Then reachability and

deadlock freedom on P are defined as follows:

p1 →→A p2 iff p1 →→ p2 ,

where →→ is the reachability relation of TS(A, p1);

dlfA(p) iff not p→→A δA .

Reachability and deadlock freedom on the domain of a model of BPAfo
δ ∪ DLF

as defined above are called external reachability and external deadlock freedom,
respectively.

We write Pdlf
κ (κ ≥ ℵ0) for the unique definitional expansion of Pκ deter-

mined by the definitional extension of BPAfo
δ with the unary predicate symbol

dlf and the formula dlf(x) ⇔ ¬ x →→ δ. In the proof of Proposition 8 (see be-
low), we will use the next lemma. It states that in the models Pdlf

κ , external
reachability coincides with internal reachability.

Lemma 2 (External reachability is internal reachability in Pdlf
κ ). Let

p1, p2 ∈ TSκ/↔ for some κ ≥ ℵ0. Then p1 →→Pdlf
κ
p2 iff p1 →̃→ p2.

Proof. By Lemma 1, TS(Pκ, p1) ∈ p1 and TS(Pκ, p2) ∈ p2. Hence, p1 →̃→ p2 iff
[ TS(Pκ, p1) ] →̃→ [ TS(Pκ, p2) ]. It is easy to see that p is a state of TS(Pκ, p1) iff
p1 →→ p where →→ is the reachability relation of TS(Pκ, p1); and also that, if p is
a state of TS(Pκ, p1), (TS(Pκ, p1))p = TS(Pκ, p). From this, and the definitions
of →̃→ and →̂→, it follows that [ TS(Pκ, p1) ] →̃→ [ TS(Pκ, p2) ] iff there exists a
p such that p1 →→Pκ

p and TS(Pκ, p) ∈ [ TS(Pκ, p2) ]. Moreover, by Lemma 1,
TS(Pκ, p) ∈ [ TS(Pκ, p2) ] iff p = p2. Thus, we conclude that p1 →̃→ p2 iff p1 →→Pκ

p2. Because Pdlf
κ is a definitional expansion of Pκ, it follows immediately that

also p1 →̃→ p2 iff p1 →→Pdlf
κ
p2. ut



A useful corollary of the proof of Lemma 2 is the following.

Corollary 2 (External reachability is internal reachability in Pκ). Let
p1, p2 ∈ TSκ/↔ for some κ ≥ ℵ0. Then p1 →→Pκ

p2 iff p1 →̃→ p2.

In the models of BPAfo
δ ∪ DLF, internal deadlock freedom implies external

deadlock freedom.

Proposition 7 (Internal deadlock freedom implies external deadlock
freedom). Let A be a model of BPAfo

δ ∪ DLF with domain P and let p ∈ P .
Then dlf

A(p) implies dlfA(p).

Proof. By Theorem 16, dlf
A(p) iff not p→→′ δA, where →→′ is the binary relation

on P associated with the predicate symbol →→ in A. By the definition of external
deadlock freedom, dlfA(p) iff not p→→′′ δA, where →→′′ is the reachability relation
of TS(A, p). It follows immediately from axioms R1, R2 and RS of BPAfo

δ (Ta-
ble 1) and the definition of reachability relation of a transition system (Sect. 4)
that for all p′, p′′ ∈ P , p′ →→′′ p′′ implies p′ →→′ p′′. Hence, p →→′′ δA implies
p→→′ δA; and by the above-mentioned equivalences dlf

A(p) implies dlfA(p). ut

In the full bisimulation models Pdlf
κ , external deadlock freedom coincides with

internal deadlock freedom.

Proposition 8 (External deadlock freedom is internal deadlock free-
dom in Pdlf

κ ). Let p ∈ TSκ/↔ for some κ ≥ ℵ0. Then dlfPdlf
κ

(p) iff d̃lf(p).

Proof. By Lemma 2, p →→Pdlf
κ
δ̃ iff p →̃→ δ̃ . Hence, dlfPdlf

κ
(p) iff not p →̃→ δ̃ . By

Theorem 16, also d̃lf(p) iff not p →̃→ δ̃ . From this, it follows immediately that
dlfPdlf

κ
(p) iff d̃lf(p). ut

There does not exist a consistent extension of BPAfo
δ ∪ DLF with first-order

axioms that has only models in which external deadlock freedom coincides with
internal deadlock freedom.

Theorem 17 (Undefinability of external deadlock freedom). Each first-
order consistent extension of BPAfo

δ ∪DLF has a model in which external deadlock
freedom is not internal deadlock freedom.

Proof. Suppose that there exists a first-order consistent extension of BPAfo
δ ∪

DLF, say BPAfo
δ ∪ DLF ∪ H , that has only models in which external deadlock

freedom is internal deadlock freedom. A contradiction is found as follows. Let
c0, c1, c2, . . . be different new constants; and let a be an action. Consider the
following sets of formulas:

H ′ = {¬ dlf(c0)} ∪ {ci = a · ci+1 | i ≥ 0} ,

H ′
n = {¬ dlf(c0)} ∪ {ci = a · ci+1 | 0 ≤ i < n} ∪ {cn = δ} .

Take an arbitrary model A of BPAfo
δ ∪ DLF ∪ H . It follows easily from the

axioms of BPAfo
δ ∪ DLF that, for each n ≥ 0, H ′

n is satisfied in the definitional



expansion of A determined by the definitional extension of BPAfo
δ ∪ DLF ∪ H

with the constants c0, . . . , cn and the equations ci = an−i · δ for 0 ≤ i < n and
cn = δ. Hence, for each n ≥ 0, H ′

n is consistent with BPAfo
δ ∪ DLF ∪ H . Each

finite H ′′ ⊆ H ′ is consistent with BPAfo
δ ∪ DLF ∪ H because there is an n ≥ 0

for which H ′′ ⊆ H ′
n. From this, it follows by the Compactness Theorem that

H ′ is consistent with BPAfo
δ ∪ DLF ∪ H . Now consider an arbitrary model A′

of BPAfo
δ ∪ DLF ∪ H ∪H ′. Because A′ satisfies H ′, not dlf

A′
(cA

′

0 ). It is easy to
see that the reachability relation →→ of TS(A′, cA

′

0 ) is such that not cA
′

0 →→ δA′
.

This means that dlfA′(cA
′

0 ). Hence, because external deadlock freedom is internal

deadlock freedom, dlf
A′

(cA
′

0 ), which contradicts the fact that not dlf
A′

(cA
′

0 ). ut

Apparently, there is a discrepancy in relation to deadlock freedom which is sim-
ilar to the discrepancy in relation to bisimilarity found in Sect. 6.

We can summarize the state of affairs as follows. Deadlock freedom derivable
from BPAfo

δ ∪DLF implies external deadlock freedom in each model of BPAfo
δ ∪

DLF. In the full bisimulation models Pdlf
κ , external deadlock freedom coincides

with internal deadlock freedom. However, there also exist models of which the
domain contains elements that are externally deadlock free, but not internally
deadlock free. Moreover, those models cannot be excluded by extending BPAfo

δ ∪
DLF with first-order axioms.

11 Determinism

In the previous section, the relation between external deadlock freedom and
internal deadlock freedom in models of BPAfo

δ ∪ DLF was analysed in detail.
It is obvious that there are other properties of processes of which the relation
between the external version and the internal version can be analysed. In this
section, we briefly consider one other property, namely determinism.

The determinism predicate symbol det is explicitly defined in terms of
L(BPAfo

δ ) by

det(x) ⇔ ∀y •
(
x→→ y ⇒

∧

a∈A

((
y

a−→√ ⇒ ∀z • ¬ y
a−→ z

)
∧

∀z, z′ •
(
y a−→ z ∧ y a−→ z′ ⇒ z = z′

)))
.

External determinism can be defined in the same vein as external deadlock free-
dom.

In this case, it is easy to see that there exist models of the extension of
BPAfo

δ with determinism in which external determinism does not coincide with
internal determinism. We know from Theorem 9 that each first-order extension
of BPAfo

δ has a model of which the domain contains pairs of different elements
that are externally bisimilar. Let A be such a model, and let p and p′ be elements
from the domain of A such that p ↔A p′ and not p = p′. Clearly, the element
aA ·A p+A aA ·A p′ is externally deterministic, but not internally deterministic.

It is also easy to see that external determinism coincides with internal deter-
minism in the unique expansions of the full bisimulation models Pκ determined



Table 8. First-order and second-order axioms for restricted reachability

x
a−→→ x RR1

x
a−→ y ∧ y

a−→→ z ⇒ x
a−→→ z RR2

∃!y • ψa,b(x, y) if a 6≡ b RR3

x
a−→→ y ∧

∀x′, y′, z′ • (φ(x′, x′) ∧ (x′ a−→ y′ ∧ φ(y′, z′) ⇒ φ(x′, z′))) ⇒ φ(x, y) RRS

∀R • (x
a−→→ y ∧

∀x′, y′, z′ • (R(x′, x′) ∧ (x′ a−→ y′ ∧ R(y′, z′) ⇒ R(x′, z′))) ⇒ R(x, y)) RR

by the explicit definition of det. We know from Proposition 4 that external bisimi-
larity coincides with identity in those models; and we know from Corollary 2 that
external reachability coincides with internal reachability in those models. From
this, it is clear that external determinism coincides with internal determinism in
those models.

12 Restricted Reachability

In this section, we present an interesting extension of BPAfo
δ , called BPAfo

δrr. It is
obtained as follows. We add to the nonlogical symbols of BPAfo

δ , for each a ∈ A,
a binary reachability by a-steps predicate symbol a−→→ . Moreover, we add the
axioms given in Table 8, with the exception of RR, to the axioms of BPAfo

δ .
In axiom RR3 and henceforth, ψa,b(x, y), where a and b are different actions,
stands for the formula

y
b−→ x ∧ ∀x •

(
y

b−→ x ⇒ x = x
)
∧

∀y′ •
(
y a−→→ y′ ⇒ ∃x′, x′′ •

(
y′ b−→ x′ ∧

∨

a′∈A

x′ a′
−→ x′′ ⇒

∃!y′′ •
(
y′ a−→ y′′ ∧ y′′ b−→ x′′

))
∧

∃x′, y′′ •
(
y′ b−→ x′ ∧ y′ a−→ y′′ ⇒

∃!x′′ •
( ∨

a′∈A

x′ a′
−→ x′′ ∧ y′′ b−→ x′′

)))
.

RR1–RR3 are axiom schemas where a and b are action constants. RRS is an ax-
iom schema where a is an action constant and φ(x, y) is a formula of L(BPAfo

δrr).
The differences of RR1, RR2 and RRS with R1, R2 and RS reflect that

a−→→
is the restricted kind of reachability in which only action a is involved. We will
return to the additional axiom schema RR3 below. Axiom schema RRS is called
the restricted subprocess induction schema.

Similar to RS, the first-order axiom schema RRS does not exclude all models
in which there are processes that have more processes reachable by a-steps than
needed to satisfy the instances of axiom schemas RR1 and RR2. Similar to R,



the second-order axiom schema RR from Table 8, where a is an action constant,
would exclude all such models.

One can think of ψa,b(x, y) as a formula expressing that y produces an in-
dexing of the processes reachable from x with a set of processes reachable from y
by a-steps only. Axiom schema RR3 excludes models in which such an indexing
cannot be produced for all processes. This looks to be indispensable to establish
that the (unrestricted) reachability predicate is explicitly definable by means of
a restricted reachability predicate. It is unknown to us whether RR3 is derivable
from the other axioms of BPAfo

δrr.
Note further that axiom schema RR3 induces the existence of an indexing

operator for each pair of different actions a and b. The formula

χa,b(x) = y ⇔ ψa,b(x, y)

is an explicit definition of this operator in terms of L(BPAfo
δrr). Thus, a defini-

tional extension of BPAfo
δrr is obtained. Hence, every model of BPAfo

δrr can be
expanded in a unique way with an indexing operation that satisfies this formula.
Using an auxiliary operator χa,b, we can equationally characterize χa,b as follows:

χa,b(x) = b · x+ χa,b(x) ,

χa,b(c) = δ ,

χa,b(c · x) = a · χa,b(x) ,

χa,b(x+ y) = χa,b(x) + χa,b(x) ,

where c stands for an arbitrary constant of BPAfo
δrr (i.e. c ∈ A ∪ {δ}).

Now we come back to the explicit definability of unrestricted reachability.

Theorem 18 (Explicit definability of unrestricted reachability). We
have BPAfo

δrr ` x →→ y ⇔ P→→(x, y), where P→→(x, y) stands for the following
formula of L(BPAfo

δrr):

∃z •
(
ψa,b(x, z) ∧ ∃z′ •

(
z

a−→→ z′ ∧ z′ b−→ y
))
,

with a and b different actions.

Proof. We will apply the subprocess induction schema RS, taking P→→(x, y) for
φ(x, y), to prove the implication x→→ y ⇒ P→→(x, y).

First of all, we conclude from RR1 and RR3, because ψa,b(x, z) ⇒ z
b−→ x,

that

∀x′ • P→→(x′, x′) .

Moreover, using SI1, SI9, TR2 and RR2, we easily derive the following:

x′ a′
−→ y′ ∧ ψa,b(y′, u′) ∧ ∃u′′ •

(
u′ a−→→ u′′ ∧ u′′ b−→ z′

)
⇒

ψa,b(x′, a · u′ + b · x′) ∧ ∃u′′ •
(
a · u′ + b · x′ a−→→ u′′ ∧ u′′ b−→ z′

)
.



Hence, we conclude from RR3, using existential generalization, that

∀x′, y′, z′ •
∧

a′∈A

(
x′ a′

−→ y′ ∧ P→→(y′, z′) ⇒ P→→(x′, z′)
)
.

Using the subprocess induction schema, it follows from these conclusions that
x →→ y ⇒ P→→(x, y).

In the proof of the implication P→→(x, y) ⇒ x →→ y given below, ρ(u, u′)
stands for the formula

∃x • ψa,b(x, u) ⇒

∃!x •
(
ψa,b(x, u) ∧ u a−→→ u′ ∧ ∃!y •

(
u′ b−→ y ∧ x→→ y

))
.

We will apply the restricted subprocess induction schema RRS, taking ρ(x, y) for
φ(x, y). When we have shown in this manner that u a−→→ u′ ⇒ ρ(u, u′), we can
conclude that P→→(x, y) ⇒ x →→ y as follows. Assume P→→(x, y). Then there exist
u and u′ such that ψa,b(x, u) ∧ u

a−→→ u′ ∧ u′ b−→ y. Because u
a−→→ u′ ⇒ ρ(u, u′),

also ρ(u, u′). This immediately gives x→→ y.
It remains to be shown by means of RRS that u a−→→ u′ ⇒ ρ(u, u′). First of

all, we conclude from RR1 and R1, because ψa,b(x, u) ⇒ u
b−→ x, that

∀u • ρ(u, u) .

Moreover, using RR2 and R2, we easily derive from the hypothesis ∃x•ψa,b(x, u)
the following implications:

u
a−→ u′ ∧ ψa,b(x′, u′) ⇒ ∃!x •

(
ψa,b(x, u) ∧

∨

a′∈A

x
a′
−→ x′

)
,

u
a−→ u′ ∧ u′ a−→→ u′′ ⇒ u

a−→→ u′′ ,
∨

a′∈A

x
a′
−→ x′ ∧ ∃!y •

(
u′′ b−→ y ∧ x′ →→ y

)
⇒ ∃!y •

(
u′′ b−→ y ∧ x→→ y

)
.

The left-hand sides of the first and second implication are conjunctions of u a−→ u′

and (an instance of) one of the first two conjuncts occurring in the right-hand
side of ρ(u′, u′′). The left-hand side of the third implication is a conjunction of
the second conjunct occurring in the right-hand side of the first implication and
(an instance of) the third conjunct occurring in the right-hand side of ρ(u′, u′′).
Hence, we also conclude that

∀u, u′, u′′ •
(
u a−→ u′ ∧ ρ(u′, u′′) ⇒ ρ(u, u′′)

)
.

Using the restricted subprocess induction schema, it follows from these conclu-
sions that u a−→→ u′ ⇒ ρ(u, u′). ut

The following is a corollary of the proof of Theorem 18.

Corollary 3 (RRS implies RS). We have BPAfo
δrr \ RS |= RS.

Moreover, in the models of BPAfo
δrr, R holds if RR holds.



Theorem 19 (RR implies R). We have BPAfo
δrr ∪ RR |= R.

Proof. Suppose ∀x′, y′, z′•(R(x′, x′) ∧
∧

a∈A
(x′ a−→ y′ ∧ R(y′, z′) ⇒ R(x′, z′))).

Then we must show that BPAfo
δrr ∪ RR |= x→→ y ⇒ R(x, y). By Theorem 18, it

is sufficient to show that ∀u, u′ • (ψa,b(x, u) ∧ u a−→→ u′ ∧ u′ b−→ y ⇒ R(x, y)).
This is done by induction on the number of steps, say k, required for u

a−→→ u′.
If k = 0, then we immediately have R(x, y). If k = n+ 1, then there exists a u′′

such that u a−→ u′′ and u′′ a−→→ u′. It follows from ψa,b(x, u), that there exists a
unique x′′ such that x

a′
−→ x′′ for some action a′ and u′′ b−→ x′′. By the induction

hypothesis, R(x′′, y). From x a′
−→ x′′ and R(x′′, y), it follows that R(x, y). ut

For each κ ≥ ℵ0, Prr
κ is the expansion of Pκ that additionally has for each

predicate symbol a−→→ a binary relation ã−→→ on TSκ/↔ defined as follows:

[T1 ]
ã−→→ [T2 ] iff ∃T ∈ [T2 ] • T1

â−→→ T ,

where
â−→→ is a binary relation on TSκ which will be defined below. However,

we first introduce an auxiliary notion. Let T = (S,−→,−→√, s0) be a transition
system. Then, for each a ∈ A, the reachability by a-steps relation of T is the
smallest relation

a−→→ ⊆ S × S such that:

– s a−→→ s;
– if s

a−→ s′ and s′ a−→→ s′′, then s
a−→→ s′′.

We write RSa(T ) for {s ∈ S | s0 a−→→ s}. Now the relation â−→→ on TSκ is defined
as follows. Let T1, T2 ∈ TSκ. Then

T1
â−→→ T2 iff ∃s ∈ RSa(T1) • (T1)s = T2 .

Reachability by a-steps on TSκ/↔ is well-defined because ↔ preserves reacha-
bility by a-steps on TSκ up to ↔.

The structures Prr
κ are models of BPAfo

δrr.

Theorem 20 (Soundness of BPAfo
δrr). For all κ ≥ ℵ0, we have Prr

κ |= BPAfo
δrr.

Proof. Because Prr
κ is an expansion of Pκ, it is sufficient to show that the ad-

ditional axioms for restricted reachability are sound. The soundness of all addi-
tional axioms for restricted reachability follows easily from the definitions of the
ingredients of Prr

κ . ut

The extension of BPAfo
δ to BPAfo

δrr may seem at first sight rather far-fetched.
However, unrestricted reachability is explicit definable in BPAfo

δrr. Moreover, in
all models of BPAfo

δrr, the validity of RS is implied by the validity of RRS and
the validity of R is implied by the validity of RR. All this strongly suggests that
restricted reachability is more basic than unrestricted reachability. In addition,
we will see in Sect. 16 that ACPfo, i.e. the first-order extension of ACP presented
in Sect. 13, can be interpreted in BPAfo

δrr.



Table 9. Bar induction schema

∧
a∈A

ψ(a) ∧ ∀x • (¬ ∞(x) ⇒ (∀y •
∧

a∈A
(x

a−→ y ⇒ ψ(y)) ⇒ ψ(x))) ⇒

∀x • (¬ ∞(x) ⇒ ψ(x)) BAR

It is unknown to us whether the restricted reachability predicates a−→→ are
definable in terms of L(BPAfo

δ ) in BPAfo
δ . In any case, the extension turns out

to have great expressive power. Consider the following formula of L(BPAfo
δrr):

∃z •
(
∀u •

(
z

a−→→ u ⇒ ∃!v • u a−→ v ∧

∃!u′ • u b−→ u′ ∧
∧

a′∈A,a′ 6=a,b

¬ ∃w • u a′
−→ w

)
∧

z
b−→ x ∧

∀u, v •
(
z a−→→ u ∧ u a−→ v ⇒

∃u′, v′ •
(
u b−→ u′ ∧ v b−→ v′ ∧

∨

a′∈A

u′ a′
−→ v′

)))
,

where a and b are different actions. We use ∞(x) as an abbreviation of the
above formula. Let A be a model of BPAfo

δrr with domain P , and let p ∈ P . Then
A |= ¬∞(x) [p] only if p has no infinite path in TS(A, p). If A is one of the full
bisimulation models Prr

κ , “only if” can be replaced by “if and only if”. It looks
to be that there is no formula of L(BPAfo

δ ) with analogous properties.
The axiom schema BAR given in Table 9 can be used to prove properties of

all processes that have no infinite path. BAR is an axiom schema where ψ(x) is
a formula of L(BPAfo

δrr). Axiom schema BAR is an induction schema, called the
bar induction schema.

BAR is valid in the full bisimulation models Prr
κ .

Theorem 21 (Soundness of BAR). For all κ ≥ ℵ0, we have Prr
κ |= BAR.

Proof. We define an ordinal function || || on the domain P of Prr
κ as follows:

– if {p′ | p →̃→ p′} = ∅, then ||p|| = 0;
– if {p′ | p →̃→ p′} 6= ∅ and {||p′|| | p →̃→ p′} has a maximal element, then

||p|| = max{||p′|| | p →̃→ p′} + 1;
– if {p′ | p →̃→ p′} 6= ∅ and {||p′|| | p →̃→ p′} has no maximal element, then

||p|| = sup{||p′|| | p →̃→ p′}.

Because p
ã−→ p′ implies ||p′|| < ||p|| if p has no infinite path, it is easily proved by

transfinite induction on ||x|| that BAR is valid in Prr
κ . ut

13 The First-Order Theory ACPfo

In this section, we present ACPfo, a first-order extension of ACP. Like in BPAfo,
it is assumed that there is a fixed but arbitrary finite set of actions A with δ 6∈ A.



Table 10. Additional axioms for ACPfo (a, b, c ∈ Aδ)

x ‖ y = x bb y + y bb x+ x | y CM1

a bb x = a · x CM2

a · x bb y = a · (x ‖ y) CM3

(x+ y) bb z = x bb z + y bb z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x+ y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

a | b = b | a C1

(a | b) | c = a | (b | c) C2

δ | a = δ C3

∂H(a) = a if a 6∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x+ y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

We write Aδ for A∪{δ}. In ACPfo, it is further assumed that there is a fixed but
arbitrary commutative and associative communication function | :Aδ ×Aδ → Aδ

such that δ | a = δ for all a ∈ Aδ . The function | is regarded to give the result of
synchronously performing any two actions for which this is possible, and to be
δ otherwise.

The first-order theory ACPfo is an extension of BPAfo
δ . It has the nonlogical

symbols of BPAfo
δ and in addition:

– the binary parallel composition operator ‖ ;
– the binary left merge operator bb ;
– the binary communication merge operator | ;
– for each H ⊆ A, the unary encapsulation operator ∂H .

We use infix notation for the additional binary operators as well. The precedence
conventions for the binary operators are now as follows. The operator · binds
stronger than all other binary operators and the operator + binds weaker than
all other binary operators.

The constants and operators of ACPfo are the same as the constants and
operators of ACP.

Let t and t′ be closed terms of L(ACPfo). Intuitively, the additional operators
can be explained as follows:

– t ‖ t′ behaves as the process that proceeds with t and t′ in parallel;
– t bb t′ behaves the same as t ‖ t′, except that it starts with performing an

action of t;
– t |t′ behaves the same as t‖t′, except that it starts with performing an action

of t and an action of t′ synchronously;
– ∂H(t) behaves the same as t, except that it does not perform actions in H .

The axioms of ACPfo are the axioms of BPAfo
δ and the additional axioms

given in Table 10. CM2–CM3, CM5–CM7, C1–C3 and D1–D2 are axiom schemas
where a, b and c are constants of ACPfo. In D1–D4, H stands for an arbitrary
subset of A. So, D3 and D4 are axiom schemas as well.



Axioms A1–A7, CM1–CM9, C1–C3 and D1–D4 are the axioms of ACP. So
ACPfo imports the (equational) axioms of ACP.

A well-known subtheory of ACP is PA, which is ACP without communi-
cation. Likewise, we have a subtheory of ACPfo, to wit PAfo. The first-order
theory PAfo is ACPfo without the communication merge operator, without ax-
ioms CM5–CM9 and C1–C3, and with axiom CM1 replaced by x‖y = xbby+ybbx
(M1). In other words, the possibility that actions are performed synchronously
is not covered by PAfo.

To prove a statement for all closed terms of L(ACPfo), it is sufficient to prove
it for all basic terms over BPAfo

δ . The reason for this is that all closed terms of
L(ACPfo) are derivably equal to a basic term over BPAfo

δ .

Proposition 9 (Elimination). For all closed terms t of L(ACPfo) there exists
a basic term t′ such that ACPfo ` t = t′.

Proof. This follows immediately from the elimination property for ACP: the
closed terms of L(ACPfo) are the same as the closed terms of L(ACP), and the
equational axioms of ACPfo are the same as the axioms of ACP. ut

For closed equations, ACPfo is a complete theory.

Theorem 22 (Complete theory for closed equations). For all closed terms
t1, t2 of L(ACPfo), we have either ACPfo ` t1 = t2 or ACPfo ` ¬ t1 = t2, but
not both.

Proof. This follows immediately from Proposition 9 and Theorem 1. ut

We have not yet investigated the decidability of ACPfo, but it is to be ex-
pected that it is an undecidable theory. By adaptation of the proof of a similar
theorem from [20], we can easily establish the undecidability of ACPfo ∪ AIP.

Theorem 23 (Undecidability). ACPfo ∪ AIP is an undecidable theory.

Proof. We consider a register machine with three registers, numbered 1, 2 and 3.
A program for the register machine is a finite sequence I1, . . . , Ik of instructions
of the following form:

– (addi, j): add 1 to the contents of register i and go to instruction j;
– (subi, j): if the contents of register i equals 0, then go to instruction j, oth-

erwise subtract 1 from the contents of register i and go to instruction j;
– (zeroi, j, j

′): if the contents of register i equals 0, then go to instruction j,
otherwise go to instruction j ′;

– halt: halt;

where i ∈ {1, 2, 3} and j, j ′ ∈ {1, . . . , k}.
Let K be a recursively enumerable but not recursive subset of N, and let

n ∈ N. Then there exists a program for this register machine such that, if the
registers are initialized to n, 0 and 0, the program halts iff n ∈ K (see e.g. [21]).
Let P = I1, . . . , Il be this program. We will show that P can be represented in
ACPfo ∪ AIP.



Let A = {ai, si, zi | 1 ≤ i ≤ 3} and A = {ai, si, zi | 1 ≤ i ≤ 3}. We fix the set
of actions A and the communication function | as follows: A = A ∪ A ∪ {t, h};
and a | b = t if either a ∈ A, b ∈ A and a = b, or a ∈ A, b ∈ A and a = b, and
a | b = δ otherwise.

Let E be the guarded recursive specification that consists of the following
equations:

Ri = zi · Ri + ai · R′
i ·Ri for i ∈ {1, 2, 3} ,

R′
i = si + ai · R′

i ·R
′
i for i ∈ {1, 2, 3} ,

Xj = [[Ij ]] for j ∈ {1, . . . , l} ,

T = t · T ,

where the map [[ ]] from register machine instructions to terms of L(ACPfo) is
defined as follows:

[[(addi, j)]] = ai ·Xj ,

[[(subi, j)]] = (zi + si) ·Xj ,

[[(zeroi, j, j
′)]] = zi ·Xj + si · ai ·Xj′ ,

[[halt]] = h .

We introduce for m ≥ 0 the abbreviation Ri(m) defined by Ri(0) = Ri and
Ri(m+1) = R′

i ·Ri(m). Note that Ri(m) represents register i in the state where
its contents is m.

It is easy to see that P does not halt iff

ACPfo ∪ AIP ` E ⇒ ∂H(X1 ‖R1(n) ‖R2(0) ‖R3(0)) = T ,

where H = A∪A. Therefore, the problem whether n 6∈ K is one to one reducible
to the problem whether a given formula of L(ACPfo∪AIP) is derivable. Because
the former problem is undecidable, we conclude that the latter problem is un-
decidable as well. This shows that ACPfo ∪ AIP is an undecidable theory. ut

In this section, BPAfo
δ has been extended to ACPfo. BPAfo

δrr can be extended
with the same nonlogical symbols and axioms as BPAfo

δ , resulting in ACPfo
rr.

14 Full Bisimulation Models of ACPfo

In this section, we expand the full bisimulation models of BPAfo
δ to ACPfo. We

will use the abbreviation s a−→ s′ o s′′ for s a−→ s′ ∨ (s a−→√ ∧ s′ = s′′).
First of all, we associate with each additional operator f of ACPfo an oper-

ation f̂ on TSκ as follows.

– Let Ti = (Si,−→i,−→
√

i, s
0
i ) ∈ TSκ for i = 1, 2. Then

T1 ‖̂ T2 = (S,−→,−→√, s0) ,



where

s0 = (s01, s
0
2) ,

s
√

= chκ(Sκ \ (S1 ∪ S2)) ,

S = ((S1 ∪ {s
√
}) × (S2 ∪ {s

√
})) \ {(s

√
, s

√
)} ,

and for every a ∈ A:
a−→ =

{
((s1, s2), (s

′
1, s2))

∣∣ (s′1, s2) ∈ S ∧ s1
a−→1 s

′
1 o s

√}

∪
{
((s1, s2), (s1, s

′
2))

∣∣ (s1, s
′
2) ∈ S ∧ s2

a−→2 s
′
2 o s

√}

∪
{

((s1, s2), (s
′
1, s

′
2))

∣∣∣ (s′1, s
′
2) ∈ S ∧

∨

a′,b′∈A

(
s1

a′
−→1 s

′
1 o s

√
∧ s2

b′−→2 s
′
2 o s

√
∧ a′ | b′ = a

)}
,

a−→√ =
{
(s1, s

√
)
∣∣ s1 a−→√

1

}
∪

{
(s

√
, s2)

∣∣ s2 a−→√
2

}

∪
{

(s1, s2)
∣∣∣

∨

a′,b′∈A

(
s1

a′
−→√

1 ∧ s2
b′−→√

2 ∧ a′ | b′ = a
)}

.

– Let Ti = (Si,−→i,−→
√

i, s
0
i ) ∈ TSκ for i = 1, 2. Suppose that T1 ‖̂ T2 =

(S,−→,−→√, s0) where S = ((S1 ∪ {s
√
})× (S2 ∪ {s

√
})) \ {(s

√
, s

√
)} and s

√
=

chκ(Sκ \ (S1 ∪ S2)). Then

T1 b̂b T2 = Γ(S′,−→′,−→√, s0′) ,

where

s0′ = chκ(Sκ \ S) ,

S′ = {s0′} ∪ S ,

and for every a ∈ A:
a−→′ =

{
(s0′, (s, s02))

∣∣ s01 a−→1 s o s
√}

∪ a−→ .

– Let Ti = (Si,−→i,−→
√

i, s
0
i ) ∈ TSκ for i = 1, 2. Suppose that T1 ‖̂ T2 =

(S,−→,−→√, s0) where S = ((S1 ∪ {s
√
})× (S2 ∪ {s

√
})) \ {(s

√
, s

√
)} and s

√
=

chκ(Sκ \ (S1 ∪ S2)). Then

T1 |̂ T2 = Γ(S′,−→′,−→√′, s0′) ,

where

s0′ = chκ(Sκ \ S) ,

S′ = {s0′} ∪ S ,

and for every a ∈ A:
a−→′ =

{
(s0′, (s1, s2))

∣∣∣ (s1, s2) ∈ S ∧
∨

a′,b′∈A

(
s01

a′
−→1 s1 o s

√
∧ s02

b′−→2 s2 o s
√

∧ a′ | b′ = a
)}

∪ a−→ ,

a−→√′ =
{
s0′

∣∣∣
∨

a′,b′∈A

(
s01

a′
−→√

1 ∧ s02
b′−→√

2 ∧ a′ | b′ = a
)}

∪ a−→√ .



– Let T = (S,−→,−→√, s0) ∈ TSκ. Then

∂̂H(T ) = Γ(S,−→′,−→√′, s0) ,

where for every a 6∈ H :

a−→′ =
a−→ ,

a−→√′ =
a−→√ ,

and for every a ∈ H :

a−→′ = ∅ ,

a−→√′ = ∅ .

We can easily show that bisimilarity is a congruence with respect to parallel
composition, left merge, communication merge and encapsulation.

Proposition 10 (Congruence). For all T1, T2, T
′
1, T

′
2 ∈ TSκ (κ ≥ ℵ0), T1 ↔

T ′
1 and T2 ↔ T ′

2 imply T1 ‖̂ T2 ↔ T ′
1 ‖̂ T

′
2, T1 b̂b T2 ↔ T ′

1 b̂b T
′
2, T1 |̂ T2 ↔ T ′

1 |̂ T ′
2

and ∂̂H(T1)↔ ∂̂H(T ′
1).

Proof. Let Ti = (Si,−→i,−→
√

i, s
0
i ) and T ′

i = (S′
i,−→

′
i,−→

√′
i, s

0
i
′) for i = 1, 2. Let

R1 and R2 be bisimulations witnessing T1 ↔ T ′
1 and T2 ↔ T ′

2, respectively. Then
we construct relations R‖̂, Rb̂b, R |̂ and R∂̂H

as follows:

– R‖̂ = {((s1, s2), (s′1, s
′
2)) ∈ S × S′ | (s1, s

′
1) ∈ R1 ∪ R

√
, (s2, s

′
2) ∈ R2 ∪ R

√
},

where S and S′ are the sets of states of T1 ‖̂T2 and T ′
1 ‖̂T

′
2, respectively, and

R
√

= {(chκ(Sκ \ (S1 ∪ S2)), chκ(Sκ \ (S′
1 ∪ S

′
2)))};

– Rb̂b = ({(s0, s0′)} ∪ R‖̂) ∩ (S × S′), where S and S′ are the sets of states

of T1 b̂b T2 and T ′
1 b̂b T

′
2, respectively, and s0 and s0′ are the initial states of

T1 b̂b T2 and T ′
1 b̂b T

′
2, respectively;

– R |̂ = ({(s0, s0′)} ∪ R‖̂) ∩ (S × S′), where S and S′ are the sets of states

of T1 |̂ T2 and T ′
1 |̂ T ′

2, respectively, and s0 and s0′ are the initial states of
T1 |̂ T2 and T ′

1 |̂ T ′
2, respectively;

– R∂̂H
= R1 ∩ (S × S′), where S and S′ are the sets of states of ∂̂H(T1) and

∂̂H(T ′
1), respectively.

Given the definitions of parallel composition, left merge, communication merge
and encapsulation, it is easy to see that R‖̂, Rb̂b, R |̂ and R∂̂H

are bisimulations

witnessing T1 ‖̂T2 ↔ T ′
1 ‖̂ T

′
2, T1 b̂b T2 ↔ T ′

1 b̂bT
′
2, T1 |̂ T2 ↔ T ′

1 |̂ T ′
2 and ∂̂H(T1)↔

∂̂H(T ′
1), respectively. ut

The full bisimulation models P′
κ of ACPfo, one for each κ ≥ ℵ0, are the

expansions of the full bisimulation models Pκ of BPAfo
δ with an n-ary operation



f̃ on the domain of Pκ (TSκ/↔) for each additional n-ary operator f of ACPfo.
Those additional operations are defined as follows:

[T1 ] ‖̃ [T2 ] = [T1 ‖̂ T2 ] ,

[T1 ] b̃b [T2 ] = [T1 b̂b T2 ] ,

[T1 ] |̃ [T2 ] = [T1 |̂ T2 ] ,

∂̃H([T1 ]) = [ ∂̂H(T1) ] .

Parallel composition, left merge, communication merge and encapsulation on
TSκ/↔ are well-defined because ↔ is a congruence with respect to the corre-
sponding operations on TSκ.

The structures P′
κ are models of ACPfo.

Theorem 24 (Soundness of ACPfo). For all κ ≥ ℵ0, we have P′
κ |= ACPfo.

Proof. Because P′
κ is an expansion of Pκ, it is sufficient to show that the addi-

tional axioms for ACPfo are sound. The soundness of all additional axioms for
ACPfo follows easily from the definitions of the ingredients of P′

κ. ut

It is easy to see that Theorems 5, 7 and 8 go through for P′
κ.

In this section, the full bisimulation models Pκ of BPAfo
δ have been expanded

to obtain the full bisimulation models P′
κ of ACPfo. The full bisimulation models

Prr
κ of BPAfo

δrr can be expanded in the same way to obtain the full bisimulation
models Prr

κ
′ of ACPfo

rr.

15 Interpretation of One Theory in Another

Let T be a first-order theory with non-logical symbols Σ. Then we say that Σ
is the signature of T . We write Σ(T ) for the signature of T .

Let T and T ′ be first-order theories, and d 6∈ Σ(T ) ∪ Σ(T ′). Then an inter-
pretation Θ of T in T ′ is a family of formulas that consists of the following:

– an explicit definition Θd of a unary predicate d in terms of L(T ′);
– for each σ ∈ Σ(T ) \ Σ(T ′), an explicit definition Θσ in terms of L(T ′);

such that the following holds for T ′′ = T ′ ∪ {Θσ | σ ∈ (Σ(T ) \ Σ(T ′)) ∪ {d}}:

T ′′ ` ∃x • d(x) ,

T ′′ ` d(x1) ∧ . . . ∧ d(xn) ⇒ d(f(x1, . . . , xn))

for each n-ary operator f ∈ Σ(T ) ,

T ′′ ` φ∗

for each axiom φ of T ,

where φ∗ is the formula obtained from φ by first taking the universal closure
of φ and then replacing each subformula ∀x • φ′ by ∀x • (d(x) ⇒ φ′) and each
subformula ∃x • φ′ by ∃x • (d(x) ∧ φ′).



This notion of interpretation of one theory in another is more general than
the corresponding notion from [8], but in line with the notion of interpretability
of one theory in another from [8]. It is less general than the corresponding notion
in [10]. In the terminology of [10], an interpretation as defined here is an injective
one-dimensional interpretation. We believe that higher dimensional interpreta-
tions are irrelevant to the case where theories about processes are considered.
So long as we only consider bisimilarity as the intended notion of identity, non-
injective interpretations are irrelevant as well. Note that the last condition in
the definition given above can be replaced by

T ` φ implies T ′′ ` φ∗ for each formula φ of L(T ) .

The following is an important property of interpretations. For each interpre-
tation Θ of a theory T in a theory T ′, T ′′ = T ′∪{Θσ | σ ∈ (Σ(T )\Σ(T ′))∪{d}}
is a definitional extension of T ′. This means that, for each model A′ of T ′, there
is a unique expansion of A′ that is a model of T ′′.

Let Θ be an interpretation of theory T in theory T ′, and let T ′′ = T ′∪{Θσ |
σ ∈ (Σ(T ) \Σ(T ′))∪{d}}. Suppose that A′ is a model of T ′. Then a model A of
T can be obtained from A′ in the following steps:

1. take the unique expansion A′′ of A′ such that A′′ |= T ′′;
2. take the restriction A′′|Σ(T )∪{d} of A′′ to Σ(T ) ∪ {d};

3. take the unique substructure A∗ of A′′|Σ(T )∪{d} such that A∗ |= ∀x • d(x);

4. take the restriction A = A∗|Σ(T ) of A∗ to Σ(T ).

The most simple example of this construction is the following: The interpre-
tation of BPA in BPAfo

δ consists only of the explicit definition d(x) ⇔ ¬ x →→ δ.
That is, d is in this case just another symbol for the deadlock freedom predi-
cate. If we apply the construction described above to one of the full bisimulation
models of BPAfo

δ , then we obtain one of the main models of BPA.

MPAδ, Minimal Process Algebra with deadlock, provides another simple ex-
ample. MPAδ , introduced in [22], differs from BPAδ by having a unary action
prefixing operator a . for each a ∈ A instead of the binary sequential compo-
sition operator of BPAδ .

8 The axioms of MPAδ are axioms A1, A2, A3 and
A6 from Table 1. The interpretation of MPAδ in BPAfo

δ consists of the explicit
definition d(x) ⇔

∧
a∈A

¬ ∃y • (x →→ y ∧ y a−→√) and an explicit definition
a . x = y ⇔ a · x = y for each a ∈ A. If we apply the construction described
above to one of the full bisimulation models of BPAfo

δ , then we obtain one of the
main models of MPAδ.

It needs no explaining that an interpretation of a theory T in a theory T ′

includes an explicit definition of each non-logical symbol of T that T does not
have in common with T ′. The examples given above make clear why it also

8 For action prefixing and sequential composition different kinds of dot, viz. the low dot
and the centered dot, are used. In MPAδ, we have action prefixing without variable
binding. In [7], the semicolon is used for action prefixing with variable binding.



includes an explicit definition of a special unary predicate symbol d. BPA is only
concerned with processes that are deadlock free and MPAδ is only concerned
with processes that are free of successful termination. In the interpretations of
BPA and MPAδ in BPAfo

δ described above, d takes care of the restriction to the
processes concerned.

16 Interpretation of ACPfo in BPAfo

δrr

In this section, we consider the interpretation of ACPfo in BPAfo
δrr. This interpre-

tation consists of explicit definitions of the predicate symbol d and the operators
‖, bb, | and ∂H (one for each H ⊆ A). The explicit definition of d is simply
d(x) ⇔ x = x. The explicit definitions of the operators are quite unusual in
the sense that they involve an auxiliary process (u) that is used to represent a
bisimulation.

First, we consider the explicit definition of the parallel composition operator.
We begin by introducing the abbreviation P′

‖(x, y, z, u), which enables us to

formulate the explicit definition of ‖ as x ‖ y = z ⇔ ∃u • P′
‖(x, y, z, u). We fix

different actions i, l, r and m. We use P′
‖(x, y, z, u) as an abbreviation of the

following formula of L(BPAfo
δrr):

φ1(x, y, z, u) ∧ φ2(x, y, z, u) ∧ φ3(u) ∧ φ4(u) ∧ φ5(u) ∧

φ6(u) ∧ φ7(u) ∧ φ8(u) ∧ φ9(u) ∧ φ10(u) ∧ φ11(u) ;

where:
φ1(x, y, z, u) is the formula

∀u′ •
(
u

i−→→ u′ ⇒

∃!x′, y′, z′ •
(
x →→ x′ ∧ y →→ y′ ∧ z →→ z′ ∧

u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′
)
∧

∧

a′∈A,a′ 6=i,l,r,m

¬ ∃v′ • u′ a′
−→ v′

)
,

φ2(x, y, z, u) is the formula

u l−→ x ∧ u r−→ y ∧ u m−→ z ,

φ3(u) is the formula

∀x′, y′, z′, u′, x′′•∧

a′∈A

(
u

i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧ x′ a′
−→ x′′ ⇒

∃u′′, z′′•
(
u′ i−→ u′′ ∧ u′′ l−→ x′′ ∧ u′′ r−→ y′ ∧ u′′ m−→ z′′ ∧ z′ a′

−→ z′′
))
,



φ4(u) is the formula

∀x′, y′, z′, u′, y′′•∧

a′∈A

(
u i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧ y′ a′

−→ y′′ ⇒

∃u′′, z′′•
(
u′ i−→ u′′ ∧ u′′ l−→ x′ ∧ u′′ r−→ y′′ ∧ u′′ m−→ z′′ ∧ z′ a′

−→ z′′
))
,

φ5(u) is the formula

∀x′, y′, z′, u′, x′′, y′′•∧

a′,b′∈A,a′|b′ 6=δ

(
u

i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧

x′ a′
−→ x′′ ∧ y′ b′−→ y′′ ⇒

∃u′′, z′′ •(
u′ i−→ u′′ ∧ u′′ l−→ x′′ ∧ u′′ r−→ y′′ ∧ u′′ m−→ z′′ ∧

z′
a′|b′
−−−→ z′′

))
,

φ6(u) is the formula

∀x′, y′, z′, u′•∧

a′∈A

(
u

i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧

x′ a′
−→√ ⇒ z′ a′

−→ y′
)
,

φ7(u) is the formula

∀x′, y′, z′, u′•∧

a′∈A

(
u

i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧

y′ a′
−→√ ⇒ z′ a′

−→ x′
)
,

φ8(u) is the formula

∀x′, y′, z′, u′, x′′•∧

a′,b′∈A,a′|b′ 6=δ

(
u

i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧

x′ a′
−→ x′′ ∧ y′ b′−→√ ⇒ z′

a′|b′
−−−→ x′′

)
,

φ9(u) is the formula

∀x′, y′, z′, u′, y′′•∧

a′,b′∈A,a′|b′ 6=δ

(
u

i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧

x′ a′
−→√ ∧ y′ b′−→ y′′ ⇒ z′

a′|b′
−−−→ y′′

)
,

φ10(u) is the formula

∀x′, y′, z′, u′•∧

a′,b′∈A,a′|b′ 6=δ

(
u i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧

x′ a′
−→√ ∧ y′ b′−→√ ⇒ z′

a′|b′
−−−→√)

,



φ11(u) is the formula

∀x′, y′, z′, u′, z′′ •∧

a′∈A

(
u i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧ z′ a′

−→ z′′ ⇒

∃x′′, u′′ •
(
u′ i−→ u′′ ∧ u′′ l−→ x′′ ∧ u′′ r−→ y′ ∧ u′′ m−→ z′′ ∧ x′ a′

−→ x′′
)
∨

∃y′′, u′′ •
(
u′ i−→ u′′ ∧ u′′ l−→ x′ ∧ u′′ r−→ y′′ ∧ u′′ m−→ z′′ ∧ y′ a′

−→ y′′
)
∨

∃x′′, y′′, u′′ •(
u′ i−→ u′′ ∧ u′′ l−→ x′′ ∧ u′′ r−→ y′′ ∧ u′′ m−→ z′′ ∧

∨

b′,c′∈A,a′=b′|c′

(
x′ b′−→ x′′ ∧ y′ c′−→ y′′

))
∨

(
x′ a′

−→√ ∧ z′′ = y′
)
∨

(
y′ a′

−→√ ∧ z′′ = x′
)
∨

∨

b′,c′∈A,a′=b′|c′

(
x′ b′−→ z′′ ∧ y′ c′−→√)

∨

∨

b′,c′∈A,a′=b′|c′

(
x′ b′−→√ ∧ y′ c′−→ z′′

))
∧

∀x′, y′, z′, u′ •∧

a′∈A

(
u

i−→→ u′ ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧ u′ m−→ z′ ∧ z′ a′
−→√ ⇒

∨

b′,c′∈A,a′=b′|c′

(
x′ b′−→√ ∧ y′ c′−→√))

.

Formula φ1 expresses that each process reachable by i-steps from u relates a
process reachable from x and a process reachable from y to a process reachable
from z. Formula φ2 expresses that u relates x and y to z. The conjunction of
formulas φ3–φ10 expresses that, if x′ and y′ are related to z′, then z′ is capable
of behaving as x′ ‖y′: formula φ3 expresses that, if x′ and y′ are related to z′ and
x′ a′

−→ x′′, then there exists a z′′ such that z′ a′
−→ z′′ and x′′ and y′ are related to

z′′; formula φ4 expresses that, if x′ and y′ are related to z′ and y′ a′
−→ y′′, then

there exists a z′′ such that z′ a′
−→ z′′ and x′ and y′′ are related to z′′; formula φ5

expresses that, if x′ and y′ are related to z′, x′ a′
−→ x′′, y′ b′−→ y′′ and a′ | b′ 6= δ,

then there exists a z′′ such that z′
a′|b′
−−−→ z′′ and x′′ and y′′ are related to z′′;

etc. Formula φ11 expresses that, if x′ and y′ are related to z′, then x′ ‖ y′ is
capable of behaving as z′. In other words, P′

‖(x, y, z, u) expresses that u encodes

a bisimulation witnessing the bisimilarity of x ‖ y and z.

The formula x ‖ y = z ⇔ ∃u • P′
‖(x, y, z, u) is only admissible as an explicit

definition of ‖ if ∃!z•∃u•P′
‖(x, y, z, u) is derivable. This admissibility condition for

‖ can be split into an existence condition ∃z •∃u •P′
‖(x, y, z, u) and a uniqueness

condition ∃u • P′
‖(x, y, z, u) ∧ ∃u • P′

‖(x, y, z, u) ⇒ z = z. The uniqueness

condition for ‖ is derivable in BPAfo
δrr.



Proposition 11 (Uniqueness for parallel composition). We have BPAfo
δrr `

∃u • P′
‖(x, y, z, u) ∧ ∃u • P′

‖(x, y, z, u) ⇒ z = z.

Proof. Assume P′
‖(x, y, z, u) and P′

‖(x, y, z, u). Then we derive z = z by applying

the bisimulation axiom schema BS, taking the following formula for φ(z, z):

∃x′, y′, u′, u′ • (u i−→→ u′ ∧ u′ m−→ z ∧ u′ l−→ x′ ∧ u′ r−→ y′ ∧

u
i−→→ u′ ∧ u′ m−→ z ∧ u′ l−→ x′ ∧ u′ r−→ y′) .

ut

We will come back to the existence condition for ‖ later on.
As mentioned in Sect. 13, left merge and communication merge are the

same as parallel composition except that the actions that can be performed
at the start are restricted. As a consequence, the explicit definitions of the left
merge operator and the communication merge operator can be formulated as
x bb y = z ⇔ ∃u •P′

bb(x, y, z, u) and x | y = z ⇔ ∃u • P′
|(x, y, z, u), where the for-

mulas for which P′
bb(x, y, z, u) and P′

|(x, y, z, u) stand are simply obtained from

the formula for which P′
‖(x, y, z, u) stands by replacing at appropriate places

u i−→→ u′ by u i−→→ u′ ∧ ¬ u = u′. We refrain from giving the precise formulas
for which P′

bb(x, y, z, u) and P′
|(x, y, z, u) stand. We mention that the uniqueness

conditions for bb and | are derivable in BPAfo
δrr.

Next, we consider the explicit definition of the encapsulation operators. As
in the case of parallel composition, we begin by introducing the abbreviation
P′

∂H
(x, y, u), which enables us to formulate the explicit definition of ∂H as

∂H(x) = y ⇔ ∃u • P′
∂H

(x, y, u). We fix different actions i, l and e. We use

P′
∂H

(x, y, u) as an abbreviation of the following formula of L(BPAfo
δrr):

φ1(x, y, u) ∧ φ2(x, y, u) ∧ φ3(u) ∧ φ4(u) ∧ φ5(u) ;

where:
φ1(x, y, u) is the formula

∀u′ •
(
u i−→→ u′ ⇒

∃!x′, y′ •
(
x→→ x′ ∧ y →→ y′ ∧ u′ l−→ x′ ∧ u′ e−→ y′

)
∧

∧

a′∈A,a′ 6=i,l,e

¬ ∃v′ • u′ a′
−→ v′

)
,

φ2(x, y, u) is the formula

u
l−→ x ∧ u

e−→ y ,

φ3(u) is the formula

∀x′, y′, u′, x′′ •∧

a′∈A\H

(
u i−→→ u′ ∧ u′ l−→ x′ ∧ u′ e−→ y′ ∧ x′ a′

−→ x′′ ⇒

∃u′′, y′′ •
(
u′ i−→ u′′ ∧ u′′ l−→ x′′ ∧ u′′ e−→ y′′ ∧ y′ a′

−→ y′′
))
,



Table 11. Existence conditions

∃z • ∃u • P′
‖(x, y, z, u) X1

∃z • ∃u • P′
bb(x, y, z, u) X2

∃z • ∃u • P′
|(x, y, z, u) X3

∃y • ∃u • P′
∂H

(x, y, u) X4

φ4(u) is the formula

∀x′, y′, u′ •
∧

a′∈A\H

(
u

i−→→ u′ ∧ u′ l−→ x′ ∧ u′ e−→ y′ ∧ x′ a′
−→√ ⇒ y′ a′

−→√)
,

φ5(u) is the formula

∀x′, y′, u′, y′′ •∧

a′∈A

(
u i−→→ u′ ∧ u′ l−→ x′ ∧ u′ e−→ y′ ∧ y′ a′

−→ y′′ ⇒

∃x′′, u′′ •(
u′ i−→ u′′ ∧ u′′ l−→ x′′ ∧ u′′ e−→ y′′ ∧

∨

b′∈A\H,a′=b′

x′ b′−→ x′′
))

∧

∀x′, y′, u′ •∧

a′∈A

(
u

i−→→ u′ ∧ u′ l−→ x′ ∧ u′ e−→ y′ ∧ y′ a′
−→√ ⇒

∨

b′∈A\H,a′=b′

x′ b′−→√
)
.

The uniqueness condition for ∂H is derivable in BPAfo
δrr.

Proposition 12 (Uniqueness for encapsulation). We have BPAfo
δrr `

∃u • P′
∂H

(x, y, u) ∧ ∃u • P′
∂H

(x, y, u) ⇒ y = y.

Proof. The proof follows the same line as to the proof of Proposition 11. ut

The formulas of L(BPAfo
δrr) that are given in Table 11 are existence conditions

for ‖, bb, | and ∂H . We write X for this set of formulas. X4 is actually an axiom
schema with an instance for each H ⊆ A. The existence conditions from Table 11
are valid in the full bisimulation models Prr

κ (κ ≥ ℵ0). It is unknown to us
whether they are derivable from BPAfo

δrr.

Theorem 25 (Interpretation of ACPfo in BPAfo
δrr). The following is an

interpretation of ACPfo in BPAfo
δrr ∪ X:

d(x) ⇔ x = x ,

x ‖ y = z ⇔ ∃u • P′
‖(x, y, z, u) ,

x bb y = z ⇔ ∃u • P′
bb(x, y, z, u) ,

x | y = z ⇔ ∃u • P′
|(x, y, z, u) ,

∂H(x) = y ⇔ ∃u • P′
∂H

(x, y, u) for each H ⊆ A .



Proof. Because d(x) ⇔ x = x, the first two conditions made in the definition of
interpretation are trivially fulfilled. Because d(x) ⇔ x = x, the third condition
becomes

BPAfo
δrr ∪ X ∪ E ` φ for each axiom φ of ACPfo ,

where E is the set of explicit definitions given above. For each axiom φ of BPAfo
δ ,

we immediately have BPAfo
δrr ∪ X ∪ E ` φ. Hence, it is sufficient to establish

BPAfo
δrr ∪ X ∪ E ` φ only for each axiom φ of ACPfo that is not an axiom of

BPAfo
δ .

All axioms in question are atomic formulas of L(BPAfo
δrr ∪ E). Each atomic

formula φ of L(BPAfo
δrr∪E) is equivalent in BPAfo

δrr∪X∪E to an existential formula
φ′ of L(BPAfo

δrr ∪E) in which no other terms occur than terms of L(BPAfo
δrr) and

terms t1 ‖ t2, t1 bb t2, t1 | t2 and ∂H(t1) of which the subterms t1 and t2 are terms
of L(BPAfo

δrr) (see e.g. [10]). Because E contains the explicit definitions for ‖, bb,
| and ∂H , this existential formula φ′ is equivalent in BPAfo

δrr ∪X∪E to a formula
φ′′ of L(BPAfo

δrr). Because definitional extensions are conservative extensions (see
e.g. [8]), BPAfo

δrr ∪ X ∪ E ` φ′′ iff BPAfo
δrr ∪ X ` φ′′. This suggests the following

three-steps approach to establish that BPAfo
δrr ∪ X ∪ E ` φ:

1. eliminate from φ all nested terms other than terms of L(BPAfo
δrr), resulting

in φ′;
2. eliminate from φ′ all atomic formulas in which ‖, bb, | or ∂H occur, resulting

in φ′′;
3. derive φ′′ from BPAfo

δrr ∪ X.

For each axiom of ACPfo that is not an axiom of BPAfo
δ , the first two steps are

short and simple. The last step is generally straightforward, but tedious. We
outline the proof for axioms CM3 and CM4.

The first two steps result for CM3 in the formula

∃z •
(
∃u • P′

bb(a · x, y, a · z, u) ∧ ∃u′ • P′
‖(x, y, z, u

′)
)

and for CM4 in the formula

∃v, w •
(
∃u • P′

bb(x+ y, z, v + w, u) ∧

∃u′ • P′
bb(x, z, v, u

′) ∧ ∃u′′ • P′
bb(y, z, w, u

′′)
)
.

The last step for CM3 goes as follows. First of all, it follows from X that ∃z •
∃u′ • P′

‖(x, y, z, u
′). Therefore, it is sufficient to show that ∃u′ • P′

‖(x, y, z, u
′) ⇒

∃u • P′
bb(a · x, y, a · z, u). This is done as follows. Assume P′

‖(x, y, z, u
′). Take

l · (a ·x)+ r · y+m · (a · z)+ i ·u′ for u. Then P′
bb(a ·x, y, a · z, u) is easily derived.

The last step for CM4 follows essentially the same line as the last step for
CM3. However, there are two complications in the construction of u from u′ and
u′′. The first complication is that four cases have to be distinguished according
to the reachability of x from x in one or more steps and the reachability of
y from y in one or more steps. The second complication is that u has to be
constructed from subprocesses of u′ and u′′ instead of u′ and u′′ themselves.



Thus, although the construction of u is rather straightforward, it becomes very
tedious to express it in L(BPAfo

δrr) and to derive P′
bb(x+y, z, v+w, u). We refrain

from outlining the last step for CM4 further.
The proofs for CM2, CM5–CM7 and D4 are similar to the proof for CM3.

The proofs for CM1, CM8–CM9 and D3 are similar to the proof for CM4. The
proofs for C1–C3, D1 and D2 are easy. ut

17 Concluding Remarks

In this paper, we build on earlier work on ACP. The algebraic theory ACP
was first presented in [1] and RDP, RSP and AIP were first formulated in [14].
Moreover, the full bisimulation models are basically the graph models of ACP,
which are most extensively described in [11]. In this paper, we extend ACP to
a first-order theory and look into that theory from the point of view of classical
model theory. Some open problems that arise from this work are:

– Is the reachability predicate →→ of BPAfo
δ first-order definable in Pℵ0

if the
cardinality of A is given?

– What are the relations between RDP, RSP (Table 2), B, R (Table 3) and
AIP (Table 4) in the presence of BPAfo

δ ? In particular, do all models of BPAfo
δ

extended with R satisfy B?
– Is it derivable from BPAfo

δ or a finitary first-order extension thereof, for all
pairs of guarded recursive specifications of which the solutions in Pℵ0

are
not identical, that their solutions are not equal?

– Is axiom RR3 (Table 8) derivable from the other axioms of BPAfo
δrr?

– Are the restricted reachability predicates a−→→ of BPAfo
δrr first-order definable

in Pℵ0
if the cardinality of A is given (they are if the cardinality of A is 1)?

– Are the existence conditions for ‖, bb, | and ∂H (Table 11) derivable from
BPAfo

δrr?

To the best of our knowledge there is no related work. Many options for future
work remain. We mention:

– Development of extensions of ACPfo with additional operators, such as the
iteration operators from [23–25].

– Development of first-order extensions of variants of ACP with timing, such
as the ones from [26–28].

– Re-development of the α/β-calculus [29] in the setting of ACPfo.
– Further analysis of the relation between external and internal versions of

predicates on processes.
– Further investigations into interpretation of existing process algebras in

ACPfo.
– Investigations into interpretation of other related algebraic theories, such as

the network algebra from [30], in ACPfo.
– Exploration of the strong and weak points of ACPfo for process specification

and verification.
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