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Introduction Plane Primitives Space Primitives Conics and Quadrics Coordinate Transformations

On Representations

The most fundamental geometric object is a point usually
represented by (at least) its coordinates w.r.t. some frame.

A representation can contain additional (redundant)
information, in which case it is not minimal. The number of
crucial (scalar) parameters is the number of degrees of
freedom (DOF).

Representations “live” on a manifold of dimension #DOF
embedded in a higher dimensional space. The shape of the
manifold is determined by constraints on the representation.

“Higher” geometric objects are usually thought of as the set
(or locus) of points fulfilling a certain equation (e.g. in terms
of the points’ coordinates).

The set representation is clumsy at not very accessible,
mathematically. Therefore we will look at more (or less) clever
ones.
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Introduction Plane Primitives Space Primitives Conics and Quadrics Coordinate Transformations

Commonalities

Give the set representation of an object.

Usually try to represent objects by vectors, because we can
use linear algebra on them. Also try to keep them 3D because
then the cross-product is available.

Apply noise to the coordinates of the representation and
analyze the covariance matrix. Its rank gives the #DOF of
the object.

For composite objects, perturb the components and analyze
the effect on (the covariance matrix of) the object.
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Image Points

Representation

Introduce homogeneous coordinates. According to Kanatani a
vector

x =

 x
y
z

 (1)

only represents an image point, if z = 1.

This can be achieved by dividing by the actual z .

Theoretically, while z → 0, x moves towards infinity in the
direction of (x , y)>. (x , y , 0)> is called ideal point.

Numerically unstable!
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Image Points

Noise on Point Coordinates

Kanatani disturbs the 3D vector x, while keeping the
condition z = 1 invariant.

x + ∆x = (x + ∆x , y + ∆y , 1)>, (2)

i.e. noise effectively only occurs on x and y , i.e. orthogonal to
k = (0, 0, 1)>.

Consequently the covariance matrix

V [x] = E [∆x∆x>] (3)

has rank 2.

∆x = (∆x ,∆y , 0)> is regarded as small random variable of
mean 0.
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Image Lines

Representation

Set representation of an image line

{(x , y)|Ax + By + C = 0} (4)

Vector representation of an image line

n =

 A
B
C

 , ||n||2 = 1 (5)

Normalization removes scale ambiguity but leaves sign
ambiguity. n can be interpreted as the 3D normal vector of
the plane joining the viewpoint and the image line.

Image lines have 2 DOF and therefore “live” on a 2D
manifold (the unit sphere) embedded in 3D space.
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Image Lines

Noise on Line Coordinates

Kanatani first disturbs n, then normalizes, i.e.

1 = ||n + ∆n||2 (6)

= ||n||2 + 2(n,∆n) + ||∆n||2 (7)

≈ ||n||2 + 2(n,∆n). (8)

With the normalization condition ||n||2 = 1 this gives
(n,∆n) = 0, i.e. noise occurs only orthogonal to n to first
order approximation.

Consequently the covariance matrix V [n] = E [∆n∆n>] has
rank 2.
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Image Lines

Perks of the Representation

Distance between image line and image point is calculated as

D(p, l) =
|(n, x)|√

1− (k, x)2
, (9)

i.e. the point is on the line if D(p, l) = 0.

Intersection point of two lines is

x =
n1 × n2

|n1,n2, k|
, (10)

which becomes an ideal point as the denominator approaches
zero, but the formula does not fail gracefully.

A line can be calculated as the join of two points as

n = ±N[x1 × x2]. (11)
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Image Lines

Noise on Component Points

Perturbing two points x1 and x2 by noise as above, the join of
the two is perturbed as well. We spell out the formula once;
future formulas will follow a derivation along the same lines.

Kanatani performs an approximation to first order, giving

n + ∆n = ±N[(x1 + ∆x1)× (x2 + ∆x2)]

=
±(x1 + ∆x1)× (x2 + ∆x2)

||x1 × x2||

=
±(x1 × x2 + ∆x1 × x2 + x1 ×∆x2 + ∆x1 ×∆x2)

||x1 × x2||

≈ x1 × x2

||x1 × x2||
+

∆x1 × x2 + x1 ×∆x2

||x1 × x2||
(12)
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Introduction Plane Primitives Space Primitives Conics and Quadrics Coordinate Transformations

Image Lines

Noise on Component Points, cont’d

The covariance matrix of the image line becomes

V [n] = E [∆n∆n>] (13)

=
Pn(x1 × V [x2]× x1 + x2 × V [x1]× x2)Pn

||x1 × x2||2
(14)
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Space Points

Representation

Homogeneous coordinates again. All remarks regarding image
points hold.
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Space Lines

Representation

Set representation of a space line

{r|(r − rH)×m = 0} (15)

{r|r ×m = rH ×m} (16)

Concatenation (i.e. direct sum) of m and rH represents the
line l = m⊕ rH .

Above equation holds for any scalar multiple of the direction
vector m and for any point on the line rH . Therefore
Kanatani requires

||m|| = 1, (m, rH) = 0 (17)

Therefore the 6D vector l = m⊕ rH has only 4 DOF.
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Space Lines

Alternative Representation, Plücker Coordinates

If we vary the given point on the line rH , we will always end
up with a scalar multiple of the same vector n = rH ×m,
which yields an alternative representation by l = p⊕ n.

For some reason, the direction vector m is now called p.

Approaching the matter reversely, not every pair of vectors
{p,n} represents a line. Require

||p||2 + ||n||2 = 1, (p,n) = 0. (18)

Consequently the 6D vector l = p⊕ n also has 4 DOF.
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Space Lines

Noise on Line Coordinates

Perturbing the 3D vectors m and rH by - not necessarily
independent - zero mean random variables ∆m and ∆r,
respectively yields

V [l] = V [m⊕ rH ] =

(
V [m] V [m, rH ]

V [rH ,m] V [rH ]
,

)
(19)

with

(m,∆m) = 0, (∆m, rH) + (m,∆rH) = 0. (20)

Due to these constraints, the 6× 6 covariance matrix has rank
4.
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Space Lines

Noise on Plücker Coordinates

If the line is represented by Plücker coordinates, we have

V [l] = V [p⊕ n] =

(
V [p] V [p,n]

V [n,p] V [n]

)
(21)

with

(p,∆p) + (n,∆n) = 0, (∆p,n) + (p,∆n) = 0. (22)

Due to these constraints, the 6× 6 covariance matrix has rank
4.

There is a hugely complicated formula which relates the two
covariance matrices (19) and (21), (Kanatani: 4.46).
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Space Lines

Perks of the Representation

Distance between a (space) point and a (space) line

D(P, L) =
||r × p− n||
||p||

= ||Pmr − rH || (23)

Intersection between two (space) lines

D(L, L′) =

{
|m,m′,rH−r′H |
||m×m′|| if m×m′ 6= 0

||rH − r′H || if m×m′ = 0
(24)

As m×m′ approaches zero, the distance becomes infinitely
large and the point of intersection becomes an ideal point.
But due to the division the respective formulas do not fail
gracefully.
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Space Lines

Perks of the Representation, cont’d

Distance between two (space) lines in Plücker coordinates

D(L, L′) =

{
(p,n′)+(p′,n)
||p×p′|| if p× p′ 6= 0

|| n
||p|| −

n
||p′|| if p× p′ = 0

(25)

Point of intersection between two (co-planar space) lines

r =
(m× rH)× (m′ × r′H)

|m,m′, rH |
=

n× n′

(p′,n)
(26)

More convenient to work with - because it makes sense to
detect whether direction vectors are parallel as a first step - is

r = rH +
(m, rH) + (m,m′)(m′, rH)

||m×m′||2
m (27)

=
1

||p||2

(
||p||2|p,p′,n′| − (p,p′)|p,p′,n|

||p× p′||2
p + p× n

)
(28)
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Space Lines

Perks of the Representation, cont’d

Lines can be calculated as join of two points as

m = N[r1 − r2], rH =
(m, r1)r2 − (m, r2)r1

||r1 − r2||
(29)

(
p
n

)
= N[

(
r1 − r2
r2 × r1

)
] (30)

Under assumption of independent uncertain r1 and r2 the
line’s covariance matrix becomes

V [p⊕ n] =
1

||r1 − r2||2 + ||r2 × r1||2
Pp⊕n M Pp⊕n

M =

(
V [r1] + V [r2] V [r1]× r2 + V [r2]× r1

r2 × V [r1] + r1 × V [r2] r2 × V [r1]× r2 + r1 × V [r2]× r1

)
(31)
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Space Planes

Representation

Set representation of a space plane

{(x , y , z)|Ax + By + Cz = d} (32)

Equivalent formulations are {r|(r,n) = d} and {ρ|(ρ, ν) = 0}.
In the latter case remarks about homogeneous coordinates
apply.

The equations leave a freedom of scale. Instead of fixing the
last coordinate, we normalize the 4D vector, imposing

||ν|| = 1 (33)

This leaves the 4D vector ν with 3 DOF.
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Space Planes

Noise on Plane Coordinates

The covariance matrix

V [ν] =
1

1 + d2
Pν

(
V [n] −V [n, d ]
−V [n, d ] V [d ]

)
Pν (34)

has rank 3.

Perturbing the 4D vector ν and applying the constraints we
get to a first order approximation

∆n =
√

1 + d2Pν

 ∆ν1

∆ν2

∆ν3

 , ∆d = −
√

(1 + d2)3∆ν4

(35)
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Space Planes

Perks of the Representation

Distance between point and plane is calculated as

D(P,Π) = |(n, r)− d | =
|(ν, ρ)|√

1− (κ, ν)2
(36)

A line and a plane are incident to each other if and only if

(n,m) = 0, (n, rH) = d (37)

or, equivalently

(ν,m⊕ 0) = 0, (ν, rH ⊕ 1) = 0 (38)

Note how Plücker and homogeneous coordinates are basically
incompatible and the “gap” between the two has to be
patched up.
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Space Planes

Perks of the Representation, cont’d

The line of intersection between two non-parallel planes is
calculated as

m = N[n1 × n2],

rH =
(d1 − (n1,n2)d2)n1 + (d + 2− (n1,n2)d1)n2

||n1 × n2||2
(39)

or as (
p
n

)
= N[

(
n1 × n2

d2n1 − d1n2

)
]. (40)

Planes can be calculated as the join of

3 space points (Kanatani: 4.76)
a space line and a space point (Kanatani: 4.77)
two intersecting space lines (Kanatani: 4.78)
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Conics

Representation

A conic is the intersection of a cone with a plane. Depending
on the type of intersection it can be a point, a line, two lines,
a hyperbola, a parabola, a circle, an ellipse

All can be represented by one equation

{(x , y)|Ax2 + Bxy + Cy2 + 2Dx + 2Ey + F = 0} (41)

This equation is indeterminate only in x and y , so we assume
the intersecting plane as fixed (e.g. the image plane) and
specify points in it by 2 coordinates.

The equation is quadratic in x and y and therefore
algebraically it has more than the obvious solutions, namely
complex valued ones. This leads to imaginary conics.

The parameters are only determined up to a common scale, so
a conic has 5 DOF.
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Conics

Representation, cont’d

The 6 parameters can be stacked into a 3× 3 matrix Q.
Firstly, we can then use it on 3D object, such as points.
Secondly, this form facilitates analysis of the conic.
Points x on the conic then fulfill

(x,Qx) = 0, Q =

 A B D
B C E
D E F

 (42)

If det Q = 0, the conic defines two (real or imaginary) lines.
If det Q 6= 0, the conic defines real conic (i.e. an ellipse, a
parabola or a hyperbola), if and only if its signature is (2, 1)
or (1, 2) (two positive and one negative eigenvalue or vice
versa). Specifically, if we choose det Q ≤ 0

if AC − B2 > 0, then
if A + C > 0, the conic is a real ellipse
if A + C < 0, the conic is an imaginary ellipse

if AC − B2 = 0, the conic is a parabola
if AC − B2 < 0, the conic is a hyperbola
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Conics

Pole-Polar-Relationship

For a given image point xp the line

np = ±N[Qxp] (43)

is called the polar of xp w.r.t. Q.

For an image line (np, x) = 0, the point

xp =
Q−1np

(k,Q−1np)
, k = (0, 0, 1)> (44)

is called the pole of the line w.r.t. Q.
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Conics

Canonical Forms

Because our matrix representation has more parameters than
DOF, different matrices represent the same conic. We are
allowed to apply certain transformations to Q that preserve
certain invariants, such as determinant and signature.

Using these congruence transformations we can bring the
matrix Q representing a conic into a standard (or canonical)
form. This step is equivalent to the normalization step
performed on vector representations.

This makes it easier to compare conics and “read off” certain
information, such as principal axes, radii and eccentricity.

For details, refer to Kanatani, section 4.4.2.
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Conics

Space Conics

Now we leave the image plane and obtain a conic section by
intersecting an arbitrary space plane with a cone.

Kanatani restricts himself to conics that are the intersection
between an arbitrary space plane and a cone with vertex at
the viewpoint.

We specify the space plane and in it points r that fulfill (41)
by

{r|(n, r) = d and (r,Qr) = 0} (45)

We need additional parameters to specify the space plane, and
Kanatani does not weave them into the matrix representation,
but uses the set {n, d ,Q} to represent a conic in space.

The matrix Q is the matrix that represents the conic in the
image plane which results from the space conic being
projected there.
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Quadrics

Representation

A quadric is a 2D surface in 3D space made up by points
satisfying a quadratic equation in 3 coordinates.

It should have 10 parameters, but - since its equation is only
determined up to a common scale - only 9 DOF.

Instead of squeezing those into a single matrix, we split off a
symmetric 3× 3 matrix S (6 DOF) and a 3D vector (3 DOF),
giving the set representation of a quadric

{r|(r − rC , S(r − rC )) = 1} (46)
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Quadrics

Representation, cont’d

While rC gives the quadrics center (i.e. its location in 3D
space), the matrix S determines its shape. Specifically

if S is positive definite, the quadric is an ellipsoid.
if S is negative definite, the quadric is an empty set.
if S has signature (2, 1), the quadric is a hyperboloid of one
sheet.
if S has signature (1, 2), the quadric is a hyperboloid of two
sheets.
if S is singular, the quadric is degenerate.
the eigenvalues of S are the quadric’s principal axes.
the reciprocal of the square roots of the positive eigenvalues
are its radii.
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Quadrics

Pole-Polar-Relationship

Just like conics, quadrics have poles (space points) and polars
(space planes) defined by

np = N[S(rp − rC )], dp =
1

||S(rp − rC )||
+ (rC ,np) (47)

rp =
S−1n

dp − (rC ,np)
(48)

The conjugate direction is the direction n† from the quadric’s
center rC , in which the point on the quadric lies having a
surface normal that matches a given direction n.
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Quadrics

Perks of the Representation

As the covariance matrix of a (3D) random variable r is
symmetric positive semi-definite, it can be taken to represent
a quadric(’s shape). If we locate the quadric at the mean of r,
r̂, we can visualize the covariance matrix as the ellipsoid

(r − r̂,V [̂r]−1(r − r̂)) = 1 (49)

If we lower the dimension, the quadric degenerates into a
conic, and finally into a line segment, all three of which are
called the random variable’s standard confidence region.
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Quadrics

Perks of the Representation, cont’d

If we raise the dimension,

(r − r̂,V [̂r]−(u− û)) = 1 (50)

is a quadric that is generally singular, but becomes
non-singular, if it is restricted to Tr̂(U), the tangent space at
r̂ to the manifold U in which r̂ lies.

In higher dimensions we cannot easily visualize the quadric
and revert to vector pairs along its principal axes to indicate
the standard confidence region.
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Rigid Body and Perspective Transformations

Kanatani gives formulas for what happens to the different
representations of different objects under a change of
coordinates, i.e. a transformation of the object.

Transformation considered are rigid body motions (i.e.
rotations and translations) as well as projective
transformations (which can change ideal objects into regular
ones and vice versa).

The formulas given are dependent on the object that is
transformed.

For details, refer to Kanatani section 4.6.
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