Space Primitives

Conics and Quadrics

Coordinate Transformations

Representation of Geometric Objects Chapter 4

University of Amsterdam

Introduction

- 2 Plane Primitives
 - Image Points
 - Image Lines
- 3 Space Primitives
 - Space Points
 - Space Lines
 - Space Planes

4 Conics and Quadrics

- Conics
- Quadrics

On Representations

- The most fundamental geometric object is a *point* usually represented by (at least) its *coordinates* w.r.t. some *frame*.
- A representation can contain additional (redundant) information, in which case it is not *minimal*. The number of crucial (scalar) parameters is the number of *degrees of freedom* (DOF).
- Representations "live" on a manifold of dimension #DOF embedded in a higher dimensional space. The shape of the manifold is determined by *constraints* on the representation.
- "Higher" geometric objects are usually thought of as the set (or *locus*) of points fulfilling a certain equation (e.g. in terms of the points' coordinates).
- The set representation is clumsy at not very accessible, mathematically. Therefore we will look at more (or less) clever

Space Primitives

Conics and Quadrics

Coordinate Transformations

Commonalities

Introduction

- Give the set representation of an object.
- Usually try to represent objects by vectors, because we can use linear algebra on them. Also try to keep them 3D because then the cross-product is available.
- Apply noise to the coordinates of the representation and analyze the covariance matrix. Its rank gives the #DOF of the object.
- For composite objects, perturb the components and analyze the effect on (the covariance matrix of) the object.

• Introduce homogeneous coordinates. According to Kanatani a vector

$$\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \tag{1}$$

UNIVERSITY OF AMSTERDAM

only represents an image point, if z = 1.

- This can be achieved by dividing by the actual z.
- Theoretically, while z → 0, x moves towards infinity in the direction of (x, y)^T. (x, y, 0)^T is called *ideal point*.
- Numerically unstable!

- - Kanatani disturbs the 3D vector x, while keeping the condition z = 1 invariant.

$$\mathbf{x} + \mathbf{\Delta}\mathbf{x} = (x + \Delta x, y + \Delta y, 1)^{\top},$$
 (2)

i.e. noise effectively only occurs on x and y, i.e. orthogonal to $\mathbf{k} = (0, 0, 1)^{\top}$.

• Consequently the covariance matrix

$$V[\mathbf{x}] = E[\mathbf{\Delta}\mathbf{x}\mathbf{\Delta}\mathbf{x}^{\top}]$$
(3)

JNIVERSITY OF AMSTERDAM

has rank 2.

 Δx = (Δx, Δy, 0)^T is regarded as small random variable of mean 0.

	Plane Primitives 00●0000	Space Primitives	Conics and Quadrics	Coordinate Transformations
Image Lines				
Represen	tation			×

• Set representation of an image line

$$\{(x,y)|Ax+By+C=0\}$$

• Vector representation of an image line

$$\mathbf{n} = \begin{pmatrix} A \\ B \\ C \end{pmatrix}, ||\mathbf{n}||^2 = 1$$
 (5)

JNIVERSITY OF AMSTERDAM

(4)

- Normalization removes scale ambiguity but leaves sign ambiguity. n can be interpreted as the 3D normal vector of the plane joining the viewpoint and the image line.
- Image lines have 2 DOF and therefore "live" on a 2D manifold (the unit sphere) embedded in 3D space.

• Kanatani first disturbs n, then normalizes, i.e.

$$1 = ||\mathbf{n} + \Delta \mathbf{n}||^{2}$$
(6)
$$= ||\mathbf{n}||^{2} + 2(\mathbf{n}, \Delta \mathbf{n}) + ||\Delta \mathbf{n}||^{2}$$
(7)
$$\approx ||\mathbf{n}||^{2} + 2(\mathbf{n}, \Delta \mathbf{n}).$$
(8)

UNIVERSITY OF AMSTERDAM

- With the normalization condition ||**n**||² = 1 this gives
 (**n**, Δ**n**) = 0, i.e. noise occurs only orthogonal to **n** to first
 order approximation.
- Consequently the covariance matrix $V[\mathbf{n}] = E[\Delta \mathbf{n} \Delta \mathbf{n}^{\top}]$ has rank 2.

	Plane Primitives ○○○○●○○	Space Primitives	Conics and Quadrics	Coordinate Transformations
Image Lines				

Perks of the Representation

• Distance between image line and image point is calculated as

$$D(\mathbf{p},\mathbf{l}) = \frac{|(\mathbf{n},\mathbf{x})|}{\sqrt{1-(\mathbf{k},\mathbf{x})^2}},\tag{9}$$

i.e. the point is on the line if $D(\mathbf{p}, \mathbf{l}) = 0$.

Intersection point of two lines is

$$\mathbf{x} = \frac{\mathbf{n}_1 \times \mathbf{n}_2}{|\mathbf{n}_1, \mathbf{n}_2, \mathbf{k}|},\tag{10}$$

which becomes an ideal point as the denominator approaches zero, but the formula does not fail gracefully.

• A line can be calculated as the *join* of two points as

$$\mathbf{n} = \pm N[\mathbf{x}_1 \times \mathbf{x}_2]. \tag{11}$$

Noise on Component Points

- Perturbing two points x₁ and x₂ by noise as above, the join of the two is perturbed as well. We spell out the formula once; future formulas will follow a derivation along the same lines.
- Kanatani performs an approximation to first order, giving

$$\mathbf{n} + \mathbf{\Delta n} = \pm N[(\mathbf{x}_1 + \mathbf{\Delta x}_1) \times (\mathbf{x}_2 + \mathbf{\Delta x}_2)] \\ = \frac{\pm (\mathbf{x}_1 + \mathbf{\Delta x}_1) \times (\mathbf{x}_2 + \mathbf{\Delta x}_2)}{||\mathbf{x}_1 \times \mathbf{x}_2||} \\ = \frac{\pm (\mathbf{x}_1 \times \mathbf{x}_2 + \mathbf{\Delta x}_1 \times \mathbf{x}_2 + \mathbf{x}_1 \times \mathbf{\Delta x}_2 + \mathbf{\Delta x}_1 \times \mathbf{\Delta x}_2)}{||\mathbf{x}_1 \times \mathbf{x}_2||} \\ \approx \frac{\mathbf{x}_1 \times \mathbf{x}_2}{||\mathbf{x}_1 \times \mathbf{x}_2||} + \frac{\mathbf{\Delta x}_1 \times \mathbf{x}_2 + \mathbf{x}_1 \times \mathbf{\Delta x}_2}{||\mathbf{x}_1 \times \mathbf{x}_2||}$$
(12)

UNIVERSITY OF AMSTERDAM

• The covariance matrix of the image line becomes

$$V[\mathbf{n}] = E[\Delta \mathbf{n} \Delta \mathbf{n}^{\top}]$$
(13)
=
$$\frac{P_{\mathbf{n}}(\mathbf{x}_{1} \times V[\mathbf{x}_{2}] \times \mathbf{x}_{1} + \mathbf{x}_{2} \times V[\mathbf{x}_{1}] \times \mathbf{x}_{2})P_{\mathbf{n}}}{||\mathbf{x}_{1} \times \mathbf{x}_{2}||^{2}}$$
(14)

UNIVERSITY OF AMSTERDAM

	Plane Primitives 0000000	Space Primitives	Conics and Quadrics	Coordinate Transformations
Space Points				
Represe	ntation			×××
				Ļ

• Homogeneous coordinates again. All remarks regarding image points hold.

	Plane Primitives 0000000	Space Primitives	Conics and Quadrics	Coordinate Transformations
Space Lines				
Represen	tation			×.

• Set representation of a space line

$$\{\mathbf{r}|(\mathbf{r}-\mathbf{r}_{H})\times\mathbf{m}=0\}$$
(15)

INIVERSITY OF AMSTERDAM

$$\{\mathbf{r}|\mathbf{r}\times\mathbf{m}=\mathbf{r}_H\times\mathbf{m}\}$$
(16)

- Concatenation (i.e. direct sum) of **m** and \mathbf{r}_H represents the line $\mathbf{l} = \mathbf{m} \oplus \mathbf{r}_H$.
- Above equation holds for any scalar multiple of the direction vector **m** and for any point on the line **r**_H. Therefore Kanatani requires

$$||\mathbf{m}|| = 1, \quad (\mathbf{m}, \mathbf{r}_H) = 0$$
 (17)

• Therefore the 6D vector $\mathbf{I} = \mathbf{m} \oplus \mathbf{r}_H$ has only 4 DOF.

- If we vary the given point on the line \mathbf{r}_H , we will always end up with a scalar multiple of the same vector $\mathbf{n} = \mathbf{r}_H \times \mathbf{m}$, which yields an alternative representation by $\mathbf{l} = \mathbf{p} \oplus \mathbf{n}$.
- For some reason, the direction vector **m** is now called **p**.
- Approaching the matter reversely, not every pair of vectors $\{p,n\}$ represents a line. Require

$$||\mathbf{p}||^2 + ||\mathbf{n}||^2 = 1, \quad (\mathbf{p}, \mathbf{n}) = 0.$$
 (18)

• Consequently the 6D vector $\mathbf{I} = \mathbf{p} \oplus \mathbf{n}$ also has 4 DOF.

 Perturbing the 3D vectors m and r_H by - not necessarily independent - zero mean random variables Δm and Δr, respectively yields

$$V[\mathbf{I}] = V[\mathbf{m} \oplus \mathbf{r}_H] = \begin{pmatrix} V[\mathbf{m}] & V[\mathbf{m}, \mathbf{r}_H] \\ V[\mathbf{r}_H, \mathbf{m}] & V[\mathbf{r}_H] \end{pmatrix}$$
(19)

with

$$(\mathbf{m}, \Delta \mathbf{m}) = 0, \quad (\Delta \mathbf{m}, \mathbf{r}_H) + (\mathbf{m}, \Delta \mathbf{r}_H) = 0.$$
 (20)

• Due to these constraints, the 6×6 covariance matrix has rank 4.

• If the line is represented by Plücker coordinates, we have

$$V[\mathbf{l}] = V[\mathbf{p} \oplus \mathbf{n}] = \begin{pmatrix} V[\mathbf{p}] & V[\mathbf{p}, \mathbf{n}] \\ V[\mathbf{n}, \mathbf{p}] & V[\mathbf{n}] \end{pmatrix}$$
(21)

with

$$(\mathbf{p}, \Delta \mathbf{p}) + (\mathbf{n}, \Delta \mathbf{n}) = 0, \quad (\Delta \mathbf{p}, \mathbf{n}) + (\mathbf{p}, \Delta \mathbf{n}) = 0.$$
 (22)

- Due to these constraints, the 6×6 covariance matrix has rank 4.
- There is a hugely complicated formula which relates the two covariance matrices (19) and (21), (Kanatani: 4.46).

• Distance between a (space) point and a (space) line

$$D(P,L) = \frac{||\mathbf{r} \times \mathbf{p} - \mathbf{n}||}{||\mathbf{p}||} = ||P_{\mathbf{m}}\mathbf{r} - \mathbf{r}_{H}||$$
(23)

UNIVERSITY OF AMSTERDAM

• Intersection between two (space) lines

$$D(L, L') = \begin{cases} \frac{|\mathbf{m}, \mathbf{m}', \mathbf{r}_H - \mathbf{r}'_H|}{||\mathbf{m} \times \mathbf{m}'||} & \text{if } \mathbf{m} \times \mathbf{m}' \neq 0\\ ||\mathbf{r}_H - \mathbf{r}'_H|| & \text{if } \mathbf{m} \times \mathbf{m}' = 0 \end{cases}$$
(24)

 As m × m' approaches zero, the distance becomes infinitely large and the point of intersection becomes an ideal point. But due to the division the respective formulas do not fail gracefully.

	Plane Primitives 0000000	Space Primitives	Conics and Quadrics	Coordinate Transformations
Space Lines				

Perks of the Representation, cont'd

• Distance between two (space) lines in Plücker coordinates

$$D(L,L') = \begin{cases} \frac{(\mathbf{p},\mathbf{n}')+(\mathbf{p}',\mathbf{n})}{||\mathbf{p}\times\mathbf{p}'||} & \text{if } \mathbf{p}\times\mathbf{p}'\neq 0\\ ||\frac{\mathbf{n}}{||\mathbf{p}||}-\frac{\mathbf{n}}{||\mathbf{p}'||} & \text{if } \mathbf{p}\times\mathbf{p}'=0 \end{cases}$$
(25)

• Point of intersection between two (co-planar space) lines

$$\mathbf{r} = \frac{(\mathbf{m} \times \mathbf{r}_H) \times (\mathbf{m}' \times \mathbf{r}'_H)}{|\mathbf{m}, \mathbf{m}', \mathbf{r}_H|} = \frac{\mathbf{n} \times \mathbf{n}'}{(\mathbf{p}', \mathbf{n})}$$
(26)

 More convenient to work with - because it makes sense to detect whether direction vectors are parallel as a first step - is

$$\mathbf{r} = \mathbf{r}_{H} + \frac{(\mathbf{m}, \mathbf{r}_{H}) + (\mathbf{m}, \mathbf{m}')(\mathbf{m}', \mathbf{r}_{H})}{||\mathbf{m} \times \mathbf{m}'||^{2}} \mathbf{m}$$
(27)
$$= \frac{1}{||\mathbf{p}||^{2}} \left(\frac{||\mathbf{p}||^{2} |\mathbf{p}, \mathbf{p}', \mathbf{n}'| - (\mathbf{p}, \mathbf{p}') |\mathbf{p}, \mathbf{p}', \mathbf{n}|}{||\mathbf{p} \times \mathbf{p}'||^{2}} \mathbf{p} + \mathbf{p} \times \mathbf{n} \right)$$
(27)

	Plane Primitives 0000000	Space Primitives ○○○○○○●○○○○	Conics and Quadrics	Coordinate Transformations
Space Lines				
B 1				

Perks of the Representation, cont'd

• Lines can be calculated as join of two points as

$$\mathbf{m} = N[\mathbf{r}_1 - \mathbf{r}_2], \quad \mathbf{r}_H = \frac{(\mathbf{m}, \mathbf{r}_1)\mathbf{r}_2 - (\mathbf{m}, \mathbf{r}_2)\mathbf{r}_1}{||\mathbf{r}_1 - \mathbf{r}_2||}$$
 (29)

$$\begin{pmatrix} \mathbf{p} \\ \mathbf{n} \end{pmatrix} = N[\begin{pmatrix} \mathbf{r}_1 - \mathbf{r}_2 \\ \mathbf{r}_2 \times \mathbf{r}_1 \end{pmatrix}]$$
(30)

Ň

JNIVERSITY OF AMSTERDAM

• Under assumption of independent uncertain **r**₁ and **r**₂ the line's covariance matrix becomes

$$V[\mathbf{p} \oplus \mathbf{n}] = \frac{1}{||\mathbf{r}_1 - \mathbf{r}_2||^2 + ||\mathbf{r}_2 \times \mathbf{r}_1||^2} P_{\mathbf{p} \oplus \mathbf{n}} M P_{\mathbf{p} \oplus \mathbf{n}}$$
$$M = \begin{pmatrix} V[\mathbf{r}_1] + V[\mathbf{r}_2] & V[\mathbf{r}_1] \times \mathbf{r}_2 + V[\mathbf{r}_2] \times \mathbf{r}_1 \\ \mathbf{r}_2 \times V[\mathbf{r}_1] + \mathbf{r}_1 \times V[\mathbf{r}_2] & \mathbf{r}_2 \times V[\mathbf{r}_1] \times \mathbf{r}_2 + \mathbf{r}_1 \times V[\mathbf{r}_2] \times \mathbf{r}_1 \end{pmatrix}$$
(31)

• Set representation of a space plane

$$\{(x, y, z) | Ax + By + Cz = d\}$$
 (32)

- Equivalent formulations are {r|(r, n) = d} and {ρ|(ρ, ν) = 0}.
 In the latter case remarks about homogeneous coordinates apply.
- The equations leave a freedom of scale. Instead of fixing the last coordinate, we normalize the 4D vector, imposing

$$||\nu|| = 1$$
 (33)

• This leaves the 4D vector ν with 3 DOF.

• The covariance matrix

$$V[\nu] = \frac{1}{1+d^2} P_{\nu} \begin{pmatrix} V[\mathbf{n}] & -V[\mathbf{n},d] \\ -V[\mathbf{n},d] & V[d] \end{pmatrix} P_{\nu}$$
(34)

has rank 3.

• Perturbing the 4D vector ν and applying the constraints we get to a first order approximation

$$\mathbf{\Delta n} = \sqrt{1 + d^2} P_{\nu} \begin{pmatrix} \Delta \nu_1 \\ \Delta \nu_2 \\ \Delta \nu_3 \end{pmatrix}, \quad \Delta d = -\sqrt{(1 + d^2)^3} \Delta \nu_4$$
(35)

	Plane Primitives 0000000	Space Primitives ○○○○○○○○○○	Conics and Quadrics	Coordinate Transformations
Space Planes				

Perks of the Representation

• Distance between point and plane is calculated as

$$D(P,\Pi) = |(\mathbf{n},\mathbf{r}) - d| = \frac{|(\nu,\rho)|}{\sqrt{1 - (\kappa,\nu)^2}}$$
 (36)

• A line and a plane are incident to each other if and only if

$$(\mathbf{n},\mathbf{m})=0, \quad (\mathbf{n},\mathbf{r}_H)=d \tag{37}$$

Ň

JNIVERSITY OF AMSTERDAM

or, equivalently

$$(\nu, \mathbf{m} \oplus \mathbf{0}) = \mathbf{0}, \quad (\nu, \mathbf{r}_H \oplus \mathbf{1}) = \mathbf{0}$$
 (38)

• Note how Plücker and homogeneous coordinates are basically incompatible and the "gap" between the two has to be patched up.

Perks of the Representation, cont'd

• The line of intersection between two non-parallel planes is calculated as

$$\mathbf{r}_{H} = \frac{(d_{1} - (\mathbf{n}_{1}, \mathbf{n}_{2})d_{2})\mathbf{n}_{1} + (d + 2 - (\mathbf{n}_{1}, \mathbf{n}_{2})d_{1})\mathbf{n}_{2}}{||\mathbf{n}_{1} \times \mathbf{n}_{2}||^{2}}$$
(39)

or as

$$\begin{pmatrix} \mathbf{p} \\ \mathbf{n} \end{pmatrix} = N[\begin{pmatrix} \mathbf{n}_1 \times \mathbf{n}_2 \\ d_2\mathbf{n}_1 - d_1\mathbf{n}_2 \end{pmatrix}].$$
(40)

- Planes can be calculated as the join of
 - 3 space points (Kanatani: 4.76)
 - a space line and a space point (Kanatani: 4.77)
 - two intersecting space lines (Kanatani: 4.78)

	Plane Primitives 0000000	Space Primitives	Conics and Quadrics ●000000000	Coordinate Transformations
Conics				
Represe	ntation			×

- A conic is the intersection of a cone with a plane. Depending on the type of intersection it can be a point, a line, two lines, a hyperbola, a parabola, a circle, an ellipse
- All can be represented by one equation

 $\{(x, y)|Ax^{2} + Bxy + Cy^{2} + 2Dx + 2Ey + F = 0\}$ (41)

×

JNIVERSITY OF AMSTERDAM

- This equation is indeterminate only in x and y, so we assume the intersecting plane as fixed (e.g. the image plane) and specify points in it by 2 coordinates.
- The equation is quadratic in x and y and therefore algebraically it has more than the obvious solutions, namely *complex valued* ones. This leads to *imaginary conics*.
- The parameters are only determined up to a common scale, so a conic has 5 DOF.

	Plane Primitives 0000000	Space Primitives	Conics and Quadrics	Coordinate Transformations
Conics				

Representation, cont'd

- The 6 parameters can be stacked into a 3 × 3 matrix Q. Firstly, we can then use it on 3D object, such as points. Secondly, this form facilitates analysis of the conic.
- Points x on the conic then fulfill

$$(\mathbf{x}, Q\mathbf{x}) = 0, \quad Q = \begin{pmatrix} A & B & D \\ B & C & E \\ D & E & F \end{pmatrix}$$
 (42)

- If det Q = 0, the conic defines two (real or imaginary) lines.
- If det Q ≠ 0, the conic defines *real conic* (i.e. an ellipse, a parabola or a hyperbola), if and only if its *signature* is (2,1) or (1,2) (two positive and one negative eigenvalue or vice versa). Specifically, if we choose det Q ≤ 0
 - if $AC B^2 > 0$, then
 - if A + C > 0, the conic is a real ellipse
 - if A + C < 0, the conic is an imaginary ellipse
 - if $AC B^2 = 0$, the conic is a parabola

Intelligent Autonomous Systems $B^2 < 0$, the conic is a hyperbola

Introduction Plane Primitives Space Primitives Conics and Quadrics Coordinate Transformations 0000000 Conics

Pole-Polar-Relationship

• For a given image point **x**_p the line

$$\mathbf{n}_{\rho} = \pm N[Q\mathbf{x}_{\rho}] \tag{43}$$

××

UNIVERSITY OF AMSTERDAM

- is called the *polar* of \mathbf{x}_p w.r.t. Q.
- For an image line $(\mathbf{n}_p, \mathbf{x}) = 0$, the point

$$\mathbf{x}_{\rho} = \frac{Q^{-1} \mathbf{n}_{\rho}}{(\mathbf{k}, Q^{-1} \mathbf{n}_{\rho})}, \quad \mathbf{k} = (0, 0, 1)^{\top}$$
(44)

is called the *pole* of the line w.r.t. Q.

- Because our matrix representation has more parameters than DOF, different matrices represent the same conic. We are allowed to apply certain transformations to Q that preserve certain invariants, such as determinant and signature.
- Using these *congruence transformations* we can bring the matrix *Q* representing a conic into a standard (or canonical) form. This step is equivalent to the normalization step performed on vector representations.
- This makes it easier to compare conics and "read off" certain information, such as *principal axes*, *radii* and *eccentricity*.
- For details, refer to Kanatani, section 4.4.2.

	Plane Primitives 0000000	Space Primitives	Conics and Quadrics	Coordinate Transformations
Conics				
Space (onics			×

- Now we leave the image plane and obtain a conic section by intersecting an arbitrary space plane with a cone.
- Kanatani restricts himself to conics that are the intersection between an arbitrary space plane and a cone *with vertex at the viewpoint*.
- We specify the space plane and in it points **r** that fulfill (41) by

$$\{\mathbf{r}|(\mathbf{n},\mathbf{r})=d \text{ and } (\mathbf{r},Q\mathbf{r})=0\}$$
(45)

JNIVERSITY OF AMSTERDAM

- We need additional parameters to specify the space plane, and Kanatani does not weave them into the matrix representation, but uses the set {**n**, d, Q} to represent a conic in space.
- The matrix Q is the matrix that represents the conic *in the image plane* which results from the space conic being projected there.

- A quadric is a 2D surface in 3D space made up by points satisfying a quadratic equation in 3 coordinates.
- It should have 10 parameters, but since its equation is only determined up to a common scale only 9 DOF.
- Instead of squeezing those into a single matrix, we split off a symmetric 3 × 3 matrix S (6 DOF) and a 3D vector (3 DOF), giving the set representation of a quadric

$$\{\mathbf{r}|(\mathbf{r}-\mathbf{r}_{C},S(\mathbf{r}-\mathbf{r}_{C}))=1\}$$
(46)

Representation, cont'd

- While **r**_C gives the quadrics center (i.e. its location in 3D space), the matrix S determines its shape. Specifically
 - if S is positive definite, the quadric is an ellipsoid.
 - if S is negative definite, the quadric is an empty set.
 - if S has signature (2,1), the quadric is a hyperboloid of one sheet.
 - if S has signature (1,2), the quadric is a hyperboloid of two sheets.
 - if S is singular, the quadric is degenerate.
 - the eigenvalues of S are the quadric's *principal axes*.
 - the reciprocal of the square roots of the positive eigenvalues are its *radii*.

• Just like conics, quadrics have poles (space points) and polars (space planes) defined by

$$\mathbf{n}_{p} = \mathcal{N}[S(\mathbf{r}_{p} - \mathbf{r}_{C})], \quad d_{p} = \frac{1}{||S(\mathbf{r}_{p} - \mathbf{r}_{C})||} + (\mathbf{r}_{C}, \mathbf{n}_{p}) \quad (47)$$

$$\mathbf{r}_{p} = \frac{S^{-1}\mathbf{n}}{d_{p} - (\mathbf{r}_{C}, \mathbf{n}_{p})}$$
(48)

JNIVERSITY OF AMSTERDAM

The conjugate direction is the direction n[†] from the quadric's center r_C, in which the point on the quadric lies having a surface normal that matches a given direction n.

As the covariance matrix of a (3D) random variable r is symmetric positive semi-definite, it can be taken to represent a quadric('s shape). If we locate the quadric at the mean of r, r̂, we can visualize the covariance matrix as the ellipsoid

$$(\mathbf{r} - \hat{\mathbf{r}}, V[\hat{\mathbf{r}}]^{-1}(\mathbf{r} - \hat{\mathbf{r}})) = 1$$
(49)

UNIVERSITY OF AMSTERDAM

• If we lower the dimension, the quadric degenerates into a conic, and finally into a line segment, all three of which are called the random variable's *standard confidence region*.

• If we raise the dimension,

$$(\mathbf{r} - \hat{\mathbf{r}}, V[\hat{\mathbf{r}}]^{-}(\mathbf{u} - \hat{\mathbf{u}})) = 1$$
(50)

UNIVERSITY OF AMSTERDAM

is a quadric that is generally singular, but becomes non-singular, if it is restricted to $T_{\hat{\mathbf{r}}}(\mathcal{U})$, the tangent space at $\hat{\mathbf{r}}$ to the manifold \mathcal{U} in which $\hat{\mathbf{r}}$ lies.

• In higher dimensions we cannot easily visualize the quadric and revert to vector pairs along its principal axes to indicate the standard confidence region.

Conics and Quadrics

Coordinate Transformations

Rigid Body and Perspective Transformations

- Kanatani gives formulas for what happens to the different representations of different objects under a change of coordinates, i.e. a transformation of the object.
- Transformation considered are *rigid body motions* (i.e. rotations and translations) as well as *projective transformations* (which can change ideal objects into regular ones and vice versa).
- The formulas given are dependent on the object that is transformed.
- For details, refer to Kanatani section 4.6.

IAS Intelligent Autonomous Systems UNIVERSITY OF AMSTERDAM