holds for an arbitrary orthonormal system $\{u_i\}$. From $(x, \sum_{i=1}^n u_i u_i^\top x) = (x, Ix)$, we obtain the following identity for an arbitrary vector and an arbitrary orthonormal system $\{u_i\}$:

$$\sum_{i=1}^{n} (u_i, x)^2 = ||x||^2.$$
 (2.64)

Let $\{\lambda_i\}$ be the eigenvalues of (nn)-matrix A, and $\{u_i\}$ the corresponding eigensystem. Since $\{u_i\}$ is an orthonormal system, the matrix $U = (u_1, u_2, \dots, u_n)$ is orthogonal. Eq. (2.62) is equivalent to

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\top} \tag{2.65}$$

where Λ is the diagonal matrix with diagonal elements $\lambda_1, \lambda_2, ..., \lambda_n$ in that order; we write

$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n). \tag{2.66}$$

From eq. (2.65), we obtain

$$\boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U} = \boldsymbol{\Lambda}, \tag{2.67}$$

which is called the *diagonalization* of A. Applying the fourth of eqs. (2.2) and eq. (2.12) to eq. (2.65), we obtain the following identities:

$$\operatorname{tr} \mathbf{A} = \sum_{i=1}^{n} \lambda_{i}, \qquad \det \mathbf{A} = \prod_{i=1}^{n} \lambda_{i}.$$
 (2.68)

From the spectral decomposition (2.62), the kth power \mathbf{A}^k for an arbitrary integer k > 0 is given by

$$\boldsymbol{A}^{k} = \sum_{i=1}^{n} \lambda_{i}^{k} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}. \tag{2.69}$$

This can be extended to an arbitrary polynomial p(x):

$$p(\mathbf{A}) = \sum_{i=1}^{n} p(\lambda_i) \mathbf{u}_i \mathbf{u}_i^{\top}.$$
 (2.70)

If A is of full rank, its inverse A^{-1} is given by

$$\boldsymbol{A}^{-1} = \sum_{i=1}^{n} \frac{1}{\lambda_i} \boldsymbol{u}_i \boldsymbol{u}_i^{\top}.$$
 (2.71)

This can be extended to an arbitrary negative power of A (see the third of eqs. (2.21)):

$$\boldsymbol{A}^{-k} = \sum_{i=1}^{n} \frac{1}{\lambda_i^{k}} \boldsymbol{u}_i \boldsymbol{u}_i^{\top}. \tag{2.72}$$

2.2.2 Generalized inverse

An **(nn)**-matrix **A** is **positive definite** if its eigenvalues are all positive, and is **positive semi-definite** if its eigenvalues are all nonnegative; it is **negative definite** if its eigenvalues are all negative, and is **negative semi-definite** if its eigenvalues are all nonpositive.

For a positive semi-definite (nn)-matrix \mathbf{A} , eq. (2.69) can be extended to arbitrary non-integer powers \mathbf{A}^q , q > 0. In particular, the "square root" $\sqrt{\mathbf{A}}$ of \mathbf{A} is defined by

$$\sqrt{\mathbf{A}} = \sum_{i=1}^{n} \sqrt{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\top}.$$
 (2.73)

It is easy to see that $(\sqrt{A})^2 = A$. If A is positive definite, eq. (2.69) can be extended to arbitrary negative non-integer powers such as $A^{-2/3}$.

Let $\{r_1, ..., r_l\}_L$ denote the linear subspace spanned (or generated) by r_1 , ..., r_l , i.e., the set of all vectors that can be expressed as a linear combination $\sum_{i=1}^{l} c_i r_i$ for some real numbers $c_1, ..., c_l$. A positive semi-definite (nn)-matrix of rank $r \leq n$ has the following spectral decomposition:

$$\mathbf{A} = \sum_{i=1}^{r} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}, \qquad \lambda_i > 0, \quad i = 1, ..., \mathbf{r}.$$
 (2.74)

Let the symbol \mathbb{R}^n denote the *n*-dimensional space of all *n*-vectors. The *r*-dimensional subspace

$$\mathcal{R}_{\mathbf{\Lambda}} = \{ \mathbf{u}_1, ..., \mathbf{u}_r \}_L \subset \mathcal{R}^n \tag{2.75}$$

is called the range (or image space) of A, for which the set $\{u_1, ..., u_r\}$ is an orthonormal basis. The (n-r)-dimensional subspace

$$\mathcal{N}_{\mathbf{A}} = \{ \mathbf{u}_{r+1}, ..., \mathbf{u}_n \}_L \subset \mathcal{R}^n$$
 (2.76)

is called the *null space* of A, for which the set $\{u_{r+1}, ..., u_n\}$ is an orthonormal basis. The n-dimensional space is the direct sum of \mathcal{R}_A and \mathcal{N}_A , each being the orthogonal complement of the other:

$$\mathcal{R}^{n} = \mathcal{R}_{\mathbf{A}} \oplus \mathcal{N}_{\mathbf{A}}, \qquad \mathcal{R}_{\mathbf{A}} \perp \mathcal{N}_{\mathbf{A}}. \tag{2.77}$$

This definition implies

$$P_{\mathcal{N}_A} A = A P_{\mathcal{N}_A} = A. \tag{2.78}$$

The (Moore-Penrose) generalized (or pseudo) inverse 10 A^- of A is defined

¹⁰The Moore-Penrose generalized inverse is often denoted by \mathbf{A}^+ in order to distinguish it from the generalized inverse in general, which is defined as the matrix \mathbf{X} that satisfies $\mathbf{A}\mathbf{X}\mathbf{A} = \mathbf{A}$ and denoted by \mathbf{A}^- . The generalized inverse we use throughout this book is always the Moore-Penrose type, so we adopt the generic symbol \mathbf{A}^- . The symbol \mathbf{A}^+ will be given another meaning (see Section 2.2.6).

by

pseudo-inverse rank r

$$\boldsymbol{A}^- = \sum_{i=1}^r \frac{1}{\lambda_i} \boldsymbol{u}_i \boldsymbol{u}_i^\top.$$

with SVD, not much harder for general **A** (2.121)

Evidently, the generalized inverse A^- coincides with the inverse A^{-1} if A is of full rank. From this definition, the following relationships are obtained (see eqs. (2.50) and (2.63)):

$$(A^{-})^{-} = A,$$
 $P_{\mathcal{N}_{A}}A^{-} = A^{-}P_{\mathcal{N}_{A}} = A^{-},$
$$A^{-}A = AA^{-} = P_{\mathcal{N}_{A}}.$$
 (2.80)

From eqs. (2.78) and (2.80), we obtain

$$AA^{-}A = A, \qquad A^{-}AA^{-} = A^{-}. \tag{2.81}$$

The rank and the generalized inverse of a matrix are well defined concepts in a mathematical sense only; it rarely occurs in finite precision numerical computation that some eigenvalues are precisely zero. In computing the generalized inverse numerically, the rank of the matrix should be predicted by a theoretical analysis first. Then, the matrix should be modified so that it has the desired rank. Let A be a positive semi-definite (nn)-matrix of rank r; let $A = \sum_{i=1}^{r} \lambda_i u_i u_i^{\top}$, $\lambda_1 \geq \cdots \geq \lambda_r > 0$, be its spectral decomposition. Its rank-constrained generalized inverse $(A)_r$ of rank $r' (\leq r)$ is defined by

$$(\mathbf{A})_{r'}^{-} = \sum_{i=1}^{r'} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\top}.$$
 (2.82)

From this definition, the following identities are obtained:

$$(\mathbf{A})_{r'}^{-}\mathbf{A} = \mathbf{A}(\mathbf{A})_{r'}^{-} = \mathbf{P}_{\mathcal{N}_{(\mathbf{A})_{r'}^{-}}}, \quad (\mathbf{A})_{r'}^{-}\mathbf{A}(\mathbf{A})_{r'}^{-} = (\mathbf{A})_{r'}^{-}.$$
 (2.83)

Let A be an (nn)-matrix, and B an (mm)-matrix. Let S and T be nm-matrices. Even if A and B are not of full rank, the matrix inversion formula (2.22) holds in the form

$$(A + P_{\mathcal{N}_A} SBT^{\mathsf{T}} P_{\mathcal{N}_A})^- = A^- - A^- S(B^- + P_{\mathcal{N}_B} T^{\mathsf{T}} A^- SP_{\mathcal{N}_B})^- T^{\mathsf{T}} A^-,$$
(2.84)

provided that matrix $A + P_{\mathcal{N}_A}SBT^{\top}P_{\mathcal{N}_A}$ has the same rank as A and matrix $B^- + P_{\mathcal{N}_B}T^{\top}A^-SP_{\mathcal{N}_B}$ has the same rank as B^- . We call eq. (2.84) the *generalized matrix inversion formula*.

2.2.3 Rayleigh quotient and quadratic form

For an (nn)-matrix A, the expression $(u, Au)/||u||^2$ is called the Rayleigh quotient of vector u for A. Let λ_{\min} and λ_{\max} be, respectively, the largest

and the smallest eigenvalues of A. The following inequality holds for an arbitrary nonzero vector u:

$$\lambda_{\min} \le \frac{(u, \mathbf{A}u)}{\|u\|^2} \le \lambda_{\max}. \tag{2.85}$$

The left equality holds if u is an eigenvector of A for eigenvalue λ_{\min} ; the right equality holds if u is an eigenvector for eigenvalue λ_{\max} .

The Rayleigh quotient $(u, Au)/||u||^2$ is invariant to multiplication of u by a constant and hence is a function of the orientation of u: if we put n = N[u], then $(u, Au)/||u||^2 = (n, An)$, which is called the *quadratic form* in n for A. Eq. (2.85) implies

$$\min_{\|\mathbf{n}\|=1}(\mathbf{n}, \mathbf{A}\mathbf{n}) = \lambda_{\min}, \quad \max_{\|\mathbf{n}\|=1}(\mathbf{n}, \mathbf{A}\mathbf{n}) = \lambda_{\max}.$$
 (2.86)

The minimum is attained by any unit eigenvector n of A for eigenvalue λ_{\min} ; the maximum is attained by any unit eigenvector n for eigenvalue λ_{\max} . It follows that an (nn)-matrix A is positive definite if and only if (r, Ar) > 0 for an arbitrary nonzero vector r; it is positive semi-definite if and only if $(r, Ar) \geq 0$ for an arbitrary n-vector r.

For an arbitrary mn-matrix \boldsymbol{B} , the matrix $\boldsymbol{B}^{\top}\boldsymbol{B}$ is symmetric (see the second of eq. (2.2)). It is also positive semi-definite since $(\boldsymbol{r}, \boldsymbol{B}^{\top}\boldsymbol{B}\boldsymbol{r}) = \|\boldsymbol{B}\boldsymbol{r}\|^2 \ge 0$ for an arbitrary n-vector \boldsymbol{r} . If \boldsymbol{B} is an nn-matrix of full rank, equality holds if and only if $\boldsymbol{r} = 0$. For an (nn)-matrix \boldsymbol{A} , its square root $\sqrt{\boldsymbol{A}}$ is also symmetric (see eq. (2.73)). We can also write $\boldsymbol{A} = \sqrt{\boldsymbol{A}}^{\top}\sqrt{\boldsymbol{A}}$. From these observations, we conclude the following:

- Matrix A is positive semi-definite if and only if there exists a matrix B such that A = B^TB.
- Matrix A is positive definite if and only if there exists a nonsingular matrix B such that $A = B^{T}B$.
- If A is a positive semi-definite (nn)-matrix, matrix B^TAB is a positive semi-definite (mm)-matrix for any nm-matrix B.

2.2.4 Nonsingular generalized eigenvalue problem

Let A be an (nn)-matrix, and G a positive semi-definite (nn)-matrix. If there exists a nonzero vector u and a scalar λ such that

$$Au = \lambda Gu, \tag{2.87}$$

the scalar λ is called the *generalized eigenvalue* of \boldsymbol{A} with respect to \boldsymbol{G} ; the vector \boldsymbol{u} is called the corresponding *generalized eigenvector*. The problem of

computing such u and λ is said to be nonsingular if G is of full rank, and singular otherwise.

Consider the nonsingular generalized eigenvalue problem. Eq. (2.87) can be rewritten as $(\lambda G - A)u = 0$, which has a nonzero solution u if and only if function

$$\phi_{\mathbf{A}|\mathbf{G}}(\lambda) = |\lambda \mathbf{G} - \mathbf{A}| \tag{2.88}$$

has a zero: $\phi_{\boldsymbol{A},\boldsymbol{G}}(\lambda) = 0$. The function $\phi_{\boldsymbol{A},\boldsymbol{G}}(\lambda)$ is an nth degree polynomial in λ and is called the generalized characteristic polynomial of \boldsymbol{A} with respect to \boldsymbol{G} . The equation $\phi_{\boldsymbol{A},\boldsymbol{G}}(\lambda) = 0$ is called the generalized characteristic equation of \boldsymbol{A} with respect to \boldsymbol{G} and has n roots $\{\lambda_i\}$ (with multiplicities counted). The generalized eigenvalue problem with respect to \boldsymbol{I} reduces to the usual eigenvalue problem.

The generalized eigenvalues $\{\lambda_i\}$ of A with respect to G are all real. The corresponding generalized eigenvectors $\{u_i\}$ can be chosen so that

$$(\mathbf{u}_i, \mathbf{G}\mathbf{u}_j) = \delta_{ij}, \tag{2.89}$$

which implies

$$(\mathbf{u}_i, \mathbf{A}\mathbf{u}_i) = \lambda_i \delta_{ij}. \tag{2.90}$$

Let us call the set $\{u_i\}$ so defined the generalized eigensystem of the (nn)-matrix with respect to the positive definite (nn)-matrix G. Let $U = (u_1, ..., u_n)$ and $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_n)$, respectively. Eqs. (2.89) and (2.90) can be rewritten as

$$\boldsymbol{U}^{\top}\boldsymbol{G}\boldsymbol{U} = \boldsymbol{I}, \qquad \boldsymbol{U}^{\top}\boldsymbol{A}\boldsymbol{U} = \boldsymbol{\Lambda}. \tag{2.91}$$

By multiplying the first equation by GU from the left and $U^{\top}G$ from the right, the following generalized spectral decomposition is obtained:

$$\mathbf{A} = \mathbf{G}\mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top}\mathbf{G} = \sum_{i=1}^{n} \lambda_{i}(\mathbf{G}\mathbf{u}_{i})(\mathbf{G}\mathbf{u}_{i})^{\top}.$$
 (2.92)

The number of nonzero generalized eigenvalues is equal to the rank of A. If A is positive definite, $\{\lambda_i\}$ are all positive; if A is positive semi-definite, $\{\lambda_i\}$ are all nonnegative.

The generalized eigenvalue problem $Au = \lambda Gu$ reduces to an ordinary eigenvalue problem as follows. Let $C = G^{-1/2}$ and $\tilde{u} = C^{-1}u$ (see eqs. (2.71) and (2.73)). It is easy to see that eq. (2.87) can be written as

$$\tilde{A}\tilde{u} = \lambda \tilde{u}, \qquad \tilde{A} = CAC.$$
 (2.93)

If an eigenvector \tilde{u} of \tilde{A} is computed, the corresponding generalized eigenvector is given by

$$u = C\tilde{u}. \tag{2.94}$$

The expression (u, Au)/(u, Gu) for an (nn)-matrix A and a positive definite (nn)-matrix G is called the *generalized Rayleigh quotient* of u. It satisfies

$$\lambda_{\min} \le \frac{(u, Au)}{(u, Gu)} \le \lambda_{\max},$$
(2.95)

where λ_{\min} and λ_{\max} are, respectively, the largest and the smallest generalized eigenvalues of \boldsymbol{A} with respect to \boldsymbol{G} . The left equality holds if \boldsymbol{u} is a generalized eigenvector of \boldsymbol{A} for the generalized eigenvalue λ_{\min} ; the right equality holds if \boldsymbol{u} is a generalized eigenvector for the generalized eigenvalue λ_{\max} .

2.2.5 Singular generalized eigenvalue probler save for when we need it

Consider the singular generalized eigenvalue problem of an (nn)-matrix A with respect to a positive semi-definite (nn)-matrix G of rank m (< n). Let $\{v_1, ..., v_m\}$ be an orthonormal basis of the range \mathcal{R}_G of G, and $\{v_{m+1}, ..., v_n\}$ an orthonormal basis of its null space \mathcal{N}_G . Define an nm-matrix P_1 and an n(n-m)-matrix P_0 by

$$P_1 = (v_1, ..., v_m), \quad P_0 = (v_{m+1}, ..., v_n).$$
 (2.96)

Then,

$$P_1^{\top} P_1 = I, \quad P_1^{\top} P_0 = O, \quad P_0^{\top} P_0 = I.$$
 (2.97)

Here, we only consider the case where $P_0^{\top}AP_0$ is nonsingular¹¹. Since $\mathbb{R}^n = \mathbb{R}_G \oplus \mathbb{N}_G$, an arbitrary *n*-vector can be uniquely written in the form

$$u = P_1 x + P_0 y, \tag{2.98}$$

where x is an m-vector and y is an (n-m)-vector. Eqs. (2.97) imply that x and y are respectively given by

$$\boldsymbol{x} = \boldsymbol{P}_1^{\top} \boldsymbol{u}, \qquad \boldsymbol{y} = \boldsymbol{P}_0^{\top} \boldsymbol{u}. \tag{2.99}$$

Substituting eq. (2.98) into eq. (2.87) and noting the identities $\mathbf{G}\mathbf{P}_0 = \mathbf{O}$ and $\mathbf{P}_0^{\mathsf{T}}\mathbf{G} = \mathbf{O}$, we can split eq. (2.87) into the following two equations:

$$A^*x = \lambda G^*x, \qquad y = B^*x. \tag{2.100}$$

Here, A^* and G^* are (mm)-matrices; B^* is an (n-m)m-matrix. They are defined by

$$A^* = P_1^{\top} A P_1 - P_1^{\top} A P_0 C^{*-1} P_0^{\top} A P_1,$$

$$G^* = P_1^{\top} G P_1, \quad B^* = -C^{*-1} P_0^{\top} A P_1,$$
(2.101)

where C^* is an (n-m)(n-m)-matrix defined by

$$C^* = \mathbf{P}_0^{\top} \mathbf{A} \mathbf{P}_0. \tag{2.102}$$

 $^{^{11}}$ This is always true if **A** is positive definite or negative definite.

The definition of the matrix P_0 implies that the matrix G^* is positive definite. Hence, the first of eqs. (2.100) is a nonsingular generalized eigenvalue problem.

The generalized Rayleigh quotient of A with respect to G for $u \notin \mathcal{N}_G$ (i.e., $x \neq 0$) can be written as follows:

$$\frac{(u, Au)}{(u, Gu)} = \frac{(x, A^*x) + (y - B^*x, C^*(y - B^*x))}{(x, G^*x)}.$$
 (2.103)

If C^* is positive definite¹², we observe that

$$\frac{(u, Au)}{(u, Gu)} \ge \frac{(x, A^*x)}{(x, G^*x)} \ge \lambda_{\min}, \tag{2.104}$$

where λ_{\min} is the smallest generalized eigenvalue of A with respect to G (see eqs. (2.100)). Equality holds if u is the corresponding generalized eigenvector. If C^* is negative definite¹³, we observe that

$$\frac{(\boldsymbol{u}, \boldsymbol{A}\boldsymbol{u})}{(\boldsymbol{u}, \boldsymbol{G}\boldsymbol{u})} \le \frac{(\boldsymbol{x}, \boldsymbol{A}^*\boldsymbol{x})}{(\boldsymbol{x}, \boldsymbol{G}^*\boldsymbol{x})} \le \lambda_{\max}, \tag{2.105}$$

where λ_{max} is the smallest generalized eigenvalue of \boldsymbol{A} with respect to \boldsymbol{G} . Equality holds if \boldsymbol{u} is the corresponding generalized eigenvector.

2.2.6 Perturbation theorem

Let A and D be (nn)-matrices. Let $\{\lambda_i\}$ be the eigenvalues of A, and $\{u_i\}$ the corresponding eigensystem:

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i, \qquad (\mathbf{u}_i, \mathbf{u}_i) = \delta_{ij}. \tag{2.106}$$

Consider a perturbed matrix

$$\mathbf{A}' = \mathbf{A} + \epsilon \mathbf{D} \tag{2.107}$$

for a small ϵ . Let $\{\lambda_i'\}$ and $\{u_i'\}$ be, respectively, the eigenvalues and the eigensystem of A' corresponding to $\{\lambda_i\}$ and $\{u_i\}$. The following relations hold (the *perturbation theorem*):

$$\lambda_i' = \lambda_i + \epsilon(\boldsymbol{u}_i, \boldsymbol{D}\boldsymbol{u}_i) + O(\epsilon^2), \tag{2.108}$$

$$\mathbf{u}_{i}' = \mathbf{u}_{i} + \epsilon \sum_{j \neq i} \frac{(\mathbf{u}_{j}, \mathbf{D}\mathbf{u}_{i})\mathbf{u}_{j}}{\lambda_{i} - \lambda_{j}} + O(\epsilon^{2}).$$
(2.109)

Let u_n be the unit eigenvector of A for the smallest eigenvalue λ_n , which is assumed to be a simple root. Let $\{u_i\}$ be the eigensystem of A defined so

¹²This is always true if A is positive definite.

¹³This is always true if A is negative definite.

that the corresponding eigenvalues are $\lambda_1 \geq \cdots \geq \lambda_{n-1} > \lambda_n$. Define matrix \mathbf{A}^+ by

$$\mathbf{A}^{+} = \sum_{i=1}^{n-1} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\top}}{\lambda_{i} - \lambda_{n}}$$
(2.110)

This is a positive semi-definite matrix having eigenvalues $\{1/(\lambda_i - \lambda_n)\}$ for the same eigensystem $\{u_i\}$. If $\lambda_n = 0$, the matrix A^+ coincides with the generalized inverse A^- . Eq. (2.109) can be rewritten as

$$\boldsymbol{u}_n' = \boldsymbol{u}_n - \epsilon \boldsymbol{A}^{\dagger} \boldsymbol{D} \boldsymbol{u}_n + O(\epsilon^2). \tag{2.111}$$

Let A and D be (nn)-matrices, and G a positive definite (nn)-matrix. Let $\{\lambda_i\}$ be the generalized eigenvalues of A with respect to G, and $\{u_i\}$ the corresponding generalized eigensystem:

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{G}\mathbf{u}_i, \qquad (\mathbf{u}_i, \mathbf{G}\mathbf{u}_j) = \delta_{ij}.$$
 (2.112)

If A is perturbed in the form of eq. (2.107), the perturbation theorem holds in the same form. Eq. (2.111) also holds if $\{\lambda_i\}$ in eq. (2.110) are interpreted as generalized eigenvalues of A with respect to G.

2.3 Linear Systems and Optimization

2.3.1 Singular value decomposition and generalized inverse

If \boldsymbol{A} is an mn-matrix, $\boldsymbol{A}^{\top}\boldsymbol{A}$ is a positive semi-definite (nn)-matrix, and $\boldsymbol{A}\boldsymbol{A}^{\top}$ is a positive semi-definite (mm)-matrix. They share the same nonzero eigen-no restrictions on \boldsymbol{A} ! $\sigma_r > 0$, $r \leq \min(m,n)$. The number r is called the $\sigma_r > 0$, $\sigma_r > 0$, $\sigma_r > 0$, $\sigma_r > 0$, $\sigma_r > 0$. It can be shown that orthonormal systems $\{\boldsymbol{u}_i\}$, $i=1,\ldots,n$, and $\{\boldsymbol{v}_i\}$, $i=1,\ldots,m$, exist such that

- $Au_i = \lambda_i v_i$, $i = 1, ..., \min(m, n)$.
- $\{u_i\}$, i = 1, ..., n, is the eigensystem of $\mathbf{A}^{\top} \mathbf{A}$ for eigenvalues $\{\lambda_i^2\}$, i = 1, ..., n.
- $\{v_i\}$, i = 1, ..., m, is the eigensystem of AA^{T} for eigenvalues $\{\lambda_i^2\}$, i = 1, ..., m.

Matrix **A** is expressed in terms of $\{u_i\}$, $\{v_i\}$, and $\{\lambda_i\}$ in the form

$$\boldsymbol{A} = \sum_{i=1}^{r} \lambda_i \boldsymbol{v}_i \boldsymbol{u}_i^{\top}. \tag{2.113}$$

This is called the *singular value decomposition* of A; the values $\{\lambda_i\}$, $i = 1, ..., \min(m, n)$, are called the *singular values* of A. Let us call $\{u_i\}$, i = 1, ..., n,

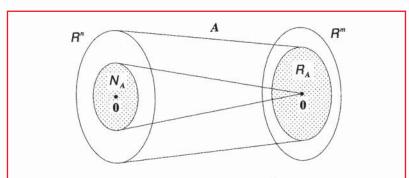


Fig. 2.4. The range $\mathcal{R}_{\mathbf{A}}$ and the null space $\mathcal{N}_{\mathbf{A}}$ of linear mapping \mathbf{A}

and $\{v_i\}$, i = 1, ..., m, the right orthonormal system and the left orthonormal system of A, respectively.

If we define orthogonal matrices $U = (u_1, u_2, ..., u_n)$ and $V = (v_1, v_2, ..., v_m)$, eq. (2.113) can be rewritten in the form

$$\boldsymbol{A} = \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{U}^{\top} \tag{2.114}$$

where Λ is an mn matrix whose first r diagonal elements are $\lambda_1, ..., \lambda_r$ in that order and whose other elements are all zero. If m = n, matrix Λ is diagonal.

The r-dimensional linear subspace

$$\mathcal{R}_{\mathbf{\Lambda}} = \{\boldsymbol{v}_1, ..., \boldsymbol{v}_r\}_L \subset \mathcal{R}^m \tag{2.115}$$

is called the range (or image space) of A: for any m-vector $y \in \mathcal{R}_A$, there exists an n-vector x such that y = Ax (Fig. 2.4). The (n-r)-dimensional linear subspace

$$\mathcal{N}_{\mathbf{A}} = \{\mathbf{u}_{r+1}, ..., \mathbf{u}_n\}_L \subset \mathcal{R}^n \tag{2.116}$$

is called the *null space* (or *kernel*) of A: Ax = 0 for any n-vector $x \in \mathcal{N}_A$ (Fig. 2.4). If A is symmetric, its right and left orthonormal systems coincide with its eigensystem, and its singular value decomposition coincides with its spectral decomposition (see eq. (2.62)).

Since $\{u_i\}$ is an orthonormal system, eq. (2.64) holds for an arbitrary n-vector x. Let λ_{max} be the maximum singular value. Since $\{v_i\}$ is also an orthonormal system, we see from eq. (2.113) that

$$\|\mathbf{A}\mathbf{x}\|^{2} = \|\sum_{i=1}^{r} \lambda_{i}(\mathbf{u}_{i}, \mathbf{x})\mathbf{v}_{i}\|^{2} = \sum_{i=1}^{r} \lambda_{i}^{2}(\mathbf{u}_{i}, \mathbf{x})^{2} \le \sum_{i=1}^{r} \lambda_{\max}^{2}(\mathbf{u}_{i}, \mathbf{x})^{2} = \lambda_{\max}^{2} \|\mathbf{x}\|^{2}.$$
(2.117)

Hence, if we define the spectral norm (or the natural norm) of A by

$$\|A\|_s = \lambda_{\text{max}},\tag{2.118}$$

eq. (2.117) implies the following inequality:

$$||Ax|| \le ||A||_s ||x||$$
 (2.119)

Equality holds for

$$x \propto u_{\text{max}} + \mathcal{N}_{\mathbf{A}}. \tag{2.120}$$

The right-hand side means the first term plus any element of \mathcal{N}_{A} (and such a form only), and u_{max} is the vector u_i corresponding to the singular value λ_{max} .

Let eq. (2.113) be the singular value decomposition of matrix \boldsymbol{A} . Its (Moore-Penrose) generalized inverse is defined by

$$\mathbf{A}^{-} = \sum_{i=1}^{r} \frac{\mathbf{u}_{i} \mathbf{v}_{i}^{\top}}{\lambda_{i}}.$$
 (2.121)

Evidently, the generalized inverse A^- coincides with the inverse A^{-1} if A is nonsingular. In correspondence with eq. (2.78) and eqs. (2.80), the following relationships hold:

$$(A^{-})^{-} = A, \quad A^{-}A = P_{\mathcal{N}_{A}}, \quad AA^{-} = P^{\mathcal{R}_{A}},$$

$$P^{\mathcal{R}_{A}}A = AP_{\mathcal{N}_{A}} = A, \quad P_{\mathcal{N}_{A}}A^{-} = A^{-}P^{\mathcal{R}_{A}} = A^{-}. \tag{2.122}$$

Here, $P^{\mathcal{R}_A}$ (= $P_{\mathcal{R}_A^{\perp}}$) and $P_{\mathcal{N}_A}$ (= $P^{\mathcal{N}_A^{\perp}}$) are the projection matrices onto \mathcal{R}_A and \mathcal{N}_A^{\perp} , respectively. From the above equations, we obtain

$$AA^{-}A = A, A^{-}AA^{-} = A^{-}.$$
 (2.123)

The rank-constrained generalized inverse $(A)_{r'}^-$ of rank $r' (\leq r)$ is defined by

$$(A)_{r'}^{-} = \sum_{i=1}^{r'} \frac{u_i v_i^{\top}}{\lambda_i},$$
 (2.124)

and the following relations hold:

$$(A)_{r'}^{-}A = P^{\mathcal{R}_{(A)_{r'}^{-}}}, \quad A(A)_{r'}^{-} = P_{\mathcal{N}_{(A)_{r'}^{-}}},$$

$$(A)_{r'}^{-}A(A)_{r'}^{-} = (A)_{r'}^{-}. \tag{2.125}$$

2.3.2 Linear equations

Let A be an mn-matrix, and b an m-vector. Consider the following linear equation for n-vector x:

$$\mathbf{A}\mathbf{x} = \mathbf{b}.\tag{2.126}$$

The following is the fundamental theorem for linear equations:

- The solution exists if and only if $b \in \mathcal{R}_{A}$ (or $P_{\mathcal{R}_{A}}b = 0$).
- If the solution exists, it is unique if and only if $\mathcal{N}_{\mathbf{A}} = \{0\}$.

The problem (2.126) is said to be consistent (or solvable) when $b \in \mathcal{R}_{A}$, and inconsistent (or unsolvable) otherwise; if it is consistent, it is said to be determinate when $\mathcal{N}_{A} = \{0\}$, and indeterminate otherwise.

If eq. (2.126) is solvable, the solution can be explicitly written in the following form:

$$x = A^-b + \mathcal{N}_A. \tag{2.127}$$

If A is nonsingular, the solution is given by

$$x = A^{-1}b = \frac{A^{\dagger}b}{\det A}, \tag{2.128}$$

where A^{\dagger} is the cofactor matrix of A (see eq. (2.20)). Let $A = (a_1, ..., a_n)$. From the cofactor expansion formula (2.14), the following *Cramer formula* is obtained:

$$x_i = \frac{|a_1, ..., b, ..., a_n|}{\det A}.$$
 (2.129)

The numerator on the right-hand side is the determinant of the matrix obtained by replacing the ith column of A by b.

If det A is very close to 0, a small perturbation of b can causes a large perturbation to the solution x. If this occurs, the linear equation (2.126) is said to be *ill-conditioned*; otherwise, it is *well-conditioned*. If b is perturbed into $b + \Delta b$, the solution $x = A^{-1}b$ is perturbed by $\Delta x = A^{-1}\Delta b$. Applying eq. (2.119), we obtain $\|\Delta x\| \leq \|A^{-1}\|_s \|\Delta b\|$. From eq. (2.126), we have $\|b\| \leq \|A\|_s \|x\|$. Combining these, we obtain

$$\frac{\|\Delta \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \le \operatorname{cond}(\boldsymbol{A}) \frac{\|\Delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|}, \tag{2.130}$$

where

$$\operatorname{cond}(\boldsymbol{A}) = \|\boldsymbol{A}\|_{s} \|\boldsymbol{A}^{-1}\|_{s} = \frac{\lambda_{\max}}{\lambda_{\min}}.$$
 (2.131)

Here, λ_{max} and λ_{min} are the largest and the smallest singular values of \boldsymbol{A} , respectively (see eq. (2.118)). The number cond(\boldsymbol{A}) is called the *condition* $number^{14}$ and measures the ill-posedness of the linear equation (2.126)—the equation becomes more ill-conditioned as cond(\boldsymbol{A}) becomes larger.

Suppose eq. (2.126) is consistent but only $r \leq m$ of the m component equations are independent, i.e., the matrix A has rank r. Theoretically, the

¹⁴The condition number can also be defined for a singular matrix \mathbf{A} in the form cond(\mathbf{A}) = $||\mathbf{A}||_s ||\mathbf{A}^-||_s = \lambda_{\max}/\lambda_{\min}$, where λ_{\max} and λ_{\min} are, respectively, the largest and the smallest of the nonnegative singular values of \mathbf{A} .

solution is given in the form of eq. (2.127). However, if the elements of the matrix \boldsymbol{A} and the components of the vector \boldsymbol{b} are supplied by a physical measurement, all the m equations may be independent because of noise. As a result, eq. (2.126) may become ill-conditioned or inconsistent. In such a case, a well-conditioned equation that gives a good approximation to \boldsymbol{x} is obtained by "projecting" both sides of eq. (2.126) onto the eigenspace of \boldsymbol{A} defined by the largest r singular values. The solution of the projected equation is given in terms of the rank-constrained generalized inverse in the form

$$\hat{\boldsymbol{x}} = (\boldsymbol{A})_{r}^{-} \boldsymbol{b} + \mathcal{N}_{(\boldsymbol{A})_{r}^{-}}. \tag{2.132}$$

The rank r is estimated either by an a priori theoretical analysis or by appropriately thresholding the singular values of A a posteriori.

2.3.3 Quadratic optimization

A. Least-squares optimization

Let A be an mn-matrix, and b an m-vector. Consider the least-squares optimization for n-vector x in the form

$$J[x] = ||Ax - b||^2 \to \min.$$
 (2.133)

Application of the singular value decomposition to \boldsymbol{A} yields the general solution in the following form:

$$\hat{\boldsymbol{x}} = \boldsymbol{A}^{-}\boldsymbol{b} + \mathcal{N}_{\boldsymbol{A}}. \tag{2.134}$$

If x is constrained to be in \mathcal{N}_{A}^{\perp} , the solution is uniquely given by $\hat{x} = A^{-}b$. The residual $J[\hat{x}]$ is given by

$$J[\hat{\boldsymbol{x}}] = \|\boldsymbol{P}_{\mathcal{R}_A} \boldsymbol{b}\|^2. \tag{2.135}$$

Evidently, the residual is 0 if and only if Ax = b is solvable.

B. Unconstrained quadratic optimization

Let C be a positive semi-definite (nn)-matrix, and d an n-vector. Consider the quadratic optimization for n-vector x in the form

$$J[x] = \frac{1}{2}(x, Cx) + (d, x) \to \min.$$
 (2.136)

If x is constrained to be in \mathcal{N}_{C}^{\perp} , the solution is uniquely given in the following form:

$$\hat{\boldsymbol{x}} = -\boldsymbol{C}^{-}\boldsymbol{d}.\tag{2.137}$$

The residual is

$$J[\hat{x}] = -\frac{1}{2}(d, C^{-}d). \tag{2.138}$$

C. Constrained quadratic optimization

Let S be a positive semi-definite (nn)-matrix. Consider the quadratic optimization for n-vector x in the form

$$J[x] = \frac{1}{2}(x, Sx) \to \min.$$
 (2.139)

Evidently, x = 0 is a solution (but not necessarily unique) if no constraint is imposed on x. The following three types of constraint are important:

- If x is constrained to be a unit vector (||x|| = 1), the solution is given by any unit eigenvector \hat{x} of S for the smallest eigenvalue λ_{\min} (see eqs. (2.86)); the residual is $J[\hat{x}] = \lambda_{\min}$ (see eq. (2.95)).
- If x is constrained by (x, Gx) = 1 for a positive definite (nn)-matrix G, the solution is given by any unit generalized eigenvector $\hat{x} \in \mathcal{N}_{S}^{\perp}$ of S with respect to G for the smallest generalized eigenvalue λ_{\min} ; the residual is $J[\hat{x}] = \lambda_{\min}$. If S is of full rank, the same conclusion is obtained even though G is not of full rank (see eq. (2.104)).
- Suppose x is constrained by a linear equation Ax = b, where A is an mn-matrix and b is an m-vector. If
 - 1. \boldsymbol{x} is constrained to be in $\mathcal{N}_{\boldsymbol{S}}^{\perp}$, and
 - 2. the constraint Ax = b is satisfiable for $x \in \mathcal{N}_{S}^{\perp}$, i.e., at least one $x_0 \in \mathcal{N}_{S}^{\perp}$ exists such that $Ax_0 = b$,

then the solution is uniquely given in the following form:

$$\hat{\boldsymbol{x}} = \boldsymbol{S}^{-} \boldsymbol{A}^{\top} (\boldsymbol{A} \boldsymbol{S}^{-} \boldsymbol{A}^{\top})^{-} \boldsymbol{b}. \tag{2.140}$$

The residual is

$$J[\hat{x}] = \frac{1}{2}(b, (AS^{-}A^{\top})^{-}b). \tag{2.141}$$

2.3.4 Matrix inner product and matrix norm

The matrix inner product of mn-matrices $\mathbf{A} = (A_{ij})$ and $\mathbf{B} = (B_{ij})$ is defined by

$$(\boldsymbol{A}; \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}^{\top} \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A} \boldsymbol{B}^{\top}) = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ij}.$$
 (2.142)

Evidently, (A; B) = (B; A). If (A; B) = 0, matrices A and B are said to be orthogonal. An (nn)-matrix is orthogonal to any [nn]-matrix; an [nn]-matrix is orthogonal to any (nn)-matrix. The following identities are easy to prove:

$$(\boldsymbol{A};\boldsymbol{B}\boldsymbol{C}) = (\boldsymbol{B}^{\top}\boldsymbol{A};\boldsymbol{C}) = (\boldsymbol{A}\boldsymbol{C}^{\top};\boldsymbol{B}),$$

$$(a, Ab) = (ab^{\top}; A), \quad (ab^{\top}; cd^{\top}) = (a, c)(b, d).$$
 (2.143)

The (Euclidean) matrix norm¹⁵ of an mn-matrix is defined by

$$\|\mathbf{A}\| = \sqrt{(\mathbf{A}; \mathbf{A})} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2}}.$$
 (2.144)

We define the normalization $N[\cdot]$ of an nn-matrix A as follows (see the second of eqs. (2.7)):

$$N[\mathbf{A}] = \frac{\mathbf{A}}{\|\mathbf{A}\|}.\tag{2.145}$$

The Schwarz inequality and the triangle inequality hold in the same way as in the case of vectors:

$$-\|A\| \cdot \|B\| \le (A; B) \le \|A\| \cdot \|B\|, \tag{2.146}$$

$$||A + B|| \le ||A|| + ||B||.$$
 (2.147)

In both inequalities, equality holds if and only if there exists a real number t such that A = tB or B = O.

Let U be an n-dimensional orthogonal matrix. From eqs. (2.52) and the first of eqs. (2.143), it is immediately seen that for arbitrary nn-matrices A and B

$$(UA; UB) = (AU; BU) = (A; B).$$
 (2.148)

Letting $\mathbf{A} = \mathbf{B}$, we obtain

$$||UA|| = ||AU|| = ||A||. \tag{2.149}$$

Further letting A = I, we see that

$$\|\boldsymbol{U}\| = \sqrt{n}.\tag{2.150}$$

A nonsingular nn-matrix \boldsymbol{T} defines a mapping from an nn-matrix \boldsymbol{A} to an nn-matrix in the form

$$\mathbf{A}' = \mathbf{T}^{-1} \mathbf{A} \mathbf{T}. \tag{2.151}$$

¹⁵Some authors use different terminologies such as the *Frobenius norm*, the *Schur norm*, and the *Schmidt norm*. In general, the norm $||\mathbf{A}||$ can be defined arbitrarily as long as (i) $||\mathbf{A}|| \geq 0$, equality holding if and only if $\mathbf{A} = \mathbf{O}$, (ii) $||c\mathbf{A}|| = |c| \cdot ||\mathbf{A}||$ for any scalar c, and (iii) the triangle inequality (2.147) holds. There exist other definitions that satisfy these—the *1-norm* $||\mathbf{A}||_1 = \sum_{i=1}^n \max_j |A_{ij}|$, the ∞-norm $||\mathbf{A}||_{\infty} = \sum_{j=1}^n \max_i |A_{ij}|$, and the *spectral norm* $||\mathbf{A}||_s$ defined by eq. (2.118), for instance. If $||\mathbf{A}\mathbf{x}|| \leq ||\mathbf{A}|| \cdot ||\mathbf{x}||$ holds, the matrix norm $||\mathbf{A}||$ is said to be *consistent* with the vector norm $||\mathbf{x}||$. The spectral norm $||\mathbf{A}||_s$ is consistent with the Euclidean norm $||\mathbf{x}||$, and the 1-norm $||\mathbf{A}||_1$ and the ∞-norm $||\mathbf{A}||_{\infty}$ are consistent with the 1-norm $||\mathbf{x}||_1$ and the ∞-norm $||\mathbf{x}||_1$ and $||\mathbf{x}||_1$ and ||

This is a one-to-one and onto mapping and is called the *similarity transformation*¹⁶.

A function $f(\cdot)$ of a matrix is called an *invariant* with respect to similarity transformations if f(A') = f(A) for an arbitrary nonsingular matrix T. The trace and the determinant are typical invariants:

$$\operatorname{tr}(\boldsymbol{T}^{-1}\boldsymbol{A}\boldsymbol{T}) = \operatorname{tr}\boldsymbol{A}, \quad \det(\boldsymbol{T}^{-1}\boldsymbol{A}\boldsymbol{T}) = \det \boldsymbol{A}.$$
 (2.152)

Eq. (2.67) implies that any symmetric matrix is mapped to a diagonal matrix by an appropriate similarity transformation; the transformation is defined by an orthogonal matrix. Hence, if A is a symmetric matrix with eigenvalues $\{\lambda_i\}$, any invariant with respect to similarity transformations is a function of $\{\lambda_i\}$. Eqs. (2.67) and (2.149) imply that

$$\|\mathbf{A}\| = \sqrt{\sum_{i=1}^{n} \lambda_i^2}.$$
 (2.153)

Hence, $\|A\|$ is also an invariant with respect to similarity transformation.

In three dimensions, $\operatorname{tr} A$, $\det A$, and $\|A\|$ can uniquely determine the three eigenvalues $\{\lambda_1, \lambda_2, \lambda_3\}$ of a (33)-matrix A (see eqs. (2.68)). Hence, the three invariants $\{\operatorname{tr} A$, $\det A$, $\|A\|$ are an *invariant basis* in the sense that any invariant can be expressed in terms of them.

A nonsingular nn-matrix T defines a mapping from an (nn)-matrix A to an (nn)-matrix in the form

$$\mathbf{A}' = \mathbf{T}^{\top} \mathbf{A} \mathbf{T}. \tag{2.154}$$

This is a one-to-one and onto mapping and called the congruence transformation¹⁷. The pair (p,q) consisting of the number p of positive eigenvalues and the number q of negative eigenvalues of an (nn)-matrix A is called the signature of A. Under a congruence transformation, the signature does not change (Sylvester's law of inertia). Hence, the rank is also preserved. It follows that a positive definite symmetric matrix is always transformed to a positive definite symmetric matrix; a positive semi-definite symmetric matrix is always transformed to a positive semi-definite matrix of the same rank.

The congruence transformation defined by an orthogonal matrix U coincides with the similarity transformation defined by U, and the matrix inner product and the matrix norm are also preserved:

$$(U^{\top}AU; U^{\top}BU) = (A; B), \quad ||U^{\top}AU|| = ||A||.$$
 (2.155)

¹⁶Similarity transformations define a group of transformations isomorphic to GL(n), the group of nonsingular matrices under multiplication.

¹⁷Congruence transformations define a group of transformations isomorphic to GL(n), the group of nonsingular matrices under multiplication.

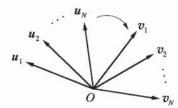


Fig. 2.5. Finding a rotation that maps one set of vectors to another.

2.3.5 Optimal rotation fitting rotational part of Procrustes method

Let $\{u_{\alpha}\}$ and $\{v_{\alpha}\}$, $\alpha = 1, ..., N$, be two sets of *n*-vectors. Consider the problem of finding a rotation R such that

$$\sum_{\alpha=1}^{N} W_{\alpha} \|\boldsymbol{u}_{\alpha} - \boldsymbol{R}\boldsymbol{v}_{\alpha}\|^{2} \to \min,$$
(2.156)

where W_{α} are nonnegative weights (Fig. 2.5). Since $\|\mathbf{R}\mathbf{v}_{\alpha}\| = \|\mathbf{v}_{\alpha}\|$, the right-hand side can be rewritten as $\sum_{\alpha=1}^{N} W_{\alpha} \|\mathbf{u}_{\alpha}\|^{2} - 2 \sum_{\alpha=1}^{N} W_{\alpha} (\mathbf{u}_{\alpha}, \mathbf{R}\mathbf{v}_{\alpha}) + \sum_{\alpha=1}^{N} W_{\alpha} \|\mathbf{v}_{\alpha}\|^{2}$. Hence, if we define the correlation matrix

$$\boldsymbol{A} = \sum_{\alpha=1}^{N} W_{\alpha} \boldsymbol{u}_{\alpha} \boldsymbol{v}_{\alpha}^{\top}, \tag{2.157}$$

the problem can be rewritten as follows (see the second of eqs. (2.143)):

$$(\mathbf{A}; \mathbf{R}) \to \max. \tag{2.158}$$

This problem can also be viewed as finding a rotation matrix R that is the closest to a given matrix A in the matrix norm:

$$\|R - A\| \to \min. \tag{2.159}$$

In fact, eqs. (2.144) and (2.150) imply that $\|\mathbf{R} - \mathbf{A}\|^2 = \|\mathbf{R}\|^2 - 2(\mathbf{R}; \mathbf{A}) + \|\mathbf{A}\|^2$ = $n - 2(\mathbf{A}; \mathbf{R}) + \|\mathbf{A}\|^2$, so minimizing $\|\mathbf{R} - \mathbf{A}\|$ is equivalent to maximizing $(\mathbf{A}; \mathbf{R})$

Let $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{U}^{\top}$ be the singular value decomposition of \mathbf{A} . The solution of the optimization (2.159) is given by

$$\mathbf{R} = \mathbf{V}\operatorname{diag}(1, ..., 1, \det(\mathbf{V}\mathbf{U}^{\top}))\mathbf{U}^{\top}.$$
 (2.160)

If the optimization is conducted over orthogonal matrices (i.e., if $\det \mathbf{R} = 1$ is not required), the solution is given by

$$R = VU^{\top} \tag{2.161}$$

2.4 Matrix and Tensor Algebra

2.4.1 Direct sum and tensor product

For an m-vector $a = (a_i)$ and an n-vector $b = (b_i)$, the (m+n)-vector $(a_1, ..., a_m, b_1, ..., b_n)^{\top}$ is called the <u>direct sum</u> of a and b and denoted by $a \oplus b$. For an mm-matrix A and an nn-matrix B, the (m+n)(m+n)-matrix that has A and B as <u>diagonal blocks</u> in that order and zero elements elsewhere is called the <u>direct sum</u> of A and B and denoted by $A \oplus B$. Direct sums of more than two vectors or more than two matrices are defined similarly:

Let A be an mm-matrix, and B an nn-matrix. Let u and a be m-vectors, and v and b n-vectors. The following relations are obvious:

$$(\mathbf{A} \oplus \mathbf{B})(\mathbf{u} \oplus \mathbf{v}) = (\mathbf{A}\mathbf{u}) \oplus (\mathbf{B}\mathbf{v}),$$

 $(\mathbf{a} \oplus \mathbf{b}, \mathbf{u} \oplus \mathbf{v}) = (\mathbf{a}, \mathbf{u}) + (\mathbf{b}, \mathbf{v}).$ (2.163)

A set of real numbers $\mathcal{T}=(T_{i_1i_2\cdots i_r}),\,i_1,i_2,...,i_r=1,...,n,$ with r indices running over n-dimensional coordinates is called a *tensor* of dimension n and degree r. If each index corresponds to coordinates of a different dimensionality, \mathcal{T} is called a tensor of mixed dimensions or a mixed tensor. If index i_k runs over $1, ..., n_k$ for k=1, ..., r, the tensor is said to be of type $n_1n_2\cdots n_r$. A tensor of type $n_1n_2\cdots n_r$ is also referred to as an $n_1n_2\cdots n_r$ -tensor. If $T_{i_1i_2\cdots i_r}$ is symmetric with respect to indices i_k and i_{k+1} , the type is written as $i_1\cdots (i_ki_{k+1})\cdots i_r$; If $T_{i_1i_2\cdots i_r}$ is antisymmetric with respect to indices i_k and i_{k+1} , the type is written as $i_1\cdots [i_ki_{k+1}]\cdots i_r$; Scalars, vectors, and matrices are tensors of degrees 0, 1, and 0, respectively.

The tensor product of tensor $\mathcal{A} = (A_{i_1 \cdots i_r})$ of degree r and tensor $\mathcal{B} = (B_{i_1 \cdots i_s})$ of degree s is a tensor $\mathcal{C} = (C_{i_1 \cdots i_{r+s}})$ of degree r+s defined by

$$C_{i_1 \cdots i_{r+s}} = A_{i_1 \cdots i_r} B_{i_1 \cdots i_e}. \tag{2.164}$$

This is symbolically written as

$$C = A \otimes B. \tag{2.165}$$

The following identities hold for scalar c and vectors a and b:

$$c \otimes u = cu$$
, $a \otimes b = ab^{\top}$. (2.166)
derive these from 2.164
(see (2.1)...)

2.4.2 Cast in three dimensions

A. 33-matrices

The elements of a 33-matrix $A = (A_{ij})$ are rearranged into a 9-vector

$$a = \begin{pmatrix} A_{11} \\ A_{12} \\ \vdots \\ A_{33} \end{pmatrix}, \tag{2.167}$$

which can be written as $a = (a_{\kappa})$ with

$$a_{\kappa} = A_{(\kappa-1)\text{div}3+1,(\kappa-1)\text{mod}3+1}.$$
 (2.168)

The symbols 'div' and 'mod' denote integer division and integer remainder, respectively. Conversely, a 9-vector $a = (a_{\kappa})$ is rearranged into a 33-matrix

$$\mathbf{A} = \begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{pmatrix}, \tag{2.169}$$

which can be written as $\mathbf{A} = (A_{ij})$ with

$$A_{ij} = a_{3(i-1)+j}. (2.170)$$

The above type transformation or cast is denoted by

$$a = \operatorname{type}_{9}[A], \qquad A = \operatorname{type}_{33}[a].$$
 (2.171)

The norm is preserved by cast:

$$||a|| = ||A||. (2.172)$$

The left-hand side designates the vector norm, whereas the right-hand side designates the matrix norm. The cast can be extended to tensors:

- A 3333-tensor $\mathcal{T} = (T_{ijkl})$ is cast, by rearranging the elements with respect to the indices i and j, into a mixed tensor $^*\mathcal{T} = (^*T_{\kappa kl})$ of type 933, which is denoted by type₉₃₃[\mathcal{T}]; the inverse cast is $\mathcal{T} = \text{type}_{3333}[^*\mathcal{T}]$.
- A 3333-tensor $\mathcal{T} = (T_{ijkl})$ is cast into a tensor $\mathcal{T}^* = (T^*_{ij\kappa})$ of type 339, which is denoted by $\operatorname{type}_{339}[\mathcal{T}]$; the inverse cast is $\mathcal{T} = \operatorname{type}_{3333}[\mathcal{T}^*]$.
- If both operations are applied, $\mathcal{T} = (T_{ijkl})$ is cast into a 99-matrix $T = (T_{\kappa\lambda})$, which is denoted by $\operatorname{type}_{99}[\mathcal{T}]$; the inverse cast is $\mathcal{T} = \operatorname{type}_{3333}[T]$.

B. (33)-matrices

The elements of a (33)-matrix $S = (S_{ij})$ are rearranged into a 6-vector

$$s = \begin{pmatrix} S_{11} \\ S_{22} \\ S_{33} \\ \sqrt{2}S_{23} \\ \sqrt{2}S_{31} \\ \sqrt{2}S_{12} \end{pmatrix}. \tag{2.173}$$

Conversely, a 6-vector $s = (s_{\kappa})$ is rearranged into a (33)-matrix

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}s_1 & s_6 & s_5 \\ s_6 & \sqrt{2}s_2 & s_4 \\ s_5 & s_4 & \sqrt{2}s_3 \end{pmatrix}. \tag{2.174}$$

This cast is denoted by

$$s = \text{type}_{6}[S], \qquad S = \text{type}_{(33)}[s].$$
 (2.175)

The norm is preserved by cast:

$$||s|| = ||S||. (2.176)$$

The cast can be extended to tensors:

- A (33)33-tensor $\mathcal{L} = (L_{ijkl})$ is cast, by rearranging the elements with respect to the indices i and j, into a mixed tensor $^*\mathcal{L} = (^*L_{\kappa kl})$ of type 633, which is denoted by $\text{type}_{633}[\mathcal{L}]$; the inverse cast is $\mathcal{L} = \text{type}_{(33)33}[^*\mathcal{L}]$.
- A 33(33)-tensor $\mathcal{N} = (S_{ijkl})$ is cast to a mixed tensor $\mathcal{N}^* = (S_{ij\kappa}^*)$ of type 336, which is denoted by $\operatorname{type}_{336}[\mathcal{N}]$; the inverse cast is $\mathcal{N} = \operatorname{type}_{33(33)}[\mathcal{N}^*]$.
- If both operations are applied, a (33)(33)-tensor $\mathcal{M} = (M_{ijkl})$ is cast to a 66-matrix $\mathbf{M} = (M_{\kappa\lambda})$, which is denoted by type₆₆[\mathcal{M}]. In elements,

$$\boldsymbol{M} = \begin{pmatrix} M_{1111} & M_{1122} & M_{1133} \sqrt{2} M_{1123} \sqrt{2} M_{1131} \sqrt{2} M_{1112} \\ M_{2211} & M_{2222} & M_{2233} \sqrt{2} M_{2223} \sqrt{2} M_{2231} \sqrt{2} M_{2212} \\ M_{3311} & M_{3322} & M_{3333} \sqrt{2} M_{3323} \sqrt{2} M_{3331} \sqrt{2} M_{3312} \\ \sqrt{2} M_{2311} \sqrt{2} M_{2322} \sqrt{2} M_{2333} & 2 M_{2323} & 2 M_{2331} & 2 M_{2312} \\ \sqrt{2} M_{3111} \sqrt{2} M_{3122} \sqrt{2} M_{3133} & 2 M_{3123} & 2 M_{3131} & 2 M_{3112} \\ \sqrt{2} M_{1211} \sqrt{2} M_{1222} \sqrt{2} M_{1233} & 2 M_{1223} & 2 M_{1231} & 2 M_{1212} \end{pmatrix}$$

$$(2.177)$$

The inverse cast is $\mathcal{M} = \text{type}_{(33)(33)}[M]$.

C. [33]-matrices

The elements of a [33]-matrix $W = (W_{ij})$ are rearranged into a 3-vector

$$w = \begin{pmatrix} W_{32} \\ W_{13} \\ W_{21} \end{pmatrix}, \tag{2.178}$$

which can be written as $\boldsymbol{w} = (w_{\kappa})$ with

$$w_{\kappa} = -\frac{1}{2} \sum_{i,j=1}^{3} \epsilon_{\kappa ij} W_{ij}. \tag{2.179}$$

Conversely, a 3-vector $\mathbf{w} = (w_{\kappa})$ is rearranged into a [33]-matrix

$$\mathbf{W} = \begin{pmatrix} 0 & -w_3 & w_2 \\ w_3 & 0 & -w_1 \\ -w_2 & w_1 & 0 \end{pmatrix} = \mathbf{w} \times \mathbf{I}, \tag{2.180}$$

which can be written as $\mathbf{W} = (W_{ij})$ with

$$W_{ij} = -\sum_{k=1}^{3} \epsilon_{ij\kappa} w_{\kappa}. \tag{2.181}$$

This cast is denoted by

$$\boldsymbol{w} = \operatorname{type}_{3}[\boldsymbol{W}], \qquad \boldsymbol{W} = \operatorname{type}_{[33]}[\boldsymbol{w}].$$
 (2.182)

The following identities hold, where r is an arbitrary 3-vector:

$$\|W\| = \sqrt{2}\|w\|, \qquad Wr = w \times r.$$
 (2.183)

The cast can be extended to tensors:

- A [33]33-tensor $\mathcal{P} = (P_{ijkl})$ is cast, by rearranging the elements with respect to the indices i and j, into a mixed tensor $^*\mathcal{P} = (^*P_{\kappa kl})$ of type 333, which is denoted by $\text{type}_{333}[\mathcal{P}]$; the inverse cast is $\mathcal{P} = \text{type}_{[33]33}[^*\mathcal{P}]$.
- A 33[33]-tensor $Q = (Q_{ijkl})$ is cast to a mixed tensor $Q^* = (Q_{ij\kappa}^*)$ of type 333, which is denoted by $\text{type}_{333}[Q]$; the inverse cast is $Q = \text{type}_{33[33]}[Q^*]$.
- If both operations are applied, a [33][33]-tensor $\mathcal{R} = (R_{ijkl})$ is cast to a 33-matrix $\mathbf{R} = (R_{\kappa\lambda})$, which is denoted by type₃₃[\mathcal{R}]. In elements,

$$\mathbf{R} = \begin{pmatrix} R_{3232} & R_{3213} & R_{3221} \\ R_{1332} & R_{1313} & R_{1321} \\ R_{2132} & R_{2113} & R_{2121} \end{pmatrix}. \tag{2.184}$$

The inverse cast is $\mathcal{R} = \text{type}_{[33][33]}[\mathbf{R}]$.

2.4.3 Linear mapping of matrices in three dimensions

A. 33-matrices

moral: tensors can be recast

A 3333-tensor $\mathcal{T} = (T_{ijkl})$ defines a line (for computations, not meaning) 33-matrix: matrix $\mathbf{A} = (A_{ij})$ is mapped to matrix $\mathbf{A} = (A_{ij})$ in the form

$$A'_{ij} = \sum_{k,l=1}^{3} T_{ijkl} A_{kl}. \tag{2.185}$$

This mapping is denoted by

$$\mathbf{A}' = \mathcal{T}\mathbf{A}.\tag{2.186}$$

The identity mapping $\mathcal{I} = (I_{ijkl})$ is given by

$$I_{ijkl} = \delta_{ik}\delta_{jl}. \tag{2.187}$$

The similarity transformation $A' = T^{-1}AT$ defined by a nonsingular matrix $T = (T_{ij})$ maps a 33-matrix A to a 33-matrix (see eq. (2.151)). This mapping can be written as A' = TA, where the tensor $T = (T_{ijkl})$ is defined by

$$T_{ijkl} = T_{ik}^{-1} T_{lj}. (2.188)$$

Here, T_{ik}^{-1} denotes the (ik) element of T^{-1} . If a 3333-tensor $\mathcal T$ is cast into a 99-matrix T and if 33-matrices A and A' are cast into 9-vectors a and a', respectively, the mapping A' = TA is identified with

$$a' = Ta, \tag{2.189}$$

which is a linear mapping from a 9-vector a to a 9-vector a'. Hence, the mapping \mathcal{T} is nonsingular if and only if the 99-matrix T obtained by cast is nonsingular. The inverse \mathcal{T}^{-1} of a nonsingular mapping \mathcal{T} is given through the cast:

$$\mathcal{T}^{-1} = \text{type}_{3333}[\text{type}_{99}[\mathcal{T}]^{-1}].$$
 (2.190)

If mapping \mathcal{T} is singular, its generalized inverse is also defined through the same cast:

$$\mathcal{T}^{-} = \text{type}_{3333}[\text{type}_{99}[\mathcal{T}]^{-}].$$
 (2.191)

A 33-matrix **A** is an eigenmatrix of a 3333-tensor \mathcal{T} for eigenvalue λ if

$$\mathcal{T}\mathbf{A} = \lambda \mathbf{A}.\tag{2.192}$$

Eigenvalues and eigenmatrices are computed by solving the eigenvalue problem of the (99)-matrix obtained by cast: if $T = \text{type}_{99}[T]$ and $a = \text{type}_{9}[A]$, eq. (2.192) reads

$$Ta = \lambda a. \tag{2.193}$$

B. (33)-matrices

A (33)(33)-tensor $\mathcal{M} = (M_{ijkl})$ defines a linear mapping from a (33)-matrix to a (33)-matrix: matrix S is mapped to matrix $S' = \mathcal{M}S$ in the form eq. (2.185). The identity mapping $\mathcal{I} = (I_{ijkl})$ is given by

$$I_{ijkl} = \frac{1}{2} (\delta_{ik}\delta_{jl} + \delta_{jk}\delta_{il}). \tag{2.194}$$

The congruence transformation $S' = T^{-1}ST$ defined by a nonsingular 33-matrix $T = (T_{ij})$ maps a (33)-matrix S to a (33)-matrix (see eq. (2.154)). This mapping can be written as $S' = \mathcal{M}S$, where the tensor $\mathcal{M} = (M_{ijkl})$ is defined by

$$M_{ijkl} = \frac{1}{2}(T_{ki}T_{lj} + T_{kj}T_{li}). \tag{2.195}$$

If a (33)(33)-tensor \mathcal{M} is cast into a 66-matrix M and if (33)-matrices S and S' are cast into 6-vectors s and s', respectively, the mapping $S' = \mathcal{M}S$ is identified with

$$s' = Ms, (2.196)$$

which is a linear mapping from 6-vector s to 6-vector s'. Hence, the mapping \mathcal{M} is nonsingular if and only if the 66-matrix \mathbf{M} obtained by cast is nonsingular. The inverse \mathcal{M}^{-1} and the generalized inverse \mathcal{M}^{-} are defined through the cast:

$$\mathcal{M}^{-1} = \text{type}_{(33)(33)}[\text{type}_{66}[\mathcal{M}]^{-1}],$$
 (2.197)

$$\mathcal{M}^- = \text{type}_{(33)(33)}[\text{type}_{66}[\mathcal{M}]^-].$$
 (2.198)

Eigenvalues and eigenmatrices are also defined and computed through the cast.

C. [33]-matrices

derive the 2!

If a [33][33]-tensor \mathcal{R} is cast into a 33-matrix \mathbf{R} and if [33]-matrices \mathbf{W} and \mathbf{W}' are cast into 3-vectors \mathbf{w} and \mathbf{w}' , respectively, the mapping $\mathbf{W}' = \mathcal{R}\mathbf{W}$ is identified with

$$w' = 2Rw, (2.199)$$

which is a linear mapping from 3-vector w to 3-vector w'. Hence, the mapping \mathcal{R} is nonsingular if and only if the 33-matrix \mathbf{R} obtained by cast is nonsingular. The inverse \mathcal{R}^{-1} and the generalized inverse \mathcal{R}^{-} are defined through the cast:

$$\mathcal{R}^{-1} = \frac{1}{4} \text{type}_{[33][33]} [\text{type}_{33}[\mathcal{R}]^{-1}], \tag{2.200}$$

$$\mathcal{R}^{-} = \frac{1}{4} \text{type}_{[33][33]} [\text{type}_{33}[\mathcal{R}]^{-}]. \tag{2.201}$$

Eigenvalues and eigenmatrices are also defined and computed through the cast.

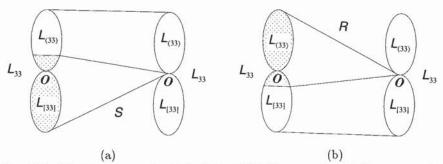


Fig. 2.6. (a) Linear mapping defined by (33)(33)-tensor S. (a) Linear mapping defined by [33][33]-tensor R.

D. Matrix spaces

The nine-dimensional linear space \mathcal{L}_{33} of all 33-matrices is the direct sum of the six-dimensional subspace $\mathcal{L}_{(33)}$ of all (33)-matrices and the three-dimensional subspace $\mathcal{L}_{[33]}$ of all [33]-matrices (Fig. 2.6). The two subspaces are orthogonal complements of each other (see Section 2.3.4):

$$\mathcal{L}_{33} = \mathcal{L}_{(33)} \oplus \mathcal{L}_{[33]}, \qquad \mathcal{L}_{(33)} \perp \mathcal{L}_{[33]}.$$
 (2.202)

This is because any 33-matrix A is uniquely decomposed into a (33)-matrix A_s and a [33]-matrix A_a :

$$A = A_s + A_a,$$
 $(A_s; A_a) = 0,$ (2.203)

$$\mathbf{A}_s = S[\mathbf{A}], \qquad \mathbf{A}_3 = A[\mathbf{A}]. \tag{2.204}$$

Here, the symmetrization operator $S[\cdot]$ and the antisymmetrization operator $A[\cdot]$ are defined as follows:

$$S[A] = \frac{1}{2}(A + A^{\top}), \quad A[A] = \frac{1}{2}(A - A^{\top}).$$
 (2.205)

We observe the following:

- If a (33)(33)-tensor S is viewed as a 3333-tensor, the linear mapping
 it defines is singular: its null space includes L_[33], and its range is a
 subspace of L₍₃₃₎ (Fig. 2.6a). Hence, it always has eigenvalue 0, whose
 multiplicity is at least 3.
- If a [33][33]-tensor R is viewed as a 3333-tensor, the linear mapping it
 defines is also singular: its null space includes L₍₃₃₎, and its range is a
 subspace of L_[33] (Fig. 2.6b). Hence, it always has eigenvalue 0, whose
 multiplicity is at least 6.