holds for an arbitrary orthonormal system $\left\{\boldsymbol{u}_{i}\right\}$. From $\left(\boldsymbol{x}, \sum_{i=1}^{n} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} \boldsymbol{x}\right)=$ $(\boldsymbol{x}, \boldsymbol{I} \boldsymbol{x})$, we obtain the following identity for an arbitrary vector and an arbitrary orthonormal system $\left\{\boldsymbol{u}_{i}\right\}$:

$$
\begin{equation*}
\sum_{i=1}^{n}\left(u_{i}, x\right)^{2}=\|x\|^{2} \tag{2.64}
\end{equation*}
$$

Let $\left\{\lambda_{i}\right\}$ be the eigenvalues of $(n n)$-matrix \boldsymbol{A}, and $\left\{u_{i}\right\}$ the corresponding eigensystem. Since $\left\{\boldsymbol{u}_{i}\right\}$ is an orthonormal system, the matrix $\boldsymbol{U}=$ $\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{n}\right)$ is orthogonal. Eq. (2.62) is equivalent to

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\top} \tag{2.65}
\end{equation*}
$$

where $\boldsymbol{\Lambda}$ is the diagonal matrix with diagonal elements $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ in that order; we write

$$
\begin{equation*}
\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) . \tag{2.66}
\end{equation*}
$$

From eq. (2.65), we obtain

$$
\begin{equation*}
\boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U}=\boldsymbol{\Lambda} \tag{2.67}
\end{equation*}
$$

which is called the diagonalization of \boldsymbol{A}. Applying the fourth of eqs. (2.2) and eq. (2.12) to eq. (2.65), we obtain the following identities:

$$
\begin{equation*}
\operatorname{tr} \boldsymbol{A}=\sum_{i=1}^{n} \lambda_{i}, \quad \operatorname{det} \boldsymbol{A}=\prod_{i=1}^{n} \lambda_{i} \tag{2.68}
\end{equation*}
$$

From the spectral decomposition (2.62), the k th power \boldsymbol{A}^{k} for an arbitrary integer $k>0$ is given by

$$
\begin{equation*}
\boldsymbol{A}^{k}=\sum_{i=1}^{n} \lambda_{i}^{k} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} . \tag{2.69}
\end{equation*}
$$

This can be extended to an arbitrary polynomial $p(x)$:

$$
\begin{equation*}
p(\boldsymbol{A})=\sum_{i=1}^{n} p\left(\lambda_{i}\right) \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} . \tag{2.70}
\end{equation*}
$$

If \boldsymbol{A} is of full rank, its inverse \boldsymbol{A}^{-1} is given by

$$
\begin{equation*}
\boldsymbol{A}^{-1}=\sum_{i=1}^{n} \frac{1}{\lambda_{i}} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} \text {. } \tag{2.71}
\end{equation*}
$$

This can be extended to an arbitrary negative power of \boldsymbol{A} (see the third of eqs. (2.21)):

$$
\begin{equation*}
\boldsymbol{A}^{-k}=\sum_{i=1}^{n} \frac{1}{\lambda_{i}{ }^{k}} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} . \tag{2.72}
\end{equation*}
$$

2.2.2 Generalized inverse

An ($n n$)-matrix \boldsymbol{A} is positive definite if its eigenvalues are all positive, and is positive semi-definite if its eigenvalues are all nonnegative; it is negative definite if its eigenvalues are all negative, and is negative semi-definite if its eigenvalues are all nonpositive.

For a positive semi-definite ($n n$)-matrix \boldsymbol{A}, eq. (2.69) can be extended to arbitrary non-integer powers $\boldsymbol{A}^{q}, q>0$. In particular, the "square root" $\sqrt{\boldsymbol{A}}$ of \boldsymbol{A} is defined by

$$
\begin{equation*}
\sqrt{\boldsymbol{A}}=\sum_{i=1}^{n} \sqrt{\lambda_{i}} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} \tag{2.73}
\end{equation*}
$$

It is easy to see that $(\sqrt{\boldsymbol{A}})^{2}=\boldsymbol{A}$. If \boldsymbol{A} is positive definite, eq. (2.69) can be extended to arbitrary negative non-integer powers such as $\boldsymbol{A}^{-2 / 3}$.

Let $\left\{\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{l}\right\}_{L}$ denote the linear subspace spanned (or generated) by \boldsymbol{r}_{1}, $\ldots, \boldsymbol{r}_{l}$, i.e., the set of all vectors that can be expressed as a linear combination $\sum_{i=1}^{l} c_{i} \boldsymbol{r}_{i}$ for some real numbers c_{1}, \ldots, c_{l}. A positive semi-definite $(n n)$ matrix of rank $r(\leq n)$ has the following spectral decomposition:

$$
\begin{equation*}
\boldsymbol{A}=\sum_{i=1}^{r} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}, \quad \lambda_{i}>0, \quad i=1, \ldots, r . \tag{2.74}
\end{equation*}
$$

Let the symbol \mathcal{R}^{n} denote the n-dimensional space of all n-vectors. The r-dimensional subspace

$$
\begin{equation*}
\mathcal{R}_{\boldsymbol{A}}=\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}\right\}_{L} \subset \mathcal{R}^{n} \tag{2.75}
\end{equation*}
$$

is called the range (or image space) of \boldsymbol{A}, for which the set $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}\right\}$ is an orthonormal basis. The $(n-r)$-dimensional subspace

$$
\begin{equation*}
\mathcal{N}_{\boldsymbol{A}}=\left\{\boldsymbol{u}_{r+1}, \ldots, \boldsymbol{u}_{n}\right\}_{L} \subset \mathcal{R}^{n} \tag{2.76}
\end{equation*}
$$

is called the null space of \boldsymbol{A}, for which the set $\left\{\boldsymbol{u}_{r+1}, \ldots, \boldsymbol{u}_{n}\right\}$ is an orthonormal basis. The n-dimensional space is the direct sum of $\mathcal{R}_{\boldsymbol{A}}$ and $\mathcal{N}_{\boldsymbol{A}}$, each being the orthogonal complement of the other:

$$
\begin{equation*}
\mathcal{R}^{n}=\mathcal{R}_{\boldsymbol{A}} \oplus \mathcal{N}_{\boldsymbol{A}}, \quad \mathcal{R}_{\boldsymbol{A}} \perp \mathcal{N}_{\boldsymbol{A}} \tag{2.77}
\end{equation*}
$$

This definition implies

$$
\begin{equation*}
P_{\mathcal{N}_{A}} A=A P_{\mathcal{N}_{A}}=A \tag{2.78}
\end{equation*}
$$

The (Moore-Penrose) generalized (or pseudo) inverse ${ }^{10} \boldsymbol{A}^{-}$of \boldsymbol{A} is defined

[^0]pseudo-inverse rank r $\quad \boldsymbol{A}^{-}=\sum_{i=1}^{r} \frac{1}{\lambda_{i}} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}$.

with SVD, not
much harder for
general $\boldsymbol{A}(2.121)$

Evidently, the generalized inverse \boldsymbol{A}^{-}coincides with the inverse \boldsymbol{A}^{-1} if \boldsymbol{A} is of full rank. From this definition, the following relationships are obtained (see eqs. (2.50) and (2.63)):

$$
\begin{gather*}
\left(\boldsymbol{A}^{-}\right)^{-}=\boldsymbol{A}, \quad \boldsymbol{P}_{\mathcal{N}_{A}} \boldsymbol{A}^{-}=\boldsymbol{A}^{-} \boldsymbol{P}_{\mathcal{N}_{A}}=\boldsymbol{A}^{-} \\
\boldsymbol{A}^{-} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{A}^{-}=\boldsymbol{P}_{\mathcal{N}_{A}} \tag{2.80}
\end{gather*}
$$

From eqs. (2.78) and (2.80), we obtain

$$
\begin{equation*}
\longrightarrow A A^{-} A=A, \quad A^{-} A A^{-}=A^{-} \tag{2.81}
\end{equation*}
$$

The rank and the generalized inverse of a matrix are well defined concepts in a mathematical sense only; it rarely occurs in finite precision numerical computation that some eigenvalues are precisely zero. In computing the generalized inverse numerically, the rank of the matrix should be predicted by a theoretical analysis first. Then, the matrix should be modified so that it has the desired rank. Let \boldsymbol{A} be a positive semi-definite ($n n$)-matrix of rank r; let $\boldsymbol{A}=\sum_{i=1}^{r} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}, \lambda_{1} \geq \cdots \geq \lambda_{r}>0$, be its spectral decomposition. Its rank-constrained generalized inverse $(\boldsymbol{A})_{r^{\prime}}^{-}$of rank $r^{\prime}(\leq r)$ is defined by

$$
\begin{equation*}
(\boldsymbol{A})_{r^{\prime}}^{-}=\sum_{i=1}^{r^{\prime}} \frac{1}{\lambda_{i}} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} \tag{2.82}
\end{equation*}
$$

From this definition, the following identities are obtained:

$$
\begin{equation*}
(\boldsymbol{A})_{r^{\prime}}^{-} \boldsymbol{A}=\boldsymbol{A}(\boldsymbol{A})_{r^{\prime}}^{-}=\boldsymbol{P}_{\mathcal{N}_{(A)^{\prime}}^{-}}, \quad(\boldsymbol{A})_{r^{\prime}}^{-} \boldsymbol{A}(\boldsymbol{A})_{r^{\prime}}^{-}=(\boldsymbol{A})_{r^{\prime}}^{-} \tag{2.83}
\end{equation*}
$$

Let \boldsymbol{A} be an $(n n)$-matrix, and \boldsymbol{B} an (mm)-matrix. Let \boldsymbol{S} and \boldsymbol{T} be $n m$ matrices. Even if \boldsymbol{A} and \boldsymbol{B} are not of full rank, the matrix inversion formula (2.22) holds in the form

$$
\left(A+\boldsymbol{P}_{\mathcal{N}_{A}} S B T^{\top} \boldsymbol{P}_{\mathcal{N}_{A}}\right)^{-}=A^{-}-\boldsymbol{A}^{-} \boldsymbol{S}\left(\boldsymbol{B}^{-}+\boldsymbol{P}_{\mathcal{N}_{B}} \boldsymbol{T}^{\top} \boldsymbol{A}^{-} \boldsymbol{S} \boldsymbol{P}_{\mathcal{N}_{B}}\right)^{-} \boldsymbol{T}^{\top} \boldsymbol{A}^{-}
$$

provided that matrix $\boldsymbol{A}+\boldsymbol{P}_{\mathcal{N}_{A}} \boldsymbol{S} \boldsymbol{B} \boldsymbol{T}^{\top} \boldsymbol{P}_{\mathcal{N}_{A}}$ has the same rank as \boldsymbol{A} and matrix $\boldsymbol{B}^{-}+\boldsymbol{P}_{\mathcal{N}_{\boldsymbol{B}}} \boldsymbol{T}^{\top} \boldsymbol{A}^{-} \boldsymbol{S} \boldsymbol{P}_{\mathcal{N}_{\boldsymbol{B}}}$ has the same rank as \boldsymbol{B}^{-}. We call eq. (2.84) the generalized matrix inversion formula.

2.2.3 Rayleigh quotient and quadratic form

For an $(n n)$-matrix \boldsymbol{A}, the expression $(\boldsymbol{u}, \boldsymbol{A} \boldsymbol{u}) /\|\boldsymbol{u}\|^{2}$ is called the Rayleigh quotient of vector \boldsymbol{u} for \boldsymbol{A}. Let $\lambda_{\min }$ and $\lambda_{\max }$ be, respectively, the largest
and the smallest eigenvalues of \boldsymbol{A}. The following inequality holds for an arbitrary nonzero vector \boldsymbol{u} :

$$
\begin{equation*}
\lambda_{\min } \leq \frac{(\boldsymbol{u}, \boldsymbol{A} \boldsymbol{u})}{\|\boldsymbol{u}\|^{2}} \leq \lambda_{\max } \tag{2.85}
\end{equation*}
$$

The left equality holds if \boldsymbol{u} is an eigenvector of \boldsymbol{A} for eigenvalue $\lambda_{\min }$; the right equality holds if u is an eigenvector for eigenvalue $\lambda_{\max }$.

The Rayleigh quotient $(\boldsymbol{u}, \boldsymbol{A} \boldsymbol{u}) /\|\boldsymbol{u}\|^{2}$ is invariant to multiplication of \boldsymbol{u} by a constant and hence is a function of the orientation of u : if we put $\boldsymbol{n}=$ $N[\boldsymbol{u}]$, then $(\boldsymbol{u}, \boldsymbol{A} \boldsymbol{u}) /\|\boldsymbol{u}\|^{2}=(\boldsymbol{n}, \boldsymbol{A} \boldsymbol{n})$, which is called the quadratic form in \boldsymbol{n} for \boldsymbol{A}. Eq. (2.85) implies

$$
\begin{equation*}
\min _{\|\mathbf{n}\|=1}(\boldsymbol{n}, \boldsymbol{A} \boldsymbol{n})=\lambda_{\min }, \quad \max _{\|\mathbf{n}\|=1}(\boldsymbol{n}, \boldsymbol{A} \boldsymbol{n})=\lambda_{\max } \tag{2.86}
\end{equation*}
$$

The minimum is attained by any unit eigenvector \boldsymbol{n} of \boldsymbol{A} for eigenvalue $\lambda_{\min }$; the maximum is attained by any unit eigenvector n for eigenvalue $\lambda_{\max }$. It follows that an ($n n$) -matrix \boldsymbol{A} is positive definite if and only if $(\boldsymbol{r}, \boldsymbol{A} \boldsymbol{r})>0$ for an arbitrary nonzero vector \boldsymbol{r}; it is positive semi-definite if and only if $(\boldsymbol{r}, \boldsymbol{A} \boldsymbol{r}) \geq 0$ for an arbitrary n-vector \boldsymbol{r}.

For an arbitrary $m n$-matrix \boldsymbol{B}, the matrix $\boldsymbol{B}^{\top} \boldsymbol{B}$ is symmetric (see the second of eq. (2.2)). It is also positive semi-definite since $\left(\boldsymbol{r}, \boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{r}\right)=\|\boldsymbol{B r}\|^{2}$ ≥ 0 for an arbitrary n-vector \boldsymbol{r}. If \boldsymbol{B} is an $n n$-matrix of full rank, equality holds if and only if $\boldsymbol{r}=\mathbf{0}$. For an ($n n$)-matrix \boldsymbol{A}, its square root $\sqrt{\boldsymbol{A}}$ is also symmetric (see eq. (2.73)). We can also write $\boldsymbol{A}=\sqrt{\boldsymbol{A}}^{\top} \sqrt{\boldsymbol{A}}$. From these observations, we conclude the following:

- Matrix \boldsymbol{A} is positive semi-definite if and only if there exists a matrix \boldsymbol{B} such that $\boldsymbol{A}=\boldsymbol{B}^{\top} \boldsymbol{B}$.
- Matrix \boldsymbol{A} is positive definite if and only if there exists a nonsingular matrix \boldsymbol{B} such that $\boldsymbol{A}=\boldsymbol{B}^{\top} \boldsymbol{B}$.
- If \boldsymbol{A} is a positive semi-definite $(n n)$-matrix, matrix $\boldsymbol{B}^{\top} \boldsymbol{A} \boldsymbol{B}$ is a positive semi-definite (mm)-matrix for any $n m$-matrix B.

2.2.4 Nonsingular generalized eigenvalue problem

Let \boldsymbol{A} be an ($n n$)-matrix, and \boldsymbol{G} a positive semi-definite $(n n)$-matrix. If there exists a nonzero vector \boldsymbol{u} and a scalar λ such that

$$
\begin{equation*}
\boldsymbol{A} u=\lambda \boldsymbol{G} \boldsymbol{u} \tag{2.87}
\end{equation*}
$$

the scalar λ is called the generalized eigenvalue of \boldsymbol{A} with respect to \boldsymbol{G}; the vector \boldsymbol{u} is called the corresponding generalized eigenvector. The problem of
computing such \boldsymbol{u} and λ is said to be nonsingular if \boldsymbol{G} is of full rank, and singular otherwise.

Consider the nonsingular generalized eigenvalue problem. Eq. (2.87) can be rewritten as $(\lambda \boldsymbol{G}-\boldsymbol{A}) \boldsymbol{u}=\mathbf{0}$, which has a nonzero solution \boldsymbol{u} if and only if function

$$
\begin{equation*}
\phi_{\boldsymbol{A}, \boldsymbol{G}}(\lambda)=|\lambda \boldsymbol{G}-\boldsymbol{A}| \tag{2.88}
\end{equation*}
$$

has a zero: $\phi_{\boldsymbol{A}, \boldsymbol{G}}(\lambda)=0$. The function $\phi_{\boldsymbol{A}, \boldsymbol{G}}(\lambda)$ is an nth degree polynomial in λ and is called the generalized characteristic polynomial of \boldsymbol{A} with respect to \boldsymbol{G}. The equation $\phi_{\boldsymbol{A}, \boldsymbol{G}}(\lambda)=0$ is called the generalized characteristic equation of \boldsymbol{A} with respect to \boldsymbol{G} and has n roots $\left\{\lambda_{i}\right\}$ (with multiplicities counted). The generalized eigenvalue problem with respect to I reduces to the usual eigenvalue problem.

The generalized eigenvalues $\left\{\lambda_{i}\right\}$ of \boldsymbol{A} with respect to \boldsymbol{G} are all real. The corresponding generalized eigenvectors $\left\{\boldsymbol{u}_{i}\right\}$ can be chosen so that

$$
\begin{equation*}
\left(\boldsymbol{u}_{i}, \boldsymbol{G} \boldsymbol{u}_{j}\right)=\delta_{i j} \tag{2.89}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left(\boldsymbol{u}_{i}, \boldsymbol{A} \boldsymbol{u}_{j}\right)=\lambda_{j} \delta_{i j} \tag{2.90}
\end{equation*}
$$

Let us call the set $\left\{\boldsymbol{u}_{i}\right\}$ so defined the generalized eigensystem of the ($n n$)matrix with respect to the positive definite $(n n)$-matrix \boldsymbol{G}. Let $\boldsymbol{U}=$ $\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right)$ and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, respectively. Eqs. (2.89) and (2.90) can be rewritten as

$$
\begin{equation*}
\boldsymbol{U}^{\top} \boldsymbol{G} \boldsymbol{U}=\boldsymbol{I}, \quad \boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U}=\boldsymbol{\Lambda} \tag{2.91}
\end{equation*}
$$

By multiplying the first equation by $\boldsymbol{G} \boldsymbol{U}$ from the left and $\boldsymbol{U}^{\top} \boldsymbol{G}$ from the right, the following generalized spectral decomposition is obtained:

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{G} \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\top} \boldsymbol{G}=\sum_{i=1}^{n} \lambda_{i}\left(\boldsymbol{G} \boldsymbol{u}_{i}\right)\left(\boldsymbol{G} \boldsymbol{u}_{i}\right)^{\top} \tag{2.92}
\end{equation*}
$$

The number of nonzero generalized eigenvalues is equal to the rank of \boldsymbol{A}. If \boldsymbol{A} is positive definite, $\left\{\lambda_{i}\right\}$ are all positive; if \boldsymbol{A} is positive semi-definite, $\left\{\lambda_{i}\right\}$ are all nonnegative.

The generalized eigenvalue problem $\boldsymbol{A} \boldsymbol{u}=\lambda \boldsymbol{G u}$ reduces to an ordinary eigenvalue problem as follows. Let $\boldsymbol{C}=\boldsymbol{G}^{-1 / 2}$ and $\tilde{\boldsymbol{u}}=\boldsymbol{C}^{-1} \boldsymbol{u}$ (see eqs. (2.71) and (2.73)). It is easy to see that eq. (2.87) can be written as

$$
\begin{equation*}
\tilde{A} \tilde{u}=\lambda \tilde{u}, \quad \tilde{A}=C A C \tag{2.93}
\end{equation*}
$$

If an eigenvector $\tilde{\boldsymbol{u}}$ of $\tilde{\boldsymbol{A}}$ is computed, the corresponding generalized eigenvector is given by

$$
\begin{equation*}
u=C \tilde{u} \tag{2.94}
\end{equation*}
$$

The expression $(\boldsymbol{u}, \boldsymbol{A} \boldsymbol{u}) /(\boldsymbol{u}, \boldsymbol{G} \boldsymbol{u})$ for an $(n n)$-matrix \boldsymbol{A} and a positive definite ($n n$)-matrix \boldsymbol{G} is called the generalized Rayleigh quotient of \boldsymbol{u}. It satisfies

$$
\begin{equation*}
\lambda_{\min } \leq \frac{(\boldsymbol{u}, \boldsymbol{A} \boldsymbol{u})}{(\boldsymbol{u}, \boldsymbol{G} \boldsymbol{u})} \leq \lambda_{\max } \tag{2.95}
\end{equation*}
$$

where $\lambda_{\min }$ and $\lambda_{\max }$ are, respectively, the largest and the smallest generalized eigenvalues of \boldsymbol{A} with respect to \boldsymbol{G}. The left equality holds if \boldsymbol{u} is a generalized eigenvector of \boldsymbol{A} for the generalized eigenvalue $\lambda_{\min }$; the right equality holds if \boldsymbol{u} is a generalized eigenvector for the generalized eigenvalue $\lambda_{\max }$.

2.2.5 Singular generalized eigenvalue problersave for when we need it

Consider the singular generalized eigenvalue problem of an $(n n)$-matrix \boldsymbol{A} with respect to a positive semi-definite $(n n)$-matrix G of rank $m(<n)$. Let $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right\}$ be an orthonormal basis of the range $\mathcal{R}_{\boldsymbol{G}}$ of \boldsymbol{G}, and $\left\{\boldsymbol{v}_{m+1}, \ldots\right.$, $\left.\boldsymbol{v}_{n}\right\}$ an orthonormal basis of its null space $\mathcal{N}_{\boldsymbol{G}}$. Define an $n m$-matrix \boldsymbol{P}_{1} and an $n(n-m)$-matrix \boldsymbol{P}_{0} by

$$
\begin{equation*}
\boldsymbol{P}_{1}=\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right), \quad \boldsymbol{P}_{0}=\left(\boldsymbol{v}_{m+1}, \ldots, \boldsymbol{v}_{n}\right) \tag{2.96}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\boldsymbol{P}_{1}^{\top} \boldsymbol{P}_{1}=\boldsymbol{I}, \quad \boldsymbol{P}_{1}^{\top} \boldsymbol{P}_{0}=\boldsymbol{O}, \quad \boldsymbol{P}_{0}^{\top} \boldsymbol{P}_{0}=\boldsymbol{I} \tag{2.97}
\end{equation*}
$$

Here, we only consider the case where $\boldsymbol{P}_{0}^{\top} \boldsymbol{A} \boldsymbol{P}_{0}$ is nonsingular ${ }^{11}$. Since $\mathcal{R}^{n}=$ $\mathcal{R}_{G} \oplus \mathcal{N}_{\boldsymbol{G}}$, an arbitrary n-vector can be uniquely written in the form

$$
\begin{equation*}
u=P_{1} x+P_{0} y \tag{2.98}
\end{equation*}
$$

where \boldsymbol{x} is an \boldsymbol{m}-vector and \boldsymbol{y} is an $(n-m)$-vector. Eqs. (2.97) imply that \boldsymbol{x} and \boldsymbol{y} are respectively given by

$$
\begin{equation*}
x=P_{1}^{\top} u, \quad y=P_{0}^{\top} u \tag{2.99}
\end{equation*}
$$

Substituting eq. (2.98) into eq. (2.87) and noting the identities $\boldsymbol{G} \boldsymbol{P}_{0}=\boldsymbol{O}$ and $\boldsymbol{P}_{0}^{\top} \boldsymbol{G}=\boldsymbol{O}$, we can split eq. (2.87) into the following two equations:

$$
\begin{equation*}
\boldsymbol{A}^{*} \boldsymbol{x}=\lambda \boldsymbol{G}^{*} \boldsymbol{x}, \quad y=\boldsymbol{B}^{*} \boldsymbol{x} \tag{2.100}
\end{equation*}
$$

Here, \boldsymbol{A}^{*} and \boldsymbol{G}^{*} are $(m m)$-matrices; \boldsymbol{B}^{*} is an $(n-m) m$-matrix. They are defined by

$$
\begin{align*}
\boldsymbol{A}^{*} & =\boldsymbol{P}_{1}^{\top} \boldsymbol{A} \boldsymbol{P}_{1}-\boldsymbol{P}_{1}^{\top} \boldsymbol{A} \boldsymbol{P}_{0} \boldsymbol{C}^{*-1} \boldsymbol{P}_{0}^{\top} \boldsymbol{A} \boldsymbol{P}_{1} \\
\boldsymbol{G}^{*} & =\boldsymbol{P}_{1}^{\top} \boldsymbol{G} \boldsymbol{P}_{1}, \quad \boldsymbol{B}^{*}=-\boldsymbol{C}^{*-1} \boldsymbol{P}_{0}^{\top} \boldsymbol{A} \boldsymbol{P}_{1} \tag{2.101}
\end{align*}
$$

where C^{*} is an $(n-m)(n-m)$-matrix defined by

$$
\begin{equation*}
C^{*}=P_{0}^{\top} \boldsymbol{A} \boldsymbol{P}_{0} \tag{2.102}
\end{equation*}
$$

[^1]The definition of the matrix \boldsymbol{P}_{0} implies that the matrix \boldsymbol{G}^{*} is positive definite. Hence, the first of eqs. (2.100) is a nonsingular generalized eigenvalue problem.

The generalized Rayleigh quotient of \boldsymbol{A} with respect to \boldsymbol{G} for $\boldsymbol{u} \notin \mathcal{N}_{\boldsymbol{G}}$ (i.e., $\boldsymbol{x} \neq 0$) can be written as follows:

$$
\begin{equation*}
\frac{(u, \boldsymbol{A} u)}{(u, \boldsymbol{G} u)}=\frac{\left(x, A^{*} x\right)+\left(y-B^{*} x, C^{*}\left(y-B^{*} x\right)\right)}{\left(x, G^{*} x\right)} \tag{2.103}
\end{equation*}
$$

If C^{*} is positive definite ${ }^{12}$, we observe that

$$
\begin{equation*}
\frac{(\boldsymbol{u}, \boldsymbol{A} \boldsymbol{u})}{(\boldsymbol{u}, \boldsymbol{G} \boldsymbol{u})} \geq \frac{\left(\boldsymbol{x}, \boldsymbol{A}^{*} \boldsymbol{x}\right)}{\left(\boldsymbol{x}, \boldsymbol{G}^{*} \boldsymbol{x}\right)} \geq \lambda_{\min } \tag{2.104}
\end{equation*}
$$

where $\lambda_{\min }$ is the smallest generalized eigenvalue of \boldsymbol{A} with respect to \boldsymbol{G} (see eqs. (2.100)). Equality holds if u is the corresponding generalized eigenvector. If C^{*} is negative definite ${ }^{13}$, we observe that

$$
\begin{equation*}
\frac{(\boldsymbol{u}, \boldsymbol{A} \boldsymbol{u})}{(\boldsymbol{u}, \boldsymbol{G} \boldsymbol{u})} \leq \frac{\left(\boldsymbol{x}, \boldsymbol{A}^{*} \boldsymbol{x}\right)}{\left(\boldsymbol{x}, \boldsymbol{G}^{*} \boldsymbol{x}\right)} \leq \lambda_{\max } \tag{2.105}
\end{equation*}
$$

where $\lambda_{\max }$ is the smallest generalized eigenvalue of \boldsymbol{A} with respect to \boldsymbol{G}. Equality holds if \boldsymbol{u} is the corresponding generalized eigenvector.

2.2.6 Perturbation theorem

Let \boldsymbol{A} and \boldsymbol{D} be $(n n)$-matrices. Let $\left\{\lambda_{i}\right\}$ be the eigenvalues of \boldsymbol{A}, and $\left\{\boldsymbol{u}_{i}\right\}$ the corresponding eigensystem:

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}, \quad\left(\boldsymbol{u}_{i}, \boldsymbol{u}_{j}\right)=\delta_{i j} \tag{2.106}
\end{equation*}
$$

Consider a perturbed matrix

$$
\begin{equation*}
A^{\prime}=A+\epsilon D \tag{2.107}
\end{equation*}
$$

for a small ϵ. Let $\left\{\lambda_{i}{ }^{\prime}\right\}$ and $\left\{\boldsymbol{u}_{i}^{\prime}\right\}$ be, respectively, the eigenvalues and the eigensystem of \boldsymbol{A}^{\prime} corresponding to $\left\{\lambda_{i}\right\}$ and $\left\{\boldsymbol{u}_{i}\right\}$. The following relations hold (the perturbation theorem):

$$
\begin{gather*}
\lambda_{i}^{\prime}=\lambda_{i}+\epsilon\left(\boldsymbol{u}_{i}, \boldsymbol{D} \boldsymbol{u}_{i}\right)+O\left(\epsilon^{2}\right) \tag{2.108}\\
\boldsymbol{u}_{i}^{\prime}=\boldsymbol{u}_{i}+\epsilon \sum_{j \neq i} \frac{\left(\boldsymbol{u}_{j}, \boldsymbol{D} \boldsymbol{u}_{i}\right) \boldsymbol{u}_{j}}{\lambda_{i}-\lambda_{j}}+O\left(\epsilon^{2}\right)
\end{gather*}
$$

Let u_{n} be the unit eigenvector of \boldsymbol{A} for the smallest eigenvalue λ_{n}, which is assumed to be a simple root. Let $\left\{\boldsymbol{u}_{i}\right\}$ be the eigensystem of \boldsymbol{A} defined so

[^2]that the corresponding eigenvalues are $\lambda_{1} \geq \cdots \geq \lambda_{n-1}>\lambda_{n}$. Define matrix \boldsymbol{A}^{+}by
\[

$$
\begin{equation*}
\boldsymbol{A}^{+}=\sum_{i=1}^{n-1} \frac{\boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}}{\lambda_{i}-\lambda_{n}} \tag{2.110}
\end{equation*}
$$

\]

This is a positive semi-definite matrix having eigenvalues $\left\{1 /\left(\lambda_{i}-\lambda_{n}\right)\right\}$ for the same eigensystem $\left\{\boldsymbol{u}_{i}\right\}$. If $\lambda_{n}=0$, the matrix \boldsymbol{A}^{+}coincides with the generalized inverse \boldsymbol{A}^{-}. Eq. (2.109) can be rewritten as

$$
\begin{equation*}
\boldsymbol{u}_{n}^{\prime}=\boldsymbol{u}_{n}-\epsilon \boldsymbol{A}^{+} \boldsymbol{D} \boldsymbol{u}_{n}+O\left(\epsilon^{2}\right) \tag{2.111}
\end{equation*}
$$

Let \boldsymbol{A} and \boldsymbol{D} be $(n n)$-matrices, and \boldsymbol{G} a positive definite ($n n$)-matrix. Let $\left\{\lambda_{i}\right\}$ be the generalized eigenvalues of \boldsymbol{A} with respect to \boldsymbol{G}, and $\left\{\boldsymbol{u}_{i}\right\}$ the corresponding generalized eigensystem:

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{G} \boldsymbol{u}_{i}, \quad\left(\boldsymbol{u}_{i}, \boldsymbol{G} \boldsymbol{u}_{j}\right)=\delta_{i j} \tag{2.112}
\end{equation*}
$$

If \boldsymbol{A} is perturbed in the form of eq. (2.107), the perturbation theorem holds in the same form. Eq. (2.111) also holds if $\left\{\lambda_{i}\right\}$ in eq. (2.110) are interpreted as generalized eigenvalues of \boldsymbol{A} with respect to \boldsymbol{G}.

2.3 Linear Systems and Optimization

2.3.1 Singular value decomposition and generalized inverse

If \boldsymbol{A} is an $m n$-matrix, $\boldsymbol{A}^{\top} \boldsymbol{A}$ is a positive semi-definite $(n n)$-matrix, and $\boldsymbol{A} \boldsymbol{A}^{\top}$ is a positive semi-definite (mm)-matrix. They share the same nonzero eigen| no restrictions on $\mathbf{A}!\geq \sigma_{r}(>0), r \leq \min (m, n)$. The number r is called the |
| :--- |
| $\sqrt{\sigma_{i}}, i=1, \ldots, r$, and $\lambda_{i}=0, i=r+1, \ldots, \max (m, n)$. | It can be shown that orthonomal systems $\left\{\boldsymbol{u}_{i}\right\}, i=1, \ldots, n$, and $\left\{\boldsymbol{v}_{i}\right\}, i=$ $1, \ldots, m$, exist such that

- $\boldsymbol{A} \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{v}_{i}, i=1, \ldots, \min (m, n)$.
- $\left\{u_{i}\right\}, i=1, \ldots, n$, is the eigensystem of $\boldsymbol{A}^{\top} \boldsymbol{A}$ for eigenvalues $\left\{\lambda_{i}^{2}\right\}, i=$ $1, \ldots, n$.
- $\left\{v_{i}\right\}, i=1, \ldots, m$, is the eigensystem of $\boldsymbol{A} \boldsymbol{A}^{\top}$ for eigenvalues $\left\{\lambda_{i}^{2}\right\}, i=$ $1, \ldots, m$.
Matrix \boldsymbol{A} is expressed in terms of $\left\{\boldsymbol{u}_{i}\right\},\left\{\boldsymbol{v}_{i}\right\}$, and $\left\{\lambda_{i}\right\}$ in the form

$$
\begin{equation*}
\boldsymbol{A}=\sum_{i=1}^{r} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{u}_{i}^{\top} \tag{2.113}
\end{equation*}
$$

This is called the singular value decomposition of \boldsymbol{A}; the values $\left\{\lambda_{i}\right\}, i=1, \ldots$, $\min (m, n)$, are called the singular values of \boldsymbol{A}. Let us call $\left\{u_{i}\right\}, i=1, \ldots, n$,

Fig. 2.4. The range $\mathcal{R}_{\mathbf{A}}$ and the null space $\mathcal{N}_{\mathbf{A}}$ of linear mapping \mathbf{A}.
and $\left\{\boldsymbol{v}_{i}\right\}, i=1, \ldots, m$, the right orthonormal system and the left orthonormal system of \boldsymbol{A}, respectively.

If we define orthogonal matrices $\boldsymbol{U}=\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right)$ and $\boldsymbol{V}=$ $\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right)$, eq. (2.113) can be rewritten in the form

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{U}^{\top} \tag{2.114}
\end{equation*}
$$

where $\boldsymbol{\Lambda}$ is an $m n$ matrix whose first r diagonal elements are $\lambda_{1}, \ldots, \lambda_{r}$ in that order and whose other elements are all zero. If $m=n$, matrix $\boldsymbol{\Lambda}$ is diagonal.

The r-dimensional linear subspace

$$
\begin{equation*}
\mathcal{R}_{\boldsymbol{A}}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right\}_{L} \subset \mathcal{R}^{m} \tag{2.115}
\end{equation*}
$$

is called the range (or image space) of \boldsymbol{A} : for any m-vector $\boldsymbol{y} \in \mathcal{R}_{\boldsymbol{A}}$, there exists an n-vector \boldsymbol{x} such that $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ (Fig. 2.4). The $(n-r)$-dimensional linear subspace

$$
\begin{equation*}
\mathcal{N}_{\boldsymbol{A}}=\left\{\boldsymbol{u}_{r+1}, \ldots, \boldsymbol{u}_{n}\right\}_{L} \subset \mathcal{R}^{n} \tag{2.116}
\end{equation*}
$$

is called the null space (or kernel) of $\boldsymbol{A}: \boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ for any n-vector $\boldsymbol{x} \in \mathcal{N}_{\boldsymbol{A}}$ (Fig. 2.4). If \boldsymbol{A} is symmetric, its right and left orthonormal systems coincide with its eigensystem, and its singular value decomposition coincides with its spectral decomposition (see eq. (2.62)).

Since $\left\{u_{i}\right\}$ is an orthonormal system, eq. (2.64) holds for an arbitrary n vector \boldsymbol{x}. Let $\lambda_{\max }$ be the maximum singular value. Since $\left\{\boldsymbol{v}_{i}\right\}$ is also an orthonormal system, we see from eq. (2.113) that

$$
\begin{equation*}
\|\boldsymbol{A} \boldsymbol{x}\|^{2}=\left\|\sum_{i=1}^{r} \lambda_{i}\left(\boldsymbol{u}_{i}, \boldsymbol{x}\right) \boldsymbol{v}_{i}\right\|^{2}=\sum_{i=1}^{r} \lambda_{i}^{2}\left(\boldsymbol{u}_{i}, \boldsymbol{x}\right)^{2} \leq \sum_{i=1}^{r} \lambda_{\max }^{2}\left(\boldsymbol{u}_{i}, \boldsymbol{x}\right)^{2}=\lambda_{\max }^{2}\|\boldsymbol{x}\|^{2} \tag{2.117}
\end{equation*}
$$

Hence, if we define the spectral norm (or the natural norm) of \boldsymbol{A} by

$$
\begin{equation*}
\|\boldsymbol{A}\|_{s}=\lambda_{\max } \tag{2.118}
\end{equation*}
$$

eq. (2.117) implies the following inequality:

$$
\begin{equation*}
\|\boldsymbol{A} \boldsymbol{x}\| \leq\|\boldsymbol{A}\|_{s}\|\boldsymbol{x}\| \tag{2.119}
\end{equation*}
$$

Equality holds for

$$
\begin{equation*}
\boldsymbol{x} \propto \boldsymbol{u}_{\max }+\mathcal{N}_{\boldsymbol{A}} \tag{2.120}
\end{equation*}
$$

The right hand side means the first term plus any element of $\mathcal{N}_{\boldsymbol{A}}$ (and such a form-only), and $\boldsymbol{u}_{\text {max }}$ is the vector \boldsymbol{u}_{i} corresponding to the singular value $\lambda_{\text {max }}$.

Let eq. (2.113) be the singular value decomposition of matrix \boldsymbol{A}. Its (Moore-Penrose) generalized inverse is defined by

$$
\begin{equation*}
\boldsymbol{A}^{-}=\sum_{i=1}^{r} \frac{\boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}}{\lambda_{i}} \tag{2.121}
\end{equation*}
$$

Evidently, the generalized inverse \boldsymbol{A}^{-}coincides with the inverse \boldsymbol{A}^{-1} if \boldsymbol{A} is nonsingular. In correspondence with eq. (2.78) and eqs. (2.80), the following relationships hold:

$$
\begin{gather*}
\left(\boldsymbol{A}^{-}\right)^{-}=\boldsymbol{A}, \quad \boldsymbol{A}^{-} \boldsymbol{A}=\boldsymbol{P}_{\mathcal{N}_{A}}, \quad \boldsymbol{A} \boldsymbol{A}^{-}=\boldsymbol{P}^{\mathcal{R}_{A}} \\
\boldsymbol{P}^{\mathcal{R}_{A}} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{P}_{\mathcal{N}_{A}}=\boldsymbol{A}, \quad \boldsymbol{P}_{\mathcal{N}_{A}} \boldsymbol{A}^{-}=\boldsymbol{A}^{-} \boldsymbol{P}^{\mathcal{R}_{A}}=\boldsymbol{A}^{-} \tag{2.122}
\end{gather*}
$$

Here, $\boldsymbol{P}^{\mathcal{R}_{A}}\left(=\boldsymbol{P}_{\mathcal{R}_{A}^{\perp}}\right)$ and $\boldsymbol{P}_{\mathcal{N}_{A}}\left(=\boldsymbol{P}^{\mathcal{N}_{A}^{\perp}}\right)$ are the projection matrices onto $\mathcal{R}_{\boldsymbol{A}}$ and $\mathcal{N}_{\boldsymbol{A}}^{\perp}$, respectively. From the above equations, we obtain

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{A}^{-} \boldsymbol{A}=\boldsymbol{A}, \quad \boldsymbol{A}^{-} \boldsymbol{A} \boldsymbol{A}^{-}=\boldsymbol{A}^{-} \tag{2.123}
\end{equation*}
$$

The rank-constrained generalized inverse $(\boldsymbol{A})_{r^{\prime}}^{-}$of rank $r^{\prime}(\leq r)$ is defined by

$$
\begin{equation*}
(\boldsymbol{A})_{r^{\prime}}^{-}=\sum_{i=1}^{r^{\prime}} \frac{\boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}}{\lambda_{i}} \tag{2.124}
\end{equation*}
$$

and the following relations hold:

$$
\begin{gather*}
(\boldsymbol{A})_{r^{\prime}}^{-} \boldsymbol{A}=\boldsymbol{P}^{\mathcal{R}_{(A)_{r^{\prime}}^{-}}^{-}, \quad \boldsymbol{A}(\boldsymbol{A})_{r^{\prime}}^{-}=\boldsymbol{P}_{\mathcal{N}_{(A)}^{-}}} \begin{array}{c}
(\boldsymbol{A})_{r^{\prime}}^{-} \boldsymbol{A}(\boldsymbol{A})_{r^{\prime}}^{-}=(\boldsymbol{A})_{r^{\prime}}^{-}
\end{array} .
\end{gather*}
$$

2.3.2 Linear equations

Let \boldsymbol{A} be an $m n$-matrix, and \boldsymbol{b} an m-vector. Consider the following linear equation for n-vector x :

$$
\begin{equation*}
A x=b \tag{2.126}
\end{equation*}
$$

The following is the fundamental theorem for linear equations:

- The solution exists if and only if $\boldsymbol{b} \in \mathcal{R}_{\boldsymbol{A}}$ (or $\boldsymbol{P}_{\mathcal{R}_{A}} \boldsymbol{b}=\mathbf{0}$).
- If the solution exists, it is unique if and only if $\mathcal{N}_{\boldsymbol{A}}=\{0\}$.

The problem (2.126) is said to be consistent (or solvable) when $\boldsymbol{b} \in \mathcal{R}_{\boldsymbol{A}}$, and inconsistent (or unsolvable) otherwise; if it is consistent, it is said to be determinate when $\mathcal{N}_{\boldsymbol{A}}=\{0\}$, and indeterminate otherwise.

If eq. (2.126) is solvable, the solution can be explicitly written in the following form:

$$
\begin{equation*}
x=\boldsymbol{A}^{-} b+\mathcal{N}_{\boldsymbol{A}} \tag{2.127}
\end{equation*}
$$

If \boldsymbol{A} is nonsingular, the solution is given by

$$
\begin{equation*}
x=A^{-1} b=\frac{A^{\dagger} b}{\operatorname{det} \boldsymbol{A}} \tag{2.128}
\end{equation*}
$$

where \boldsymbol{A}^{\dagger} is the cofactor matrix of \boldsymbol{A} (see eq. (2.20)). Let $\boldsymbol{A}=\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right)$. From the cofactor expansion formula (2.14), the following Cramer formula is obtained:

$$
\begin{equation*}
x_{i}=\frac{\left|\boldsymbol{a}_{1}, \ldots, \stackrel{(i)}{\boldsymbol{b}}, \ldots, \boldsymbol{a}_{n}\right|}{\operatorname{det} \boldsymbol{A}} \tag{2.129}
\end{equation*}
$$

The numerator on the right-hand side is the determinant of the matrix obtained by replacing the i th column of \boldsymbol{A} by \boldsymbol{b}.

If $\operatorname{det} \boldsymbol{A}$ is very close to 0 , a small perturbation of \boldsymbol{b} can causes a large perturbation to the solution \boldsymbol{x}. If this occurs, the linear equation (2.126) is said to be ill-conditioned; otherwise, it is well-conditioned. If b is perturbed into $\boldsymbol{b}+\Delta \boldsymbol{b}$, the solution $\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}$ is perturbed by $\Delta \boldsymbol{x}=\boldsymbol{A}^{-1} \Delta \boldsymbol{b}$. Applying eq. (2.119), we obtain $\|\Delta \boldsymbol{x}\| \leq\left\|\boldsymbol{A}^{-1}\right\|_{s}\|\Delta \boldsymbol{b}\|$. From eq. (2.126), we have $\|\boldsymbol{b}\|$ $\leq\|\boldsymbol{A}\|_{s}\|\boldsymbol{x}\|$. Combining these, we obtain

$$
\begin{equation*}
\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\Delta \boldsymbol{b}\|}{\|b\|} \tag{2.130}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{cond}(\boldsymbol{A})=\|\boldsymbol{A}\|_{s}\left\|\boldsymbol{A}^{-1}\right\|_{s}=\frac{\lambda_{\max }}{\lambda_{\min }} \tag{2.131}
\end{equation*}
$$

Here, $\lambda_{\max }$ and $\lambda_{\min }$ are the largest and the smallest singular values of \boldsymbol{A}, respectively (see eq. (2.118)). The number $\operatorname{cond}(\boldsymbol{A})$ is called the condition number ${ }^{14}$ and measures the ill-posedness of the linear equation (2.126)-the equation becomes more ill-conditioned as cond (\boldsymbol{A}) becomes larger.

Suppose eq. (2.126) is consistent but only $r(\leq m)$ of the m component equations are independent, i.e., the matrix \boldsymbol{A} has rank r. Theoretically, the

[^3]solution is given in the form of eq. (2.127). However, if the elements of the matrix \boldsymbol{A} and the components of the vector \boldsymbol{b} are supplied by a physical measurement, all the m equations may be independent because of noise. As a result, eq. (2.126) may become ill-conditioned or inconsistent. In such a case, a well-conditioned equation that gives a good approximation to \boldsymbol{x} is obtained by "projecting" both sides of eq. (2.126) onto the eigenspace of \boldsymbol{A} defined by the largest r singular values. The solution of the projected equation is given in terms of the rank-constrained generalized inverse in the form
\[

$$
\begin{equation*}
\hat{\boldsymbol{x}}=(\boldsymbol{A})_{r}^{-} \boldsymbol{b}+\mathcal{N}_{(\boldsymbol{A})_{r}^{-}} \tag{2.132}
\end{equation*}
$$

\]

The rank r is estimated either by an a priori theoretical analysis or by appropriately thresholding the singular values of \boldsymbol{A} a posteriori.

2.3.3 Quadratic optimization

A. Least-squares optimization

Let \boldsymbol{A} be an $m n$-matrix, and \boldsymbol{b} an m-vector. Consider the least-squares optimization for n-vector \boldsymbol{x} in the form

$$
\begin{equation*}
J[x]=\|A x-b\|^{2} \rightarrow \min \tag{2.133}
\end{equation*}
$$

Application of the singular value decomposition to \boldsymbol{A} yields the general solution in the following form:

$$
\begin{equation*}
\hat{\boldsymbol{x}}=\boldsymbol{A}^{-} \boldsymbol{b}+\mathcal{N}_{\boldsymbol{A}} \tag{2.134}
\end{equation*}
$$

If \boldsymbol{x} is constrained to be in $\mathcal{N}_{\boldsymbol{A}}^{\perp}$, the solution is uniquely given by $\hat{\boldsymbol{x}}=\boldsymbol{A}^{-} \boldsymbol{b}$. The residual $J[\hat{x}]$ is given by

$$
\begin{equation*}
J[\hat{\boldsymbol{x}}]=\left\|\boldsymbol{P}_{\mathcal{R}_{A}} \boldsymbol{b}\right\|^{2} . \tag{2.135}
\end{equation*}
$$

Evidently, the residual is 0 if and only if $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is solvable.

B. Unconstrained quadratic optimization

Let C be a positive semi-definite $(n n)$-matrix, and d an n-vector. Consider the quadratic optimization for n-vector \boldsymbol{x} in the form

$$
\begin{equation*}
J[x]=\frac{1}{2}(x, C x)+(d, x) \rightarrow \min . \tag{2.136}
\end{equation*}
$$

If x is constrained to be in \mathcal{N}_{C}^{\perp}, the solution is uniquely given in the following form:

$$
\begin{equation*}
\hat{x}=-C^{-} d . \tag{2.137}
\end{equation*}
$$

The residual is

$$
\begin{equation*}
J[\hat{x}]=-\frac{1}{2}\left(d, C^{-} d\right) \tag{2.138}
\end{equation*}
$$

C. Constrained quadratic optimization

Let S be a positive semi-definite $(n n)$-matrix. Consider the quadratic optimization for n-vector x in the form

$$
\begin{equation*}
J[x]=\frac{1}{2}(x, S x) \rightarrow \min \tag{2.139}
\end{equation*}
$$

Evidently, $\boldsymbol{x}=0$ is a solution (but not necessarily unique) if no constraint is imposed on \boldsymbol{x}. The following three types of constraint are important:

- If x is constrained to be a unit vector $(\|x\|=1)$, the solution is given by any unit eigenvector $\hat{\boldsymbol{x}}$ of \boldsymbol{S} for the smallest eigenvalue $\lambda_{\min }$ (see eqs. (2.86)); the residual is $J[\hat{x}]=\lambda_{\min }$ (see eq. (2.95)).
- If \boldsymbol{x} is constrained by $(\boldsymbol{x}, \boldsymbol{G} \boldsymbol{x})=1$ for a positive definite $(n n)$-matrix G, the solution is given by any unit generalized eigenvector $\hat{x} \in \mathcal{N}_{S}^{1}$ of S with respect to \boldsymbol{G} for the smallest generalized eigenvalue $\lambda_{\min }$; the residual is $J[\hat{\boldsymbol{x}}]=\lambda_{\min }$. If S is of full rank, the same conclusion is obtained even though G is not of full rank (see eq. (2.104)).
- Suppose \boldsymbol{x} is constrained by a linear equation $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where \boldsymbol{A} is an $m n$-matrix and b is an m-vector. If

1. x is constrained to be in \mathcal{N}_{S}^{\perp}, and
2. the constraint $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is satisfiable for $\boldsymbol{x} \in \mathcal{N}_{S}^{\perp}$, i.e., at least one $x_{0} \in \mathcal{N}_{\boldsymbol{S}}^{\perp}$ exists such that $\boldsymbol{A} \boldsymbol{x}_{0}=\boldsymbol{b}$,
then the solution is uniquely given in the following form:

$$
\begin{equation*}
\hat{\boldsymbol{x}}=\boldsymbol{S}^{-} \boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{S}^{-} \boldsymbol{A}^{\top}\right)^{-} \boldsymbol{b} \tag{2.140}
\end{equation*}
$$

The residual is

$$
\begin{equation*}
J[\hat{\boldsymbol{x}}]=\frac{1}{2}\left(\boldsymbol{b},\left(\boldsymbol{A} \boldsymbol{S}^{-} \boldsymbol{A}^{\top}\right)^{-} \boldsymbol{b}\right) \tag{2.141}
\end{equation*}
$$

2.3.4 Matrix inner product and matrix norm

The matrix inner product of mn-matrices $\boldsymbol{A}=\left(A_{i j}\right)$ and $\boldsymbol{B}=\left(B_{i j}\right)$ is defined by

$$
\begin{equation*}
(\boldsymbol{A} ; \boldsymbol{B})=\operatorname{tr}\left(\boldsymbol{A}^{\top} \boldsymbol{B}\right)=\operatorname{tr}\left(\boldsymbol{A} \boldsymbol{B}^{\top}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{i j} . \tag{2.142}
\end{equation*}
$$

Evidently, $(\boldsymbol{A} ; \boldsymbol{B})=(\boldsymbol{B} ; \boldsymbol{A})$. If $(\boldsymbol{A} ; \boldsymbol{B})=0$, matrices \boldsymbol{A} and \boldsymbol{B} are said to be orthogonal. An (nn)-matrix is orthogonal to any [nn]-matrix; an [nn]-matrix is orthogonal to any ($n n$)-matrix. The following identities are easy to prove:

$$
(\boldsymbol{A} ; \boldsymbol{B C})=\left(\boldsymbol{B}^{\top} \boldsymbol{A} ; \boldsymbol{C}\right)=\left(\boldsymbol{A} \boldsymbol{C}^{\top} ; \boldsymbol{B}\right)
$$

$$
\begin{equation*}
(a, A b)=\left(a b^{\top} ; A\right), \quad\left(a b^{\top} ; c d^{\top}\right)=(a, c)(b, d) \tag{2.143}
\end{equation*}
$$

The (Euclidean) matrix norm ${ }^{15}$ of an mn-matrix is defined by

$$
\begin{equation*}
\|\boldsymbol{A}\|=\sqrt{(\boldsymbol{A} ; \boldsymbol{A})}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}{ }^{2}} \tag{2.144}
\end{equation*}
$$

We define the normalization $N[\cdot]$ of an $n n$-matrix \boldsymbol{A} as follows (see the second of eqs. (2.7)):

$$
\begin{equation*}
N[\boldsymbol{A}]=\frac{\boldsymbol{A}}{\|\boldsymbol{A}\|} \tag{2.145}
\end{equation*}
$$

The Schwarz inequality and the triangle inequality hold in the same way as in the case of vectors:

$$
\begin{gather*}
-\|A\| \cdot\|B\| \leq(A ; B) \leq\|A\| \cdot\|B\| \tag{2.146}\\
\|A+B\| \leq\|A\|+\|B\| \tag{2.147}
\end{gather*}
$$

In both inequalities, equality holds if and only if there exists a real number t such that $\boldsymbol{A}=t \boldsymbol{B}$ or $\boldsymbol{B}=\boldsymbol{O}$.

Let \boldsymbol{U} be an n-dimensional orthogonal matrix. From eqs. (2.52) and the first of eqs. (2.143), it is immediately seen that for arbitrary $n n$-matrices \boldsymbol{A} and B

$$
\begin{equation*}
(\boldsymbol{U} \boldsymbol{A} ; \boldsymbol{U} \boldsymbol{B})=(\boldsymbol{A} \boldsymbol{U} ; \boldsymbol{B} \boldsymbol{U})=(\boldsymbol{A} ; \boldsymbol{B}) \tag{2.148}
\end{equation*}
$$

Letting $\boldsymbol{A}=\boldsymbol{B}$, we obtain

$$
\begin{equation*}
\|\boldsymbol{U} \boldsymbol{A}\|=\|\boldsymbol{A} \boldsymbol{U}\|=\|\boldsymbol{A}\| \tag{2.149}
\end{equation*}
$$

Further letting $\boldsymbol{A}=\boldsymbol{I}$, we see that

$$
\begin{equation*}
\|\boldsymbol{U}\|=\sqrt{n} \tag{2.150}
\end{equation*}
$$

A nonsingular $n n$-matrix \boldsymbol{T} defines a mapping from an $n n$-matrix \boldsymbol{A} to an $n n$-matrix in the form

$$
\begin{equation*}
\boldsymbol{A}^{\prime}=\boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T} \tag{2.151}
\end{equation*}
$$

[^4]This is a one-to-one and onto mapping and is called the similarity transformation ${ }^{16}$.

A function $f(\cdot)$ of a matrix is called an invariant with respect to similarity transformations if $f\left(\boldsymbol{A}^{\prime}\right)=f(\boldsymbol{A})$ for an arbitrary nonsingular matrix \boldsymbol{T}. The trace and the determinant are typical invariants:

$$
\begin{equation*}
\operatorname{tr}\left(\boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T}\right)=\operatorname{tr} \boldsymbol{A}, \quad \operatorname{det}\left(\boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T}\right)=\operatorname{det} \boldsymbol{A} \tag{2.152}
\end{equation*}
$$

Eq. (2.67) implies that any symmetric matrix is mapped to a diagonal matrix by an appropriate similarity transformation; the transformation is defined by an orthogonal matrix. Hence, if \boldsymbol{A} is a symmetric matrix with eigenvalues $\left\{\lambda_{i}\right\}$, any invariant with respect to similarity transformations is a function of $\left\{\lambda_{i}\right\}$. Eqs. (2.67) and (2.149) imply that

$$
\begin{equation*}
\|\boldsymbol{A}\|=\sqrt{\sum_{i=1}^{n} \lambda_{i}{ }^{2}} \tag{2.153}
\end{equation*}
$$

Hence, $\|\boldsymbol{A}\|$ is also an invariant with respect to similarity transformation.
In three dimensions, $\operatorname{tr} \boldsymbol{A}, \operatorname{det} \boldsymbol{A}$, and $\|\boldsymbol{A}\|$ can uniquely determine the three eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ of a (33)-matrix \boldsymbol{A} (see eqs. (2.68)). Hence, the three invariants $\{\operatorname{tr} \boldsymbol{A}, \operatorname{det} \boldsymbol{A},\|\boldsymbol{A}\|\}$ are an invariant basis in the sense that any invariant can be expressed in terms of them.

A nonsingular $n n$-matrix \boldsymbol{T} defines a mapping from an $(n n)$-matrix \boldsymbol{A} to an $(n n)$-matrix in the form

$$
\begin{equation*}
\boldsymbol{A}^{\prime}=\boldsymbol{T}^{\top} \boldsymbol{A T} \tag{2.154}
\end{equation*}
$$

This is a one-to-one and onto mapping and called the congruence transformation ${ }^{17}$. The pair (p, q) consisting of the number p of positive eigenvalues and the number q of negative eigenvalues of an $(n n)$-matrix \boldsymbol{A} is called the signature of \boldsymbol{A}. Under a congruence transformation, the signature does not change (Sylvester's law of inertia). Hence, the rank is also preserved. It follows that a positive definite symmetric matrix is always transformed to a positive definite symmetric matrix; a positive semi-definite symmetric matrix is always transformed to a positive semi-definite matrix of the same rank.

The congruence transformation defined by an orthogonal matrix \boldsymbol{U} coincides with the similarity transformation defined by \boldsymbol{U}, and the matrix inner product and the matrix norm are also preserved:

$$
\begin{equation*}
\left(\boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U} ; \boldsymbol{U}^{\top} \boldsymbol{B} \boldsymbol{U}\right)=(\boldsymbol{A} ; \boldsymbol{B}), \quad\left\|\boldsymbol{U}^{\top} \boldsymbol{A} \boldsymbol{U}\right\|=\|\boldsymbol{A}\| \tag{2.155}
\end{equation*}
$$

[^5]

Fig. 2.5. Finding a rotation that maps one set of vectors to another.

2.3.5 Optimal rotation fitting rotational part of Procrustes method

Let $\left\{\boldsymbol{u}_{\alpha}\right\}$ and $\left\{\boldsymbol{v}_{\alpha}\right\}, \alpha=1, \ldots, N$, be two sets of n-vectors. Consider the problem of finding a rotation \boldsymbol{R} such that

$$
\begin{equation*}
\sum_{\alpha=1}^{N} W_{\alpha}\left\|\boldsymbol{u}_{\alpha}-\boldsymbol{R} \boldsymbol{v}_{\alpha}\right\|^{2} \rightarrow \min \tag{2.156}
\end{equation*}
$$

where W_{α} are nonnegative weights (Fig. 2.5). Since $\left\|\boldsymbol{R} \boldsymbol{v}_{\alpha}\right\|=\left\|\boldsymbol{v}_{\alpha}\right\|$, the right-hand side can be rewritten as $\sum_{\alpha=1}^{N} W_{\alpha}\left\|\boldsymbol{u}_{\alpha}\right\|^{2}-2 \sum_{\alpha=1}^{N} W_{\alpha}\left(\boldsymbol{u}_{\alpha}, \boldsymbol{R} \boldsymbol{v}_{\alpha}\right)$ $+\sum_{\alpha=1}^{N} W_{\alpha}\left\|\boldsymbol{v}_{\alpha}\right\|^{2}$. Hence, if we define the correlation matrix

$$
\begin{equation*}
\boldsymbol{A}=\sum_{\alpha=1}^{N} W_{\alpha} \boldsymbol{u}_{\alpha} \boldsymbol{v}_{\alpha}^{\top} \tag{2.157}
\end{equation*}
$$

the problem can be rewritten as follows (see the second of eqs. (2.143)):

$$
\begin{equation*}
(\boldsymbol{A} ; \boldsymbol{R}) \rightarrow \max \tag{2.158}
\end{equation*}
$$

This problem can also be viewed as finding a rotation matrix \boldsymbol{R} that is the closest to a given matrix \boldsymbol{A} in the matrix norm:

$$
\begin{equation*}
\|\boldsymbol{R}-\boldsymbol{A}\| \rightarrow \min . \tag{2.159}
\end{equation*}
$$

In fact, eqs. (2.144) and (2.150) imply that $\|\boldsymbol{R}-\boldsymbol{A}\|^{2}=\|\boldsymbol{R}\|^{2}-2(\boldsymbol{R} ; \boldsymbol{A})+\|\boldsymbol{A}\|^{2}$ $=n-2(\boldsymbol{A} ; \boldsymbol{R})+\|\boldsymbol{A}\|^{2}$, so minimizing $\|\boldsymbol{R}-\boldsymbol{A}\|$ is equivalent to maximizing $(\boldsymbol{A} ; \boldsymbol{R})$

Let $\boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{U}^{\top}$ be the singular value decomposition of \boldsymbol{A}. The solution of the optimization (2.159) is given by

$$
\begin{equation*}
\boldsymbol{R}=\boldsymbol{V} \operatorname{diag}\left(1, \ldots, 1, \operatorname{det}\left(\boldsymbol{V} \boldsymbol{U}^{\top}\right)\right) \boldsymbol{U}^{\top} \tag{2.160}
\end{equation*}
$$

If the optimization is conducted over orthogonal matrices (i.e., if $\operatorname{det} \boldsymbol{R}=1$ is not required), the solution is given by

$$
\begin{equation*}
\boldsymbol{R}=\boldsymbol{V} \boldsymbol{U}^{\top} \tag{2.161}
\end{equation*}
$$

2.4 Matrix and Tensor Algebra

2.4.1 Direct sum and tensor product

For an m-vector $\boldsymbol{a}=\left(a_{i}\right)$ and an n-vector $\boldsymbol{b}=\left(b_{i}\right)$, the $(m+n)$-vector $\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)^{\top}$ is called the direct sum of a and b and denoted by $\boldsymbol{a} \oplus \boldsymbol{b}$. For an $m m$-matrix \boldsymbol{A} and an $n n$-matrix \boldsymbol{B}, the $(m+n)(m+n)$-matrix that has \boldsymbol{A} and \boldsymbol{B} as diagonal blocks in that order and zero elements elsewhere is called the direct sum of \boldsymbol{A} and \boldsymbol{B} and denoted by $\boldsymbol{A} \oplus \boldsymbol{B}$. Direct sums of more than two vectors or more than two matrices are defined similarly:

$$
\boldsymbol{a} \oplus \cdots \oplus \boldsymbol{b}=\left(\begin{array}{c}
\boldsymbol{a} \\
\vdots \\
\boldsymbol{b}
\end{array}\right), \quad \boldsymbol{A} \oplus \cdots \oplus \boldsymbol{B}=\left(\begin{array}{ccc}
\boldsymbol{A} & & \\
& \ddots & \\
& & \boldsymbol{B}
\end{array}\right) \cdot \begin{aligned}
& \text { direct } \\
& \text { sum }= \\
& \text { stacking }
\end{aligned}
$$

Let \boldsymbol{A} be an $m m$-matrix, and \boldsymbol{B} an $n n$-matrix. Let \boldsymbol{u} and \boldsymbol{a} be m-vectors, and v and $b n$-vectors. The following relations are obvious:

$$
\begin{align*}
& (\boldsymbol{A} \oplus \boldsymbol{B})(\boldsymbol{u} \oplus \boldsymbol{v})=(\boldsymbol{A} u) \oplus(\boldsymbol{B} \boldsymbol{v}) \tag{2.163}\\
& (\boldsymbol{a} \oplus \boldsymbol{b}, \boldsymbol{u} \oplus \boldsymbol{v})=(\boldsymbol{a}, \boldsymbol{u})+(\boldsymbol{b}, \boldsymbol{v})
\end{align*}
$$

A set of real numbers $\mathcal{T}=\left(T_{i_{1} i_{2} \cdots i_{r}}\right), i_{1}, i_{2}, \ldots, i_{r}=1, \ldots, n$, with r indices running over n-dimensional coordinates is called a tensor of dimension n and degree r. If each index corresponds to coordinates of a different dimensionality, \mathcal{T} is called a tensor of mixed dimensions or a mixed tensor. If index i_{k} runs over $1, \ldots, n_{k}$ for $k=1, \ldots, r$, the tensor is said to be of type $n_{1} n_{2} \cdots n_{r}$. A tensor of type $n_{1} n_{2} \cdots n_{r}$ is also referred to as an $n_{1} n_{2} \cdots n_{r}$-tensor. If $T_{i_{1} i_{2} \cdots i_{r}}$ is symmetric with respect to indices i_{k} and i_{k+1}, the type is written as $i_{1} \cdots\left(i_{k} i_{k+1}\right) \cdots i_{r}$; If $T_{i_{1} i_{2} \cdots i_{r}}$ is antisymmetric with respect to indices i_{k} and i_{k+1}, the type is written as $i_{1} \cdots\left[i_{k} i_{k+1}\right] \cdots i_{r}$; Scalars, vectors, and matrices are tensors of degrees 0,1 , and 2 , respectively.

The tensor product of tensor $\mathcal{A}=\left(A_{i_{1} \ldots i_{r}}\right)$ of degree r and tensor $\mathcal{B}=$ $\left(B_{i_{1} \cdots i_{0}}\right)$ of degree s is a tensor $\mathcal{C}=\left(C_{i_{1} \cdots i_{r+s}}\right)$ of degree $r+s$ defined by

$$
\begin{equation*}
C_{i_{1} \cdots i_{r+s}}=A_{i_{1} \cdots i_{r}} B_{i_{1} \cdots i_{s}} \tag{2.164}
\end{equation*}
$$

This is symbolically written as

$$
\begin{equation*}
\mathcal{C}=\mathcal{A} \otimes \mathcal{B} \tag{2.165}
\end{equation*}
$$

The following identities hold for scalar c and vectors a and b :

$$
\begin{align*}
& c \otimes u=c u, \quad a \otimes b=a b^{\top} . \tag{2.166}\\
& \begin{array}{l}
\text { derive these from } 2.164 \\
(\text { see }(2.1) \ldots)
\end{array}
\end{align*}
$$

2.4.2 Cast in three dimensions

A. 33-matrices

The elements of a 33-matrix $\boldsymbol{A}=\left(A_{i j}\right)$ are rearranged into a 9-vector

$$
a=\left(\begin{array}{c}
A_{11} \tag{2.167}\\
A_{12} \\
\vdots \\
A_{33}
\end{array}\right),
$$

which can be written as $\boldsymbol{a}=\left(a_{\kappa}\right)$ with

$$
\begin{equation*}
a_{\kappa}=A_{(\kappa-1) \operatorname{div} 3+1,(\kappa-1) \bmod 3+1} \tag{2.168}
\end{equation*}
$$

The symbols 'div' and 'mod' denote integer division and integer remainder, respectively. Conversely, a 9-vector $a=\left(a_{\kappa}\right)$ is rearranged into a 33-matrix

$$
\boldsymbol{A}=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \tag{2.169}\\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right)
$$

which can be written as $\boldsymbol{A}=\left(A_{i j}\right)$ with

$$
\begin{equation*}
A_{i j}=a_{3(i-1)+j} \tag{2.170}
\end{equation*}
$$

The above type transformation or cast is denoted by

$$
\begin{equation*}
a=\operatorname{type}_{9}[\boldsymbol{A}], \quad \boldsymbol{A}=\operatorname{type}_{33}[\boldsymbol{a}] . \tag{2.171}
\end{equation*}
$$

The norm is preserved by cast:

$$
\begin{equation*}
\|a\|=\|\boldsymbol{A}\| . \tag{2.172}
\end{equation*}
$$

The left-hand side designates the vector norm, whereas the right-hand side designates the matrix norm. The cast can be extended to tensors:

- A 3333-tensor $\mathcal{T}=\left(T_{i j k l}\right)$ is cast, by rearranging the elements with respect to the indices i and j, into a mixed tensor ${ }^{*} \mathcal{T}=\left({ }^{*} T_{\kappa k l}\right)$ of type 933 , which is denoted by type g33 $[\mathcal{T}]$; the inverse cast is $\mathcal{T}=\operatorname{type}_{3333}\left[{ }^{*} \mathcal{T}\right]$.
- A 3333-tensor $\mathcal{T}=\left(T_{i j k l}\right)$ is cast into a tensor $\mathcal{T}^{*}=\left(T_{i j \kappa}^{*}\right)$ of type 339, which is denoted by type ${ }_{339}[\mathcal{T}]$; the inverse cast is $\mathcal{T}=\operatorname{type}_{3333}\left[\mathcal{T}^{*}\right]$.
- If both operations are applied, $\mathcal{T}=\left(T_{i j k l}\right)$ is cast into a 99-matrix $T=$ $\left(T_{\kappa \lambda}\right)$, which is denoted by type ${ }_{99}[\mathcal{T}]$; the inverse cast is $\mathcal{T}=\operatorname{type}_{3333}[T]$.
B. (33)-matrices

The elements of a (33)-matrix $S=\left(S_{i j}\right)$ are rearranged into a 6 -vector

$$
s=\left(\begin{array}{r}
S_{11} \tag{2.173}\\
S_{22} \\
S_{33} \\
\sqrt{2} S_{23} \\
\sqrt{2} S_{31} \\
\sqrt{2} S_{12}
\end{array}\right) .
$$

Conversely, a 6 -vector $s=\left(s_{\kappa}\right)$ is rearranged into a (33)-matrix

$$
\boldsymbol{S}=\frac{1}{\sqrt{2}}\left(\begin{array}{rrr}
\sqrt{2} s_{1} & s_{6} & s_{5} \tag{2.174}\\
s_{6} & \sqrt{2} s_{2} & s_{4} \\
s_{5} & s_{4} & \sqrt{2} s_{3}
\end{array}\right) .
$$

This cast is denoted by

$$
\begin{equation*}
s=\operatorname{type}_{6}[S], \quad S=\operatorname{type}_{(33)}[s] . \tag{2.175}
\end{equation*}
$$

The norm is preserved by cast:

$$
\begin{equation*}
\|s\|=\|\boldsymbol{S}\| . \tag{2.176}
\end{equation*}
$$

The cast can be extended to tensors:

- A (33)33-tensor $\mathcal{L}=\left(L_{i j k l}\right)$ is cast, by rearranging the elements with respect to the indices i and j, into a mixed tensor ${ }^{*} \mathcal{L}=\left({ }^{*} L_{\kappa k l}\right)$ of type 633, which is denoted by $\operatorname{type}_{633}[\mathcal{L}]$; the inverse cast is $\left.\mathcal{L}=\operatorname{type}_{(33) 33}{ }^{*} \mathcal{L}\right]$.
- A 33(33)-tensor $\mathcal{N}=\left(S_{i j k l}\right)$ is cast to a mixed tensor $\mathcal{N}^{*}=\left(S_{i j k}^{*}\right)$ of type 336 , which is denoted by type ${ }_{336}[\mathcal{N}]$; the inverse cast is $\mathcal{N}=$ $\operatorname{type}_{33(33)}\left[\mathcal{N}^{*}\right]$.
- If both operations are applied, a (33)(33)-tensor $\mathcal{M}=\left(M_{i j k l}\right)$ is cast to a 66 -matrix $\boldsymbol{M}=\left(M_{\kappa \lambda}\right)$, which is denoted by type ${ }_{66}[\mathcal{M}]$. In elements,

$$
\boldsymbol{M}=\left(\begin{array}{rrrrrr}
M_{1111} & M_{1122} & M_{1133} \sqrt{2} M_{1123} & \sqrt{2} M_{1131} & \sqrt{2} M_{1112} \tag{2.177}\\
M_{2211} & M_{2222} & M_{2233} & \sqrt{2} M_{2223} & \sqrt{2} M_{2231} & \sqrt{2} M_{2212} \\
M_{3311} & M_{3322} & M_{3333} & \sqrt{2} M_{3323} & \sqrt{2} M_{3331} & \sqrt{2} M_{3312} \\
\sqrt{2} M_{2311} & \sqrt{2} M_{2322} & \sqrt{2} M_{2333} & 2 M_{2323} & 2 M_{2331} & 2 M_{2312} \\
\sqrt{2} M_{3111} & \sqrt{2} M_{3122} & \sqrt{2} M_{3133} & 2 M_{3123} & 2 M_{3131} & 2 M_{3112} \\
\sqrt{2} M_{1211} & \sqrt{2} M_{1222} & \sqrt{2} M_{1233} & 2 M_{1223} & 2 M_{1231} & 2 M_{1212}
\end{array}\right)
$$

The inverse cast is $\mathcal{M}=\operatorname{type}_{(33)(33)}[\boldsymbol{M}]$.
C. [33]-matrices

The elements of a [33]-matrix $\boldsymbol{W}=\left(W_{i j}\right)$ are rearranged into a 3-vector

$$
\boldsymbol{w}=\left(\begin{array}{l}
W_{32} \tag{2.178}\\
W_{13} \\
W_{21}
\end{array}\right)
$$

which can be written as $\boldsymbol{w}=\left(w_{\kappa}\right)$ with

$$
\begin{equation*}
w_{\kappa}=-\frac{1}{2} \sum_{i, j=1}^{3} \epsilon_{\kappa i j} W_{i j} \tag{2.179}
\end{equation*}
$$

Conversely, a 3-vector $\boldsymbol{w}=\left(w_{\kappa}\right)$ is rearranged into a [33]-matrix

$$
\boldsymbol{W}=\left(\begin{array}{ccc}
0 & -w_{3} & w_{2} \tag{2.180}\\
w_{3} & 0 & -w_{1} \\
-w_{2} & w_{1} & 0
\end{array}\right)=\boldsymbol{w} \times \boldsymbol{I}
$$

which can be written as $\boldsymbol{W}=\left(W_{i j}\right)$ with

$$
\begin{equation*}
W_{i j}=-\sum_{k=1}^{3} \epsilon_{i j \kappa} w_{\kappa} \tag{2.181}
\end{equation*}
$$

This cast is denoted by

$$
\begin{equation*}
\boldsymbol{w}=\operatorname{type}_{3}[\boldsymbol{W}], \quad \boldsymbol{W}=\operatorname{type}_{[33]}[\boldsymbol{w}] . \tag{2.182}
\end{equation*}
$$

The following identities hold, where r is an arbitrary 3 -vector:

$$
\begin{equation*}
\|\boldsymbol{W}\|=\sqrt{2}\|\boldsymbol{w}\|, \quad \boldsymbol{W} \boldsymbol{r}=\boldsymbol{w} \times \boldsymbol{r} \tag{2.183}
\end{equation*}
$$

The cast can be extended to tensors:

- A [33]33-tensor $\mathcal{P}=\left(P_{i j k l}\right)$ is cast, by rearranging the elements with respect to the indices i and j, into a mixed tensor ${ }^{*} \mathcal{P}=\left({ }^{*} P_{\kappa k l}\right)$ of type 333, which is denoted by type ${ }_{333}[\mathcal{P}]$; the inverse cast is $\mathcal{P}=\operatorname{type}_{[33] 33}\left[{ }^{*} \mathcal{P}\right]$.
- A 33[33]-tensor $\mathcal{Q}=\left(Q_{i j k l}\right)$ is cast to a mixed tensor $\mathcal{Q}^{*}=\left(Q_{i j \kappa}^{*}\right)$ of type 333 , which is denoted by type ${ }_{333}[\mathcal{Q}]$; the inverse cast is $\mathcal{Q}=$ $\operatorname{type}_{33[33]}\left[\mathcal{Q}^{*}\right]$.
- If both operations are applied, a [33][33]-tensor $\mathcal{R}=\left(R_{i j k l}\right)$ is cast to a 33-matrix $\boldsymbol{R}=\left(R_{\kappa \lambda}\right)$, which is denoted by type ${ }_{33}[\mathcal{R}]$. In elements,

$$
\boldsymbol{R}=\left(\begin{array}{lll}
R_{3232} & R_{3213} & R_{3221} \tag{2.184}\\
R_{1332} & R_{1313} & R_{1321} \\
R_{2132} & R_{2113} & R_{2121}
\end{array}\right)
$$

The inverse cast is $\mathcal{R}=\operatorname{type}_{[33][33]}[\boldsymbol{R}]$.

2.4.3 Linear mapping of matrices in three dimensions

A. 33-matrices
moral: tensors can be recast
A 3333-tensor $\mathcal{T}=\left(T_{i j k l}\right)$ defines a line ${ }_{j}$ (for computations, not meaning)
33-matrix: matrix $\boldsymbol{A}=\left(A_{i j}\right)$ is mapped to mavrix $\left.A-\left(A_{i j}\right)\right)^{\text {III }}$ tIe rom

$$
\begin{equation*}
A_{i j}^{\prime}=\sum_{k, l=1}^{3} T_{i j k l} A_{k l} . \tag{2.185}
\end{equation*}
$$

This mapping is denoted by

$$
\begin{equation*}
\boldsymbol{A}^{\prime}=\mathcal{T} \boldsymbol{A} \tag{2.186}
\end{equation*}
$$

The identity mapping $\mathcal{I}=\left(I_{i j k l}\right)$ is given by

$$
\begin{equation*}
I_{i j k l}=\delta_{i k} \delta_{j l} \tag{2.187}
\end{equation*}
$$

The similarity transformation $\boldsymbol{A}^{\prime}=\boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T}$ defined by a nonsingular matrix $\boldsymbol{T}=\left(T_{i j}\right)$ maps a 33 -matrix \boldsymbol{A} to a 33 -matrix (see eq. (2.151)). This mapping can be written as $\boldsymbol{A}^{\prime}=\mathcal{T} \boldsymbol{A}$, where the tensor $\mathcal{T}=\left(T_{i j k l}\right)$ is defined by

$$
\begin{equation*}
T_{i j k l}=T_{i k}^{-1} T_{l j} . \tag{2.188}
\end{equation*}
$$

Here, $T_{i k}^{-1}$ denotes the ($i k$) element of \boldsymbol{T}^{-1}.
If a 3333 -tensor \mathcal{T} is cast into a 99 -matrix \boldsymbol{T} and if 33 -matrices \boldsymbol{A} and \boldsymbol{A}^{\prime} are cast into 9 -vectors \boldsymbol{a} and \boldsymbol{a}^{\prime}, respectively, the mapping $\boldsymbol{A}^{\prime}=\mathcal{T} \boldsymbol{A}$ is identified with

$$
\begin{equation*}
a^{\prime}=T a \tag{2.189}
\end{equation*}
$$

which is a linear mapping from a 9 -vector \boldsymbol{a} to a 9 -vector \boldsymbol{a}^{\prime}. Hence, the mapping \mathcal{T} is nonsingular if and only if the 99 -matrix \boldsymbol{T} obtained by cast is nonsingular. The inverse \mathcal{T}^{-1} of a nonsingular mapping \mathcal{T} is given through the cast:

$$
\begin{equation*}
\mathcal{T}^{-1}=\operatorname{type}_{3333}\left[\operatorname{type}_{99}[\mathcal{T}]^{-1}\right] \tag{2.190}
\end{equation*}
$$

If mapping \mathcal{T} is singular, its generalized inverse is also defined through the same cast:

$$
\begin{equation*}
\mathcal{T}^{-}=\operatorname{type}_{3333}\left[\operatorname{type}_{99}[\mathcal{T}]^{-}\right] \tag{2.191}
\end{equation*}
$$

A 33 -matrix \boldsymbol{A} is an eigenmatrix of a 3333 -tensor \mathcal{T} for eigenvalue λ if

$$
\begin{equation*}
\mathcal{T} \boldsymbol{A}=\lambda \boldsymbol{A} . \tag{2.192}
\end{equation*}
$$

Eigenvalues and eigenmatrices are computed by solving the eigenvalue problem of the (99)-matrix obtained by cast: if $\boldsymbol{T}=\operatorname{type}_{99}[\mathcal{T}]$ and $\boldsymbol{a}=\operatorname{type}_{9}[\boldsymbol{A}]$, eq. (2.192) reads

$$
\begin{equation*}
T a=\lambda a . \tag{2.193}
\end{equation*}
$$

B. (33)-matrices

A (33)(33)-tensor $\mathcal{M}=\left(M_{i j k l}\right)$ defines a linear mapping from a (33)-matrix to a (33)-matrix: matrix S is mapped to matrix $S^{\prime}=\mathcal{M} S$ in the form eq. (2.185). The identity mapping $\mathcal{I}=\left(I_{i j k l}\right)$ is given by

$$
\begin{equation*}
I_{i j k l}=\frac{1}{2}\left(\delta_{i k} \delta_{j l}+\delta_{j k} \delta_{i l}\right) \tag{2.194}
\end{equation*}
$$

The congruence transformation $\boldsymbol{S}^{\prime}=\boldsymbol{T}^{-1} \boldsymbol{S} \boldsymbol{T}$ defined by a nonsingular 33matrix $\boldsymbol{T}=\left(T_{i j}\right)$ maps a (33)-matrix \boldsymbol{S} to a (33)-matrix (see eq. (2.154)). This mapping can be written as $\boldsymbol{S}^{\prime}=\mathcal{M} S$, where the tensor $\mathcal{M}=\left(M_{i j k l}\right)$ is defined by

$$
\begin{equation*}
M_{i j k l}=\frac{1}{2}\left(T_{k i} T_{l j}+T_{k j} T_{l i}\right) \tag{2.195}
\end{equation*}
$$

If a (33)(33)-tensor \mathcal{M} is cast into a 66 -matrix \boldsymbol{M} and if (33)-matrices \boldsymbol{S} and \boldsymbol{S}^{\prime} are cast into 6 -vectors s and \boldsymbol{s}^{\prime}, respectively, the mapping $\boldsymbol{S}^{\prime}=\mathcal{M} \boldsymbol{S}$ is identified with

$$
\begin{equation*}
s^{\prime}=M s \tag{2.196}
\end{equation*}
$$

which is a linear mapping from 6 -vector s to 6 -vector s^{\prime}. Hence, the mapping \mathcal{M} is nonsingular if and only if the 66 -matrix \boldsymbol{M} obtained by cast is nonsingular. The inverse \mathcal{M}^{-1} and the generalized inverse \mathcal{M}^{-}are defined through the cast:

$$
\begin{align*}
\mathcal{M}^{-1} & =\operatorname{type}_{(33)(33)}\left[\operatorname{type}_{66}[\mathcal{M}]^{-1}\right] \tag{2.197}\\
\mathcal{M}^{-} & =\operatorname{type}_{(33)(33)}\left[\operatorname{type}_{66}[\mathcal{M}]^{-}\right] \tag{2.198}
\end{align*}
$$

Eigenvalues and eigenmatrices are also defined and computed through the cast.
C. [33]-matrices

If a [33][33]-tensor \mathcal{R} is cast into a 33-matryx \boldsymbol{R} and if [33]-matrices \boldsymbol{W} and \boldsymbol{W}^{\prime} are cast into 3 -vectors \boldsymbol{w} and \boldsymbol{w}^{\prime}, respectively, the mapping $\boldsymbol{W}^{\prime}=\mathcal{R} \boldsymbol{W}$ is identified with

$$
\begin{equation*}
w^{\prime}=2 R w \tag{2.199}
\end{equation*}
$$

which is a linear mapping from 3 -vector \boldsymbol{w} to 3 -vector \boldsymbol{w}^{\prime}. Hence, the mapping \mathcal{R} is nonsingular if and only if the 33 -matrix \boldsymbol{R} obtained by cast is nonsingular. The inverse \mathcal{R}^{-1} and the generalized inverse \mathcal{R}^{-}are defined through the cast:

$$
\begin{align*}
\mathcal{R}^{-1} & =\frac{1}{4} \operatorname{type}_{[33][33]}\left[\operatorname{type}_{33}[\mathcal{R}]^{-1}\right] \tag{2.200}\\
\mathcal{R}^{-} & =\frac{1}{4} \operatorname{type}_{[33][33]}\left[\operatorname{type}_{33}[\mathcal{R}]^{-}\right] \tag{2.201}
\end{align*}
$$

Eigenvalues and eigenmatrices are also defined and computed through the cast.

(a)

(b)

Fig. 2.6. (a) Linear mapping defined by (33)(33)-tensor \mathcal{S}. (a) Linear mapping defined by [33][33]-tensor \mathcal{R}.

D. Matrix spaces

The nine-dimensional linear space \mathcal{L}_{33} of all 33-matrices is the direct sum of the six-dimensional subspace $\mathcal{L}_{(33)}$ of all (33)-matrices and the threedimensional subspace $\mathcal{L}_{[33]}$ of all [33]-matrices (Fig. 2.6). The two subspaces are orthogonal complements of each other (see Section 2.3.4):

$$
\begin{equation*}
\mathcal{L}_{33}=\mathcal{L}_{(33)} \oplus \mathcal{L}_{[33]}, \quad \mathcal{L}_{(33)} \perp \mathcal{L}_{[33]} \tag{2.202}
\end{equation*}
$$

This is because any 33 -matrix \boldsymbol{A} is uniquely decomposed into a (33)-matrix \boldsymbol{A}_{s} and a [33]-matrix \boldsymbol{A}_{a} :

$$
\begin{array}{cl}
\boldsymbol{A}=\boldsymbol{A}_{s}+\boldsymbol{A}_{a}, & \left(\boldsymbol{A}_{s} ; \boldsymbol{A}_{a}\right)=0 \\
\boldsymbol{A}_{\boldsymbol{s}}=S[\boldsymbol{A}], & \boldsymbol{A}_{\mathbf{s}}=A[\boldsymbol{A}] \tag{2.204}
\end{array}
$$

Here, the symmetrization operator $S[\cdot]$ and the antisymmetrization operator $A[\cdot]$ are defined as follows:

$$
\begin{equation*}
S[\boldsymbol{A}]=\frac{1}{2}\left(\boldsymbol{A}+\boldsymbol{A}^{\top}\right), \quad A[\boldsymbol{A}]=\frac{1}{2}\left(\boldsymbol{A}-\boldsymbol{A}^{\top}\right) \tag{2.205}
\end{equation*}
$$

We observe the following:

- If a (33)(33)-tensor \mathcal{S} is viewed as a 3333-tensor, the linear mapping it defines is singular: its null space includes $\mathcal{L}_{[33]}$, and its range is a subspace of $\mathcal{L}_{(33)}$ (Fig. 2.6a). Hence, it always has eigenvalue 0 , whose multiplicity is at least 3 .
- If a [33][33]-tensor \mathcal{R} is viewed as a 3333-tensor, the linear mapping it defines is also singular: its null space includes $\mathcal{L}_{(33)}$, and its range is a subspace of $\mathcal{L}_{[33]}$ (Fig. 2.6b). Hence, it always has eigenvalue 0 , whose multiplicity is at least 6 .

[^0]: ${ }^{10}$ The Moore-Penrose generalized inverse is often denoted by \mathbf{A}^{+}in order to distinguish it from the generalized inverse in general, which is defined as the matrix \mathbf{X} that satisfies $\mathbf{A X A}=\mathbf{A}$ and denoted by \mathbf{A}^{-}. The generalized inverse we use throughout this book is always the Moore-Penrose type, so we adopt the generic symbol \mathbf{A}^{-}. The symbol \mathbf{A}^{+}will be given another meaning (see Section 2.2.6).

[^1]: ${ }^{11} \mathrm{Th}$ is is always true if \mathbf{A} is positive definite or negative definite.

[^2]: ${ }^{12}$ This is always true if \mathbf{A} is positive definite.
 ${ }^{13} \mathrm{Th}$ is is always true if \mathbf{A} is negative definite.

[^3]: ${ }^{14}$ The condition number can also be defined for a singular matrix \mathbf{A} in the form $\operatorname{cond}(\mathbf{A})$ $=\|\mathbf{A}\|_{s}\left\|\mathbf{A}^{-}\right\|_{s}=\lambda_{\max } / \lambda_{\min }$, where $\lambda_{\max }$ and $\lambda_{\min }$ are, respectively, the largest and the smallest of the nonnegative singular values of \mathbf{A}.

[^4]: ${ }^{15}$ Some authors use different terminologies such as the Frobenius norm, the Schur norm, and the Schmidt norm. In general, the norm $\|\mathbf{A}\|$ can be defined arbitrarily as long as (i) $\|\mathbf{A}\| \geq 0$, equality holding if and only if $\mathbf{A}=\mathbf{O}$, (ii) $\|c \mathbf{A}\|=|c| \cdot\|\mathbf{A}\|$ for any scalar c, and (iii) the triangle inequality (2.147) holds. There exist other definitions that satisfy these-the 1-norm $\|\mathbf{A}\|_{1}=\Sigma_{i=1}^{n} \max _{j}\left|A_{i j}\right|$, the ∞-norm $\|\mathbf{A}\|_{\infty}=\Sigma_{j=1}^{n} \max _{i}\left|A_{i j}\right|$, and the spectral norm $\|\mathbf{A}\|_{s}$ defined by eq. (2.118), for instance. If $\|\mathbf{A} \mathbf{x}\| \leq\|\mathbf{A}\| \cdot\|\mathbf{x}\|$ holds, the matrix norm $\|\mathbf{A}\|$ is said to be consistent with the vector norm $\|\mathbf{x}\|$. The spectral norm $\|\mathbf{A}\|_{s}$ is consistent with the Euclidean norm $\|\mathbf{x}\|$, and the 1-norm $\|\mathbf{A}\|_{1}$ and the ∞-norm $\|\mathbf{A}\|_{\infty}$ are consistent with the 1 -norm $\|\mathbf{x}\|_{1}$ and the ∞-norm $\|\mathbf{x}\|_{\infty}$, respectively (see Footnote 4 in Section 2.1).

[^5]: ${ }^{16}$ Similarity transformations define a group of transformations isomorphic to $G L(n)$, the group of nonsingular matrices under multiplication.
 ${ }^{17}$ Congruence transformations define a group of transformations isomorphic to $G L(n)$, the group of nonsingular matrices under multiplication.

