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Introduction

Introduction

Frequentist approach

“The data comes from a distribution, let us find as best as we
can which distribution that was”

Find “estimators” for parameters, and try to figure out how
good these estimators are.

Bayesian approach

“The data could have come from any number of distributions,
let us find what those distributions could have been, and how
likely they are”

Using Bayes’ rule does not make an approach Bayesian
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Mean, variance and Covariance

A few definitions (scalar variables)

Expectation

E [f (x)] ,
∫ ∞

−∞
f (x)p(x)dx (1)

Mean (Expectation of x):

E [x ] =

∫ ∞

−∞
xp(x)dx (2)

Variance

V [x ] , E [(x − E [x ])2] =

∫ ∞

−∞
(x − E [x ])2p(x)dx (3)

Covariance

V [x , y ] , E [(x − E [x ])(y − E [y ]) (4)
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Mean, variance and Covariance

Multivariate version

Expectation

E [f (x)] ,
∫

Rn

f (x)p(x)dx (5)

Mean (Expectation of x):

E [x] =

∫
Rn

xp(x)dx (6)

Covariance matrix

V [x] , E [(x− E [x])(x− E [x])>] (7)
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Mean, variance and Covariance

Law of large numbers

Law of large numbers:

As N grows large,

1
N

N∑
i=1

xi → E [x] (8)
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Mean, variance and Covariance

Change of variables

If x is an n-vector and y = Ax is an m-vector, for an arbitrary
mn-matrix A

E [y] = AE [x] (9)

V [y] = AV [x]A> (10)

If we perform a functional transformation of variables, y = y(x),
then by defining x = x̄ + ∆x and y = ȳ + ∆y, we obtain to a first
approximation

ȳ = y(x̄) ∆y =
∂y

∂x

∣∣∣∣
x̄

∆x V [y] =
∂y

∂x

∣∣∣∣
x̄

V [x]
∂y

∂x

∣∣∣∣>
x̄

(11)
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Mean, variance and Covariance

Principal Component Analysis

PCA is probably the most well-known method for dimensionality
reduction.

Also known as the Karhunen-Loève transform

Orthogonal projection of the data into a lower-dimensional
subspace, so that the variance of the projected data is
maximised

Equivalently: linear projection that minimises the
mean-squared distance between data points and their
projection

U
N
IV

E
R
S
IT
Y
 O

F
A

M
S
T
E
R
D
A
M

IASIntelligent Autonomous Systems



Probability distributions Statistical Estimation Kalman Filter Fisher Information Matrix Akaike Information Criterion

Mean, variance and Covariance

Maximising the projected variance

Consider projecting on u1, with unit length for convenience.

Each vector xn is then projected into u>1 xn

The mean of the projected data equals the projected mean u1x̄

To maximise the variance of the projected data, we maximise

1

N

N∑
n=1

(u>1 xn − u>1 x̄n)
2 = u>1 V [x]u1 (12)

Using a Lagrange multiplier to constrain u>1 u1 = 1, we get

u>1 V [x]u1 + λ1(1− u>1 u1) (13)

resulting in V [x]u1 = λu1. That is, u1 is an eigenvector of
V [x] and the maximum is obtained for the largest eigenvalue.
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Mean, variance and Covariance

Interesting properties

The eigenvalues indicate the variance of the data along the
orientation of the corresponding eigenvector

Since the eigenvectors form an orthonormal basis, the data is
uncorrelated along the projection orientations (3.24)
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Mean, variance and Covariance

Local distributions

Definition of manifold

Definition of dimension / codimension

Non-singular: codimension = 1

Singular: codimension 6= 1

Tangent space / Normal space

Local distribution: Assume that the distribution is sufficiently
“localised”, so that all observations can be approximated as
lying in the tangent space of the manifold
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Mean, variance and Covariance

3D rotation

Consider a rotation R as a random variable, representing a rotation
R̄ perturbed by some small noise ∆R: R = R̄ + ∆R.
R̄, R and ∆R are rotations, so that we can write:

R = (I + ∆Ω l I + O(∆Ω2))R̄ (14)

R̄ + ∆R = R̄ + ∆Ω l R̄ + O(∆Ω2) (15)

To a first approximation:

∆R = ∆Ω l R̄ (16)

The covariance matrix of the rotation can then be defined as:

V [R] = E [∆Ω2l l>] (17)

The eigenvector with largest associated eigenvalue then
approximates the vector around which the rotation is most likely
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Gaussian and χ2

The Gaussian Distribution
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p(x) =
1

(2π)n/2|Σ|1/2
exp−1

2(x− µ)>Σ−1(x− µ) (18)

where we can check that

E [x] = µ V [x] = Σ (19)
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Gaussian and χ2

Interesting properties

The quantity

(x− µ)>Σ−1(x− µ) (20)

is the squared Mahalanobis distance of x from the mean.

Uncorrelated normally distributed variables are always
independent

If Σ is not full rank, we define the Gaussian distribution in the
space spanned by the data

The central limit theorem states that the sum of a sufficiently
large number of independent random variables with finite
variance converges to a normal distribution.
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Gaussian and χ2

The χ2 Distribution
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Gaussian and χ2

The χ2 Distribution

If x1, . . . , xr are r independent samples from N (0, 1), then

R = x2
1 + · · ·+ x2

r (21)

has a χ2 distribution.
Some nice properties:

E [R] = r

V [R] = 2r

The mode of the distribution is at R = r − 2

The sum of independent χ2 variables is χ2 distributed
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Gaussian and χ2

Properties of the χ2 distribution

For a multivariate random variable x ∼ N (0,Σ) with Σ of
rank r , the quadratic sum

R = x>Σ−1x (22)

is χ2 distributed with r degrees of freedom
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Gaussian and χ2

χ2 test

A frequentist approach to reject hypotheses:

Construct random variables R = x2
1 + · · ·+ x2

r such that each
xi has zero mean if the hypothesis holds

If the variables do not have zero mean, E [R] becomes larger

The hypothesis is rejected with significance level a (confidence
level (1− a)) if R falls in the region (χ2

r ,a,∞)

Note that this allows you to reject hypotheses, not to accept them!
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Maximum Likelihood

Maximum Likelihood

Find the parameter by maximising the likelihood

l(θ) , p({y}|θ) (23)

=
∏
i

p(yi |θ) (24)
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Maximum a Posteriori

Maximum a Posteriori

The major problem with ML estimation is overfitting; learning the
structure of the data extremely well, but performing poorly on new
examples.
If we have prior knowledge, we can encode this in the model in the
form of a prior probability distribution over the parameters, and
update these with the observed data:

p(θ|y) =
p(y|θ)p(θ)

p(y)
(25)

where the marginal probability density p(y) is a constant. The
MAP estimate is obtained by maximising p(θ|y).
This reduces overfitting, but this is not Bayesian inference.
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Bayesian inference

Bayesian Inference

In Bayesian inference, we learn a distribution over parameters. We
consider that all parameters we are not interested in are “nuisance
parameters”. To obtain the distribution over the quantity of
interest, θi , we marginalise out the other parameters:

p(θi |y) ∝
∫

θ¬i

p(y|θ)dθ¬i (26)
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Bayesian inference

“Statistical Estimation”

If we have a model y = Ax + ε, where A is known and ε has a
Gaussian distribution with known parameters, how do we find x?

Find the parameter by maximising the likelihood:

`(θ) , p(y|θ), where θ = x (27)

=
1

(2π)n/2|Σ|1/2
exp−1

2(y − Ax)>Σ−1(y − Ax) (28)

Ignoring constants and since exp(·) is a monotonically increasing
function, this is equivalent to minimising the Mahalanobis
distance, resulting in:

x̂ = (A>Σ−1A)−1AΣ−1y (29)

and the error has a χ2 distribution
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Kalman Filter

Linear dynamical system defined as:

xt+1 = Atxt + Btvt (30)

yt = Ctxt + wt (31)

where At , Bt and Ct are fixed matrices; vt and wt are normally
distributed with known means and covariances.

The filter updates its estimators x̂t and V [x̂t ] at each time step by
first estimating them given past observations, and updating it with
the current observation.

The Kalman “smoother” additionally performs a backward pass to
include information from the future in the estimate of xt
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Fisher Information Matrix

Score:

l = ∇θ log p(x;θ) (32)

Fisher Information Matrix

J = E [ll>] (33)

can be written, if the log-likelihood is twice differentiable, as

J = E [−∇2
θ log p(x;θ)] (34)

Intuitively: the more peaked the log-likelihood, the more
informative the distribution
Cramér-Rao Lower Bound The Fisher Information Matrix provides
a lower bound on the variance of an estimator of a parameter. If
the bound is attained, the estimator is said to be efficient
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Akaike Information Criterion

The Akaike Information Criterion

AIC = 2m′ − 2
∑

i

log p(xi ; θ̂) (35)

where m′ is the rank of the fisher information matrix J

This penalises models that are too flexible, and optimises the
expected likelihood of future data.

Other information criteria are also commonly used, such as
the BIC, which penalise complex models slightly differently.
The BIC penalises a high number of parameters less as more
data becomes available.
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