Probabilities and Statistical Estimation

Chapter 3

University of Amsterdam
(1) Probability distributions

- Introduction
- Mean, variance and Covariance
- Gaussian and χ^{2}
(2) Statistical Estimation
- Maximum Likelihood
- Maximum a Posteriori
- Bayesian inference
(3) Kalman Filter

4 Fisher Information Matrix
(5) Akaike Information Criterion

Introduction

Frequentist approach

- "The data comes from a distribution, let us find as best as we can which distribution that was"
- Find "estimators" for parameters, and try to figure out how good these estimators are.

Bayesian approach

- "The data could have come from any number of distributions, let us find what those distributions could have been, and how likely they are"
- Using Bayes' rule does not make an approach Bayesian

Mean, variance and Covariance

A few definitions (scalar variables)

- Expectation

$$
\begin{equation*}
E[f(x)] \triangleq \int_{-\infty}^{\infty} f(x) p(x) \mathrm{d} x \tag{1}
\end{equation*}
$$

- Mean (Expectation of x):

$$
\begin{equation*}
E[x]=\int_{-\infty}^{\infty} x p(x) \mathrm{d} x \tag{2}
\end{equation*}
$$

- Variance

$$
\begin{equation*}
V[x] \triangleq E\left[(x-E[x])^{2}\right]=\int_{-\infty}^{\infty}(x-E[x])^{2} p(x) \mathrm{d} x \tag{3}
\end{equation*}
$$

- Covariance

$$
\begin{equation*}
V[x, y] \triangleq E[(x-E[x])(y-E[y]) \tag{4}
\end{equation*}
$$

Multivariate version

- Expectation

$$
\begin{equation*}
E[f(\mathbf{x})] \triangleq \int_{\mathbb{R}^{n}} f(\mathbf{x}) p(\mathbf{x}) \mathrm{d} \mathbf{x} \tag{5}
\end{equation*}
$$

- Mean (Expectation of x):

$$
\begin{equation*}
E[\mathbf{x}]=\int_{\mathbb{R}^{n}} \mathbf{x p}(\mathbf{x}) \mathrm{d} \mathbf{x} \tag{6}
\end{equation*}
$$

- Covariance matrix

$$
\begin{equation*}
V[\mathbf{x}] \triangleq E\left[(\mathbf{x}-E[\mathbf{x}])(\mathbf{x}-E[\mathbf{x}])^{\top}\right] \tag{7}
\end{equation*}
$$

Law of large numbers

As N grows large,

$$
\begin{equation*}
\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \rightarrow E[\mathbf{x}] \tag{8}
\end{equation*}
$$

Change of variables

If \mathbf{x} is an n-vector and $\mathbf{y}=\mathbf{A} \mathbf{x}$ is an m-vector, for an arbitrary mn-matrix \mathbf{A}

$$
\begin{align*}
& E[\mathbf{y}]=\mathbf{A} E[\mathbf{x}] \tag{9}\\
& V[\mathbf{y}]=\mathbf{A} V[\mathbf{x}] \mathbf{A}^{\top} \tag{10}
\end{align*}
$$

If we perform a functional transformation of variables, $\mathbf{y}=\mathbf{y}(\mathbf{x})$, then by defining $\mathbf{x}=\overline{\mathbf{x}}+\Delta \mathbf{x}$ and $\mathbf{y}=\overline{\mathbf{y}}+\Delta \mathbf{y}$, we obtain to a first approximation

$$
\begin{equation*}
\overline{\mathbf{y}}=\mathbf{y}(\overline{\mathbf{x}}) \quad \Delta \mathbf{y}=\left.\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right|_{\bar{x}} \Delta x \quad V[\mathbf{y}]=\left.\left.\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right|_{\bar{x}} V[\mathbf{x}] \frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right|_{\bar{x}} ^{\top} \tag{11}
\end{equation*}
$$

Principal Component Analysis

PCA is probably the most well-known method for dimensionality reduction.

- Also known as the Karhunen-Loève transform
- Orthogonal projection of the data into a lower-dimensional subspace, so that the variance of the projected data is maximised
- Equivalently: linear projection that minimises the mean-squared distance between data points and their projection

Maximising the projected variance

Consider projecting on \mathbf{u}_{1}, with unit length for convenience.

- Each vector \mathbf{x}_{n} is then projected into $\mathbf{u}_{1}^{\top} \mathbf{x}_{n}$
- The mean of the projected data equals the projected mean $\mathbf{u}_{1} \overline{\mathbf{x}}$
- To maximise the variance of the projected data, we maximise

$$
\begin{equation*}
\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{u}_{1}^{\top} \mathbf{x}_{n}-\mathbf{u}_{1}^{\top} \overline{\mathbf{x}}_{n}\right)^{2}=\mathbf{u}_{1}^{\top} V[\mathbf{x}] \mathbf{u}_{1} \tag{12}
\end{equation*}
$$

- Using a Lagrange multiplier to constrain $\mathbf{u}_{1}^{\top} \mathbf{u}_{1}=1$, we get

$$
\begin{equation*}
\mathbf{u}_{1}^{\top} V[\mathbf{x}] \mathbf{u}_{1}+\lambda_{1}\left(1-\mathbf{u}_{1}^{\top} \mathbf{u}_{1}\right) \tag{13}
\end{equation*}
$$

resulting in $V[\mathbf{x}] \mathbf{u}_{1}=\lambda \mathbf{u}_{1}$. That is, \mathbf{u}_{1} is an eigenvector of $V[\mathbf{x}]$ and the maximum is obtained for the largest eigenvalue.

Interesting properties

 uncorrelated along the projection orientations (3.24)
Local distributions

- Definition of manifold
- Definition of dimension / codimension
- Non-singular: codimension $=1$
- Singular: codimension $\neq 1$
- Tangent space / Normal space
- Local distribution: Assume that the distribution is sufficiently "localised", so that all observations can be approximated as lying in the tangent space of the manifold

3D rotation

Consider a rotation \mathbf{R} as a random variable, representing a rotation $\overline{\mathbf{R}}$ perturbed by some small noise $\Delta \mathbf{R}: \mathbf{R}=\overline{\mathbf{R}}+\Delta \mathbf{R}$.
$\overline{\mathbf{R}}, \mathbf{R}$ and $\Delta \mathbf{R}$ are rotations, so that we can write:

$$
\begin{align*}
\mathbf{R} & =\left(\mathbf{I}+\Delta \Omega \mathbf{I I}+O\left(\Delta \Omega^{2}\right)\right) \overline{\mathbf{R}} \tag{14}\\
\overline{\mathbf{R}}+\Delta \mathbf{R} & =\overline{\mathbf{R}}+\Delta \Omega \mathbf{I} \overline{\mathbf{R}}+O\left(\Delta \Omega^{2}\right) \tag{15}
\end{align*}
$$

To a first approximation:

$$
\begin{equation*}
\Delta \mathbf{R}=\Delta \Omega \mathbf{I} \overline{\mathbf{R}} \tag{16}
\end{equation*}
$$

The covariance matrix of the rotation can then be defined as:

$$
\begin{equation*}
V[\mathbf{R}]=E\left[\Delta \Omega^{2} \mathbf{I} \mathbf{I}^{\top}\right] \tag{17}
\end{equation*}
$$

The eigenvector with largest associated eigenvalue then Intelligent Autonomous systems vector around which the rotation is most likely

The Gaussian Distribution

$$
\begin{equation*}
p(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp -\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \tag{18}
\end{equation*}
$$

where we can check that

$$
\begin{equation*}
E[\mathbf{x}]=\boldsymbol{\mu} \quad V[\mathbf{x}]=\boldsymbol{\Sigma} \tag{19}
\end{equation*}
$$

Interesting properties

- The quantity

$$
\begin{equation*}
(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \tag{20}
\end{equation*}
$$

is the squared Mahalanobis distance of \mathbf{x} from the mean.

- Uncorrelated normally distributed variables are always independent
- If $\boldsymbol{\Sigma}$ is not full rank, we define the Gaussian distribution in the space spanned by the data
- The central limit theorem states that the sum of a sufficiently large number of independent random variables with finite variance converges to a normal distribution.

Gaussian and χ^{2}

The χ^{2} Distribution

The χ^{2} Distribution

If x_{1}, \ldots, x_{r} are r independent samples from $\mathcal{N}(0,1)$, then

$$
\begin{equation*}
R=x_{1}^{2}+\cdots+x_{r}^{2} \tag{21}
\end{equation*}
$$

has a χ^{2} distribution.
Some nice properties:

- $E[R]=r$
- $V[R]=2 r$
- The mode of the distribution is at $R=r-2$
- The sum of independent χ^{2} variables is χ^{2} distributed

Properties of the χ^{2} distribution

- For a multivariate random variable $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma}$ of rank r, the quadratic sum

$$
\begin{equation*}
R=\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} \tag{22}
\end{equation*}
$$

is χ^{2} distributed with r degrees of freedom

A frequentist approach to reject hypotheses:

- Construct random variables $R=x_{1}^{2}+\cdots+x_{r}^{2}$ such that each x_{i} has zero mean if the hypothesis holds
- If the variables do not have zero mean, $E[R]$ becomes larger
- The hypothesis is rejected with significance level a (confidence level $(1-a))$ if R falls in the region $\left(\chi_{r, a}^{2}, \infty\right)$
Note that this allows you to reject hypotheses, not to accept them!

Maximum Likelihood

Find the parameter by maximising the likelihood

$$
\begin{align*}
I(\boldsymbol{\theta}) & \triangleq p(\{\mathbf{y}\} \mid \boldsymbol{\theta}) \tag{23}\\
& =\prod p\left(\mathbf{y}_{i} \mid \boldsymbol{\theta}\right) \tag{24}
\end{align*}
$$

Maximum a Posteriori

The major problem with ML estimation is overfitting; learning the structure of the data extremely well, but performing poorly on new examples.
If we have prior knowledge, we can encode this in the model in the form of a prior probability distribution over the parameters, and update these with the observed data:

$$
\begin{equation*}
p(\boldsymbol{\theta} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{p(\mathbf{y})} \tag{25}
\end{equation*}
$$

where the marginal probability density $p(\mathbf{y})$ is a constant. The MAP estimate is obtained by maximising $p(\boldsymbol{\theta} \mid \mathbf{y})$.
This reduces overfitting, but this is not Bayesian inference.

Bayesian Inference

In Bayesian inference, we learn a distribution over parameters. We consider that all parameters we are not interested in are "nuisance parameters". To obtain the distribution over the quantity of interest, θ_{i}, we marginalise out the other parameters:

$$
\begin{equation*}
p\left(\theta_{i} \mid \mathbf{y}\right) \propto \int_{\theta_{\neg i}} p(\mathbf{y} \mid \boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta}_{\neg i} \tag{26}
\end{equation*}
$$

If we have a model $\mathbf{y}=\mathbf{A x}+\boldsymbol{\epsilon}$, where \mathbf{A} is known and $\boldsymbol{\epsilon}$ has a Gaussian distribution with known parameters, how do we find \mathbf{x} ?

Find the parameter by maximising the likelihood:

$$
\begin{align*}
\ell(\boldsymbol{\theta}) & \triangleq p(\mathbf{y} \mid \boldsymbol{\theta}), \text { where } \boldsymbol{\theta}=\mathbf{x} \tag{27}\\
& =\frac{1}{(2 \pi)^{n / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp -\frac{1}{2}(\mathbf{y}-\mathbf{A} \mathbf{x})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\mathbf{A} \mathbf{x}) \tag{28}
\end{align*}
$$

Ignoring constants and since $\exp (\cdot)$ is a monotonically increasing function, this is equivalent to minimising the Mahalanobis distance, resulting in:

$$
\begin{equation*}
\hat{\mathbf{x}}=\left(\mathbf{A}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{A}\right)^{-1} \mathbf{A} \boldsymbol{\Sigma}^{-1} \mathbf{y} \tag{29}
\end{equation*}
$$

and the error has a χ^{2} distribution

Kalman Filter

Linear dynamical system defined as:

$$
\begin{align*}
\mathbf{x}_{t+1} & =\mathbf{A}_{t} \mathbf{x}_{t}+\mathbf{B}_{t} \mathbf{v}_{t} \tag{30}\\
\mathbf{y}_{t} & =\mathbf{C}_{t} \mathbf{x}_{t}+\mathbf{w}_{t} \tag{31}
\end{align*}
$$

where $\mathbf{A}_{t}, \mathbf{B}_{t}$ and \mathbf{C}_{t} are fixed matrices; \mathbf{v}_{t} and \mathbf{w}_{t} are normally distributed with known means and covariances.

The filter updates its estimators $\hat{\mathbf{x}}_{t}$ and $V\left[\hat{\mathbf{x}}_{t}\right]$ at each time step by first estimating them given past observations, and updating it with the current observation.

The Kalman "smoother" additionally performs a backward pass to include information from the future in the estimate of \mathbf{x}_{t}

Fisher Information Matrix

Score:

$$
\begin{equation*}
\mathbf{I}=\nabla_{\boldsymbol{\theta}} \log p(\mathbf{x} ; \boldsymbol{\theta}) \tag{32}
\end{equation*}
$$

Fisher Information Matrix

$$
\begin{equation*}
\mathbf{J}=E\left[\mathbf{I}^{\top}\right] \tag{33}
\end{equation*}
$$

can be written, if the log-likelihood is twice differentiable, as

$$
\begin{equation*}
\mathbf{J}=E\left[-\nabla_{\boldsymbol{\theta}}^{2} \log p(\mathbf{x} ; \boldsymbol{\theta})\right] \tag{34}
\end{equation*}
$$

Intuitively: the more peaked the log-likelihood, the more informative the distribution
Cramér-Rao Lower Bound The Fisher Information Matrix provides a lower bound on the variance of an estimator of a parameter. If the bound is attained, the estimator is said to be efficient

Akaike Information Criterion

The Akaike Information Criterion

$$
\begin{equation*}
A I C=2 m^{\prime}-2 \sum_{i} \log p\left(\mathbf{x}_{i} ; \hat{\boldsymbol{\theta}}\right) \tag{35}
\end{equation*}
$$

where m^{\prime} is the rank of the fisher information matrix \mathbf{J}

- This penalises models that are too flexible, and optimises the expected likelihood of future data.
- Other information criteria are also commonly used, such as the BIC, which penalise complex models slightly differently. The BIC penalises a high number of parameters less as more data becomes available.

