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What’s all about?

... fit geometric objects to multiple instances of another
geometric object in an optimal manner ...
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Object, data and relationship

We want to fit an object given some data

Let u be the vector that represents the object
(n′-dim manifold - parameter space U)

Let a1...aN be N vectors of the same object
(m′-dim manifold - data space A)

All aα satisfy the same relation with u

We want to find u optimally wrt the relation
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Noise

aα is observed in the presence of noise
aα = āα + ∆aα, α = 1, ...,N.

∆aα is independent, zero mean and with covariance V̄ [aα]

To a first approximation, ∆aα lives in the tangent space
Tāα(A)
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Constraints

The true value āα and u are related by L constraints
F (k)(āα, u) = 0, k = 1, ..., L.

This is called the hypothesis and its assumed to be
nonsingular (p.132)

The rank of the hypothesis is the number of independent
equations

The rank is the codimension of S (manifold defined by the L
eqs.)

S is called the geometric model of the hypothesis
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Singularity

Linear subspace of the TRUE value
V̄α = {PA

āα∇aF (1)(āα, u), ...,PA
āα∇aF (L)(āα, u)}L ∈ Rm

Linear subspace of the MEASURED value
Vα = {PA

aα∇aF (1)(aα, u), ...,PA
aα∇aF (L)(aα, u)}L ∈ Rm

In general, the rank of the hypothesis r coincides with the
dimension l of the linear subspace V̄α

If l < r then aα is a singular datum

If the dimension of Vα is larger than the dimesion of V̄α the
hypothesis is degenerate
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Example??

Image points

Directions in space

Motion estimation??
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Correction

Assume a value for u (what value?)

Correct (optimally) data to satisfy the hypothesis

Find ∆aα such that āα = aα −∆aα

This is the optimization:
Jα = (∆aα, V̄ [aα]−∆aα)→ min

Solution is given by:

∆aα = V̄ [aα]
L∑

k,l=1

W̄ (kl)
α (u)F (k)(aα, u)∇aF (l)(āα, u)

The residual Ĵα is given by substituting one into another
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Estimation

The probability density for all ∆aα is: N∏
β=1

1√
(2π)rβ |V̄ [aβ]|+

 e−
PN
α=1(∆aα,V̄ [aα]−∆aα)/2

This is the likelihood of the observed values ∆aα ??

Given the residual Ĵα this takes the form: N∏
β=1

1√
(2π)rβ |V̄ [aβ]|+

 e−
PN
α=1 Ĵα/2
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Estimation 2

We now want to find u that maximizes that likeihood (or
minimizes the sum of residuals)

J̄[u] =
N∑
α=1

Ĵα → min

This takes the full form:

J̄[u] =
N∑
α=1

L∑
k,l=1

W̄ (kl)
α (u)F (k)(aα, u)F (l)(aα, u)→ min
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Practical Considerations

W̄
(kl)
α (pseudo inverse of Vα) depends on the true value āα

We approximate:

W̄
(kl)
α ≈

(
(∇aF (k)(aα, u),V [aα]∇F (l)(aα, u)

)−
r

Thus:

J[u] =
N∑
α=1

L∑
k,l=1

W (kl)
α (u)F (k)(aα, u)F (l)(aα, u)→ min

Yields the optimal estimate û by numerical computation
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Re-cap

We define the optimal estimation as maximum likelihood

We obtain an optimal estimate by approximating the true
covariance with the measured covariance

The optimal estimate û is a random variable since it was
obtained from noisy data

We now study its behavior
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Some facts and definitions

We define ū as the true value and u the random variable

ū satisfies F (k)(āα, u) = 0, k = 1, ..., L

Since its a random variable, its disturbed by noise:
u = ū + ∆u

∆u is to a first approx contained in the tangent space
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Covariance of û

We start by introducing the random variables aα and u in the
constraints:
F (k)(aα, u) = (∇aF̄

(k)
α ,∆aα)+(∇uF̄

(k)
α ,∆uα)+O(∆aα,∆u)2

Also:
W̄

(kl)
α (u) = W̄

(kl)
α (ū) + O(∆u)

After some magical math, we finally obtain:

V̄ [û] =

 N∑
α=1

L∑
k,l=1

W̄ (kl)
α (ū)(PU

ū ∇uF̄ (k)
α )(PU

ū ∇uF̄ (l)
α )T

−
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Approximation

Since the true value ū is used, we cannot compute it

We approximate using the optimal estimate û and the
corrected data âα = aα −∆aα

Alternatively, one approximation can be made using the
measured data and not the corrected one.
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Re-cap

The estimation is based on the hypothesis that the data {aα}
are random deviations from the true data {āα}
The true data satisfies the constraints F (k)

Minimizing the sum of residuals means choosing û so that the
hypothesis is most likely
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Hypothesis testing

If the hypothesis is correct, the residual J̄[û] should be zero
for the true values

This is generally NOT the case

The bigger the residual, the lest likely the hypothesis is correct

If the residual is much larger than expected according to the
noise in the data {aα} the hypothesis can be rejected

To formalize this, we assume Gaussian noise in the data
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Strong hypothesis

We want to reject a strong hypothesis

A strong hypothesis is based on the residual of the TRUE
value ū

So, we consider the residual J̄[ū] and we let ∆u = 0

This is given by:

J̄[ū] =
N∑
α=1

L∑
k,l=1

W̄ (kl)
α (ū)(∇aF̄ (k)

α ,∆aα)(∇aF̄ (l)
α ,∆aα)

We now re-write it using a random variable of mean 0 (the eα
vector) and it covaraince as:

J̄[ū] =
N∑
α=1

(eα,V [eα]−eα)
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Strong hypothesis 2

The rank of the covariance of eα is the same as the hypothesis
and each eα is a random variable (Gaussian and independent)

So J̄[ū] is a χ2 variable, so we apply the ol’ rejection method

The hypothesis can be rejected with significance level a% if:
J̄[ū] > χ2

rN,a

Since J̄[u] requires the true data, it is approximated with the
residual given the measured data J[u]
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Weak hypothesis

The same idea as before, but now we use the residual for the
optimal estimate J̄[û]

To a first approximation is:
J̄[û] = J̄[ū]− (∆u, V̄ [û]−∆u)

The first part is a χ2 variable.... and also the second part

The expectation and variance are LOWER than the ones for
the strong hypothesis:
E [J̄[ū]] = rN,V [J̄[ū]] = 2rN
E [J̄[û]] = rN − n′,V [J̄[û]] = 2(rN − n′)
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Weak hypothesis 2

The residual for the optimal estimate is (whp) smaller than for
ū

This is because its obtained minimizing the residual

This analysis can be used to test that the constraints F (k) are
satiesfied by some value u

The hypothesis is rejected with significance value a% if
J̄[û] > χ2

rN−n′,a

The same approximation is made for the residual as before
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Noise level

If a covariance matrix y multiplied by a constant c ...

... the pseudo inverse is multiplied by 1/c

This does not affect the value that minimizes the residual
(only the residual scale)

The covariance is expressed as:
V [aα] = ε2V0[aα]
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Noise level 2

In practical problems, V0 can be predicted, but not ε

We can first estimate û...

and later estimate the noise level:
ε̂2 = J0[û]

rN−n′

The weak hypothesis can be re-writen as:

ε̂2

ε2 >
χ2

rN−n′,a
rN−n′
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The covariance

K. assumes that you posses the covariance of the original
data... but can you compute it?

Example:

Given image correspondences, compute camera motion
Then triangulate and obtain 3D points
Fit some geometric object (line, plane, whatever)

How does the error propagate thorough this?
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