Parametric Fitting

Kenichi Kanatani (interpreted by I. Esteban)

August 6, 2009

・ロト ・回ト ・ヨト ・ヨト

æ

Kenichi Kanatani (interpreted by I. Esteban) Parametric Fitting

Outline

Introduction General Theory Fitting for Image Points Questions.... for you

1 Introduction

2 General Theory

- Definitions
- Maximum Likelihood Estimation
- Covariance Matrix
- Hypothesis and Noise Level
- **3** Fitting for Image Points

4 Questions.... for you

- 4 回 2 - 4 □ 2 - 4 □

What's all about?

... fit geometric objects to multiple instances of another geometric object in an optimal manner ...

イロト イヨト イヨト イヨト

Example

Kenichi Kanatani (interpreted by I. Esteban)

Parametric Fitting

Fitting as Maximum Likelihood

Kenichi Kanatani (interpreted by I. Esteban) Parametric Fitting

Fitting as Maximum Likelihood

Obtain covariance of estimation and residual

Kenichi Kanatani (interpreted by I. Esteban) Parametric Fitting

- Fitting as Maximum Likelihood
- Obtain covariance of estimation and residual
- Hypothesis testing

イロト イヨト イヨト イヨト

Fitting as Maximum Likelihood

- Obtain covariance of estimation and residual
- Hypothesis testing
- Examples

<ロ> (日) (日) (日) (日) (日)

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

イロト イポト イヨト イヨト

Object, data and relationship

- We want to fit an object given some data
- Let u be the vector that represents the object (n'-dim manifold - parameter space U)
- Let a₁...a_N be N vectors of the same object (m'-dim manifold - data space A)
- All a_{α} satisfy the same relation with u
- We want to find *u* optimally wrt the relation

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

イロン イヨン イヨン イヨン

æ

Noise

• a_{α} is observed in the presence of noise

$$a_{\alpha} = \bar{a}_{\alpha} + \Delta a_{\alpha}, \alpha = 1, ..., N.$$

- Δa_{α} is independent, zero mean and with covariance $\bar{V}[a_{\alpha}]$
- To a first approximation, Δa_{α} lives in the tangent space $T_{\bar{a}_{\alpha}}(A)$

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

・ロン ・回と ・ヨン ・ヨン

Constraints

- The true value \bar{a}_{α} and u are related by L constraints $F^{(k)}(\bar{a}_{\alpha}, u) = 0, k = 1, ..., L.$
- This is called the hypothesis and its assumed to be nonsingular (p.132)
- The rank of the hypothesis is the number of independent equations
- The *rank* is the codimension of *S* (manifold defined by the L eqs.)
- *S* is called the *geometric model* of the hypothesis

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

・ロト ・回ト ・ヨト ・ヨト

Singularity

- Linear subspace of the TRUE value $\bar{V}_{\alpha} = \{P^{A}_{\bar{a}_{\alpha}} \nabla_{a} F^{(1)}(\bar{a}_{\alpha}, u), ..., P^{A}_{\bar{a}_{\alpha}} \nabla_{a} F^{(L)}(\bar{a}_{\alpha}, u)\}_{L} \in R^{m}$
- Linear subspace of the MEASURED value $V_{\alpha} = \{P_{a_{\alpha}}^{A} \nabla_{a} F^{(1)}(a_{\alpha}, u), ..., P_{a_{\alpha}}^{A} \nabla_{a} F^{(L)}(a_{\alpha}, u)\}_{L} \in R^{m}$
- In general, the rank of the hypothesis r coincides with the dimension l of the linear subspace \bar{V}_{α}
- If l < r then a_{α} is a singular datum
- If the dimension of V_{α} is larger than the dimesion of \bar{V}_{α} the hypothesis is degenerate

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

イロン イヨン イヨン イヨン

æ

Example??

- Image points
- Directions in space
- Motion estimation??

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

イロト イヨト イヨト イヨト

Correction

- Assume a value for u (what value?)
- Correct (optimally) data to satisfy the hypothesis
 - Find Δa_{lpha} such that $ar{a}_{lpha} = a_{lpha} \Delta a_{lpha}$
 - This is the optimization:

$$J_{lpha} = (\Delta a_{lpha}, ar{V}[a_{lpha}]^{-} \Delta a_{lpha}) o {\it min}$$

Solution is given by:

$$\Delta a_{\alpha} = \bar{V}[a_{\alpha}] \sum_{k,l=1}^{L} \bar{W}_{\alpha}^{(kl)}(u) F^{(k)}(a_{\alpha}, u) \nabla a F^{(l)}(\bar{a}_{\alpha}, u)$$

• The residual \hat{J}_{α} is given by substituting one into another

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

イロン イヨン イヨン イヨン

Estimation

- The probability density for all Δa_{α} is: $\left(\prod_{\beta=1}^{N} \frac{1}{\sqrt{(2\pi)^{r_{\beta}} |\bar{V}[a_{\beta}]|_{+}}}\right) e^{-\sum_{\alpha=1}^{N} (\Delta a_{\alpha}, \bar{V}[a_{\alpha}]^{-} \Delta a_{\alpha})/2}$
- This is the likelihood of the observed values Δa_{α} ??
- Given the residual \hat{J}_{α} this takes the form:

$$\left(\prod_{eta=1}^{\mathsf{N}}rac{1}{\sqrt{(2\pi)^{r_eta}|ar{m{V}}[m{a}_eta]|_+}}
ight)e^{-\sum_{lpha=1}^{\mathsf{N}}\hat{J}_lpha/2}$$

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

イロン イヨン イヨン イヨン

æ

Estimation 2

We now want to find u that maximizes that likelyhood (or minimizes the sum of residuals)

$$\bar{J}[u] = \sum_{\alpha=1}^{N} \hat{J}_{\alpha} \to min$$

This takes the full form:

$$\bar{J}[u] = \sum_{\alpha=1}^{N} \sum_{k,l=1}^{L} \bar{W}_{\alpha}^{(kl)}(u) F^{(k)}(a_{\alpha}, u) F^{(l)}(a_{\alpha}, u) \rightarrow min$$

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

・ロン ・回と ・ヨン・

æ

Practical Considerations

- $ar{W}^{(kl)}_{lpha}$ (pseudo inverse of V_{lpha}) depends on the true value $ar{a}_{lpha}$
- We approximate: $\bar{W}_{\alpha}^{(kl)} \approx \left((\nabla a F^{(k)}(a_{\alpha}, u), V[a_{\alpha}] \nabla F^{(l)}(a_{\alpha}, u) \right)_{r}^{-}$
- Thus:

$$J[u] = \sum_{\alpha=1}^{N} \sum_{k,l=1}^{L} W_{\alpha}^{(kl)}(u) F^{(k)}(a_{\alpha}, u) F^{(l)}(a_{\alpha}, u) \rightarrow min$$

• Yields the optimal estimate \hat{u} by numerical computation

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

イロト イヨト イヨト イヨト

- We define the optimal estimation as maximum likelihood
- We obtain an optimal estimate by approximating the true covariance with the measured covariance
- The optimal estimate û is a random variable since it was obtained from noisy data
- We now study its behavior

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

イロン イヨン イヨン イヨン

Some facts and definitions

- We define \bar{u} as the true value and u the random variable
- \bar{u} satisfies $F^{(k)}(\bar{a}_{\alpha}, u) = 0, k = 1, ..., L$
- Since its a random variable, its disturbed by noise: $u = \overline{u} + \Delta u$
- Δu is to a first approx contained in the tangent space

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

æ

Covariance of \hat{u}

We start by introducing the random variables a_α and u in the constraints: $F^{(k)}(a_α, u) = (∇aF^(k)_α, Δa_α) + (∇uF^(k)_α, Δu_α) + O(Δa_α, Δu)²$

Also:
$$\bar{W}^{(kl)}_{\alpha}(u) = \bar{W}^{(kl)}_{\alpha}(\bar{u}) + O(\Delta u)$$

After some magical math, we finally obtain:

$$\bar{V}[\hat{u}] = \left(\sum_{\alpha=1}^{N}\sum_{k,l=1}^{L}\bar{W}_{\alpha}^{(kl)}(\bar{u})(P_{\bar{u}}^{U}\nabla u\bar{F}_{\alpha}^{(k)})(P_{\bar{u}}^{U}\nabla u\bar{F}_{\alpha}^{(l)})^{T}\right)^{-1}$$

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

イロト イヨト イヨト イヨト

Approximation

- Since the true value \bar{u} is used, we cannot compute it
- We approximate using the optimal estimate \hat{u} and the corrected data $\hat{a}_{\alpha} = a_{\alpha} \Delta a_{\alpha}$
- Alternatively, one approximation can be made using the measured data and not the corrected one.

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

・ロン ・回と ・ヨン・

- The estimation is based on the *hypothesis* that the data {a_α} are random deviations from the true data {ā_α}
- The true data satisfies the constraints $F^{(k)}$
- Minimizing the sum of residuals means choosing û so that the hypothesis is most likely

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

Hypothesis testing

- If the hypothesis is correct, the residual $\overline{J}[\hat{u}]$ should be zero for the true values
- This is generally NOT the case
- The bigger the residual, the lest likely the hypothesis is correct
- If the residual is much larger than expected according to the noise in the data {a_α} the hypothesis can be rejected
- To formalize this, we assume Gaussian noise in the data

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

Strong hypothesis

- We want to reject a strong hypothesis
- A strong hypothesis is based on the residual of the TRUE value \bar{u}
- So, we consider the residual $\bar{J}[\bar{u}]$ and we let $\Delta u = 0$

This is given by:

$$\bar{J}[\bar{u}] = \sum_{\alpha=1}^{N} \sum_{k,l=1}^{L} \bar{W}_{\alpha}^{(kl)}(\bar{u}) (\nabla a \bar{F}_{\alpha}^{(k)}, \Delta a_{\alpha}) (\nabla a \bar{F}_{\alpha}^{(l)}, \Delta a_{\alpha})$$

We now re-write it using a random variable of mean 0 (the e_α vector) and it covaraince as:

$$ar{J}[ar{u}] = \sum_{lpha=1}^{N} (e_lpha, V[e_lpha]^- e_lpha)$$

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

・ロン ・回と ・ヨン・

Strong hypothesis 2

- The rank of the covariance of e_α is the same as the hypothesis and each e_α is a random variable (Gaussian and independent)
- So $\bar{J}[\bar{u}]$ is a χ^2 variable, so we apply the ol' rejection method
- The hypothesis can be rejected with significance level a% if: $\bar{J}[\bar{u}]>\chi^2_{\rm rN,a}$
- Since $\overline{J}[u]$ requires the true data, it is approximated with the residual given the measured data J[u]

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

イロン イヨン イヨン イヨン

2

Weak hypothesis

- To a first approximation is: $\bar{J}[\hat{u}] = \bar{J}[\bar{u}] - (\Delta u, \bar{V}[\hat{u}]^{-}\Delta u)$
- The first part is a χ^2 variable.... and also the second part
- The expectation and variance are LOWER than the ones for the strong hypothesis:
 E[J[ū]] = rN, V[J[ū]] = 2rN
 E[J[û]] = rN n', V[J[û]] = 2(rN n')

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

イロン イヨン イヨン イヨン

Weak hypothesis 2

- The residual for the optimal estimate is (whp) smaller than for \bar{u}
- This is because its obtained minimizing the residual
- This analysis can be used to test that the constraints F^(k) are satiesfied by some value u
- The hypothesis is rejected with significance value a% if $\bar{J}[\hat{u}]>\chi^2_{\rm rN-n',a}$
- The same approximation is made for the residual as before

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

イロト イヨト イヨト イヨト

æ

Noise level

- If a covariance matrix y multiplied by a constant c...
- \blacksquare ... the pseudo inverse is multiplied by 1/c
- This does not affect the value that minimizes the residual (only the residual scale)
- The covariance is expressed as: $V[a_{\alpha}] = \epsilon^2 V_0[a_{\alpha}]$

Definitions Maximum Likelihood Estimation Covariance Matrix Hypothesis and Noise Level

<ロ> (日) (日) (日) (日) (日)

æ

Noise level 2

- In practical problems, V₀ can be predicted, but not ϵ
- We can first estimate $\hat{u}...$
- and later estimate the noise level:

$$\hat{\epsilon}^2 = \frac{J_0[\hat{u}]}{rN - n'}$$

• The weak hypothesis can be re-writen as:

$$rac{\hat{\epsilon}^2}{\epsilon^2} > rac{\chi^2_{rN-n',a}}{rN-n'}$$

Matlab example

Kenichi Kanatani (interpreted by I. Esteban) Parametric Fitting

・ロン ・四 と ・ ヨ と ・ モ と

The covariance

- K. assumes that you posses the covariance of the original data... but can you compute it?
- Example:
 - Given image correspondences, compute camera motion

- Then triangulate and obtain 3D points
- Fit some geometric object (line, plane, whatever)
- How does the error propagate thorough this?