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Introduction

What's all about?

... fit geometric objects to multiple instances of another
geometric object in an optimal manner ...
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Introduction

Step by Step

m Fitting as Maximum Likelihood
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Introduction

Step by Step

Fitting as Maximum Likelihood
Obtain covariance of estimation and residual

Hypothesis testing

Examples
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Object, data and relationship

We want to fit an object given some data

Let u be the vector that represents the object
(n’-dim manifold - parameter space U)

Let aj...any be N vectors of the same object
(m’-dim manifold - data space A)

All a, satisfy the same relation with u

We want to find u optimally wrt the relation
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

m a, is observed in the presence of noise
aq = 3 + Aay,aa=1,....N.
m Aa, is independent, zero mean and with covariance V[a,]

m To a first approximation, Aa, lives in the tangent space
T5.(A)
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Constraints

m The true value 3, and u are related by L constraints
F)(3a,u) =0,k=1,...,L.

m This is called the hypothesis and its assumed to be
nonsingular (p.132)

m The rank of the hypothesis is the number of independent
equations

m The rank is the codimension of S (manifold defined by the L
egs.)

m S is called the geometric model of the hypothesis
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Singularity

m Linear subspace of the TRUE value
Vo = {PL V. FM(34, ), ..., PL VL FD (34, u)} € R™

m Linear subspace of the MEASURED value
Vo = {PAV.FM(ag, u), ..., PAVFD(aq, u)} € R™

®m In general, the rank of the hypothesis r coincides with the
dimension / of the linear subspace V,

m If / < r then a, is a singular datum

m If the dimension of V,, is larger than the dimesion of V,, the
hypothesis is degenerate
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General Theory

Example??

m Image points
m Directions in space

m Motion estimation??
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Correction

Assume a value for u (what value?)

Correct (optimally) data to satisfy the hypothesis
m Find Aa, such that 3, = a, — Aa,
m This is the optimization:
Jo = (Aay, V[an]~Aay) — min

Solution is given by:

L
Aag = V[ao] Y W (u)F ¥ (ay, u)VaF (3, u)
k=1

m The residual J, is given by substituting one into another

Kenichi Kanatani (interpreted by |. Esteban) Parametric Fitting



Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Estimation

m The probability density for all Aa, is:
N
1

=1 1/ (2m)"| V]ag] |+
m This is the likelihood of the observed values Aa, ?77?

e Zg’:l(Aaaa \_/[aa]_Aaa)/2

m Given the residual ja this takes the form:
N
1

=14/ (2m)7 |V [ag]|+

e T Ja/2
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Estimation 2

m We now want to find u that maximizes that likeihood (or
minimizes the sum of residuals)

N
J[u] = Z.Ala — min
a=1
m This takes the full form:

N oL
J[u] = Z Z WD (1) F) (ay, u)F (ag, u) — min
a=1k,/=1
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Practical Considerations

m WCEM) (pseudo inverse of V,,) depends on the true value 3,
m We approximate:

W ~ (VaF ! (ag, u), V[aa]VFD (a0, u))
m Thus:

N L
Ju] = Z Z WD (1) F) (ay, u)FD (ag, u) — min
a=1k,I=1

m Yields the optimal estimate & by numerical computation

r
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

m We define the optimal estimation as maximum likelihood

m We obtain an optimal estimate by approximating the true
covariance with the measured covariance

m The optimal estimate & is a random variable since it was
obtained from noisy data

m We now study its behavior
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Some facts and definitions

m We define U as the true value and u the random variable
m 7 satisfies F(9)(3,,u) =0,k =1,..., L

m Since its a random variable, its disturbed by noise:
u=1u+Au

m Au is to a first approx contained in the tangent space
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Covariance of o

m We start by introducing the random variables a, and v in the
constraints:

F) (2, u) = (VaF$, Aay) +(VuF) | Aug)+ O(Aag, Au)?
m Also:

W () = W (@) + o(Aw)
m After some maglcal math, we finally obtain:

V] = Z Z Wk (@) (PYV uF)(PYVuF{MT
a=1k,/=1
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Approximation

m Since the true value U is used, we cannot compute it

m We approximate using the optimal estimate & and the
corrected data 3, = a, — Aa,

m Alternatively, one approximation can be made using the
measured data and not the corrected one.
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

m The estimation is based on the hypothesis that the data {a,}
are random deviations from the true data {3,}

m The true data satisfies the constraints F(K)

m Minimizing the sum of residuals means choosing @i so that the
hypothesis is most likely
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Hypothesis testing

m If the hypothesis is correct, the residual J[@] should be zero
for the true values

m This is generally NOT the case
m The bigger the residual, the lest likely the hypothesis is correct

m If the residual is much larger than expected according to the
noise in the data {a,} the hypothesis can be rejected

m To formalize this, we assume Gaussian noise in the data
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Strong hypothesis

m We want to reject a strong hypothesis

m A strong hypothesis is based on the residual of the TRUE
value o

m So, we consider the residual J[7] and we let Au =0

m This is given by:
N L
I =>" Y W (@)(VaF®), Aay)(VaF(), Aay)

m We now re-write it using a random variable of mean 0 (the e,

vector) and it covaraince as:
N

j["_]] = Z(eaa V[ea]_ea)

a=1
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Strong hypothesis 2

m The rank of the covariance of e, is the same as the hypothesis
and each e, is a random variable (Gaussian and independent)

m So J[@] is a x? variable, so we apply the ol rejection method

m The hypothesis can be rejected with significance level a% if:
J[a] > XEN,a

m Since J[u] requires the true data, it is approximated with the
residual given the measured data J[u]

Kenichi Kanatani (interpreted by |. Esteban) Parametric Fitting



Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Weak hypothesis

m The same idea as before, but now we use the residual for the
optimal estimate J[0]

m To a first approximation is:
J[@] = J[b] — (Au, V[0]~Av)

m The first part is a x2 variable.... and also the second part

m The expectation and variance are LOWER than the ones for
the strong hypothesis:
E[J[a]] = rN, V[J[T]] = 2rN
E[J[o]) = rN — n', V[J[]] = 2(rN — n')
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Weak hypothesis 2

m The residual for the optimal estimate is (whp) smaller than for

u
m This is because its obtained minimizing the residual

m This analysis can be used to test that the constraints F(¥) are
satiesfied by some value u

m The hypothesis is rejected with significance value a% if
J[fl] > X%an’,a
m The same approximation is made for the residual as before
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Noise level

If a covariance matrix y multiplied by a constant c...

... the pseudo inverse is multiplied by 1/c

This does not affect the value that minimizes the residual
(only the residual scale)

m The covariance is expressed as:
Vi]aa] = € Volaa]
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Definitions

Maximum Likelihood Estimation
Covariance Matrix

Hypothesis and Noise Level

General Theory

Noise level 2

m In practical problems, V{ can be predicted, but not
m We can first estimate ©...

m and later estimate the noise level:

~2 _ Jo[d]
€ = IN—w
m The weak hypothesis can be re-writen as:
2
& rN n’,a
62 > N=n
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Fitting for Image Points

Matlab example
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Questions.... for you

The covariance

m K. assumes that you posses the covariance of the original
data... but can you compute it?
m Example:

m Given image correspondences, compute camera motion
m Then triangulate and obtain 3D points
m Fit some geometric object (line, plane, whatever)

m How does the error propagate thorough this?
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