Geometric correction

A guided tour

Christos Dimitrakakis

Intelligent Systems Laboratory Amsterdam, University of Amsterdam, The Netherlands

July 16, 2009

(1) Introduction
(2) Constrained optimisation

- The Langranian
- Linearisation
(3) Optimisation for geometric estimation
- The covariance matrix
- "A posteriori" covariance matrices
(4) Hypothesis testing
(5) Corrections
- Image points and lines

Geometric correction

Definition

Estimating object (parameters) under (geometric) constraints

Objects

- N Objects: $\bar{x} \triangleq\left\{\bar{U}_{\alpha}\right\}_{\alpha=1}^{N}, \bar{u}_{\alpha} \in \mathcal{U}_{\alpha} \subset \mathbb{R}^{\infty}$.
- $\bar{x} \in \mathcal{X} \triangleq \times_{i=1}^{N} \mathbb{R}^{m_{i}}$
- Constraint $F: \mathcal{X} \rightarrow \mathbb{R}^{n}$, with $F(\bar{x})=0$.

Observations

- Observations $u_{\alpha}=\bar{u}_{\alpha}+\Delta u_{\alpha}, u_{\alpha} \in \mathcal{U}_{\alpha} \subset \mathbb{R}^{m}$.
- Noise: $\Delta u_{\alpha} \in \mathcal{T}_{\bar{u}_{\alpha}}\left(U_{\alpha}\right), \Delta u_{\alpha} \sim \mathcal{N}\left(0, \bar{V}\left(y_{\alpha}\right)\right)$.

Geometric correction

Definition

Estimating object (parameters) under (geometric) constraints

Objects

- N Objects: $\bar{x} \triangleq\left\{\bar{u}_{\alpha}\right\}_{\alpha=1}^{N}, \bar{u}_{\alpha} \in \mathcal{U}_{\alpha} \subset \mathbb{R}^{\infty}$.
- $\bar{x} \in \mathcal{X} \triangleq x_{i=1}^{N} \mathbb{R}^{m_{i}}$
- Constraint $F: \mathcal{X} \rightarrow \mathbb{R}^{n}$, with $F(\bar{x})=0$.

Observations

- Observations $u=\bar{u}+\Delta u, u \in \mathcal{U} \subset \mathbb{R}^{m}$.
- Noise: $\Delta u \in \mathcal{T}_{\bar{u}}(\mathcal{U}), \Delta u \sim \mathcal{N}(0, \bar{V}(u))$.

The problem

Observation Constraint

Definition

- Given

Observations u
Object constraints $F(\bar{u})=0$
Noise constraints $\Delta u \in \mathcal{T}_{\bar{u}}$

- Estimate: \hat{u} s.t. $F(\hat{u})=0$.

The problem

Observation Constraint

Definition

- Given

Observations u
Object constraints $F(\bar{u})=0$?
Noise constraints $\Delta u \in \mathcal{T}_{\bar{u}}$?

- Estimate: \hat{u} s.t. $F(\hat{u})=0$.

A prayer
Let $\hat{u} \approx \bar{u}$.
(2) Constrained optimisation

- The Langranian
- Linearisation
(3) Optimisation for geometric estimation
- The covariance matrix
- "A posteriori" covariance matrices
(4) Hypothesis testing
(5) Corrections
- Image points and lines

Constrained optimisation

Constrained minimisation

For $g: \mathcal{X} \rightarrow \mathbb{R}, F: \mathcal{X} \rightarrow \mathbb{R}^{n}$, the minimum x^{*} satisfies:

$$
g\left(x^{*}\right) \leq g(x), \quad \forall x: F(x)=0,
$$

with $F\left(x^{*}\right)=0$.

- Cost function: $g(\cdot)$.
- Constraints: $F(\cdot)$.

Example (Statistical parameter estimation)

Estimate parameters $x \in \mathcal{X}$ given:

- Observations u
- Constraints $F: \mathcal{X} \rightarrow \mathbb{R}^{n}$
- Model set $\Gamma=\{p(\cdot \mid x): x \in \mathcal{X}\}$

$$
\begin{equation*}
g(x)=-\ln p(u \mid x) \tag{1}
\end{equation*}
$$

$$
F(x)=0
$$

Constrained minimisation approaches

Penalty method

Define an augmented cost function for $c>0$:

$$
\begin{array}{cc}
h_{c}(x) \triangleq g(x)+c\|F(x)\|, & x_{c}^{*} \triangleq \underset{x}{\arg \min } h_{c}(x), \\
\lim _{c \rightarrow \infty} x_{c}^{*}=x^{*}, & \text { since } \forall \epsilon>0 \exists c_{\epsilon}: \forall c>c_{\epsilon},\left\|x_{c}^{*}-x^{*}\right\|<\epsilon . \tag{3}
\end{array}
$$

Lagrangian method

For $\lambda \in \mathbb{R}^{n}, F: \mathcal{X} \rightarrow \mathbb{R}^{n}$.

$$
L(x, \lambda) \triangleq g(x)+\lambda^{T} F(x), \quad \exists \lambda^{*} \in \mathbb{R}^{n}: \nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0
$$

Other methods

- Barrier method (for inequality constraints).
- Projection method: Use $P: \mathcal{Z} \rightarrow \mathcal{X}$, such that $F(P(z))=0$ for all $z \in \mathcal{Z}$.

Lagrangian formulation

Constrained minimisation

Minimise $g(x)$, with $g: \mathcal{X} \rightarrow \mathbb{R}$, subject to $F(x)=0$, with $F: \mathcal{X} \rightarrow \mathbb{R}^{n}$.

Lagrangian

$$
\begin{gathered}
L(x, \lambda) \triangleq g(x)+\lambda^{\top} F(x) \\
\exists \lambda^{*}: \nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0
\end{gathered}
$$

Optimality conditions

$$
\begin{array}{r}
\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0, \\
y^{T} \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right) y>0,
\end{array}
$$

$$
\nabla_{\lambda} L\left(x^{*}, \lambda^{*}\right)=0,
$$

necessary

$$
\forall y \neq 0, y \in \mathcal{T}_{x^{*}} \quad \text { sufficient }
$$

Lagrangian formulation

Constrained minimisation

Minimise $g(x)$, with $g: \mathcal{X} \rightarrow \mathbb{R}$, subject to $F(x)=0$, with $F: \mathcal{X} \rightarrow \mathbb{R}^{n}$.

Lagrangian

$$
\begin{aligned}
& L(x, \lambda) \triangleq g(x)+\lambda^{T} F(x) \\
& \exists \lambda^{*}: \nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0
\end{aligned}
$$

Optimality conditions

$$
\begin{array}{rrr}
\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0, & \nabla_{\lambda} L\left(x^{*}, \lambda^{*}\right)=0, & \text { necessary } \\
y^{T} \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right) y>0, & \forall y \neq 0, y \in \mathcal{T}_{x^{*}} & \text { sufficient }
\end{array}
$$

Vector and matrix gradients $x \in \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}, F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}:$

$$
\nabla_{x} f\left(x^{*}\right)=\left(\begin{array}{c}
\frac{\partial f\left(x^{*}\right)}{\partial x_{1}} \tag{4}\\
\vdots \\
\frac{\partial f\left(x^{*}\right)}{\partial x_{n}}
\end{array}\right), \quad \quad \nabla_{x} F\left(x^{*}\right)=\left[\nabla_{x} F_{1}\left(x^{*}\right) \cdots \nabla_{x} F_{m}\left(x^{*}\right)\right]
$$

The Lagrangian

Optimality conditions

$$
\begin{aligned}
& \nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0, \\
& \nabla_{\lambda} L\left(x^{*}, \lambda^{*}\right)=0, \\
& y^{T} \nabla_{x x}^{2} L\left(x^{*}, \lambda^{*}\right)>0, \forall y \neq 0, y \in \mathcal{T}_{x^{*}} \\
& \mathcal{I}_{x^{*}}=\left\{y \in \mathbb{R}^{m}: \nabla_{x} F\left(x^{*}\right)^{T} y=0\right\}
\end{aligned}
$$

Linearisation algorithm

Linearising the constraints

$$
\begin{aligned}
F(x) & =F(y)+(x-y)^{T} \nabla_{x} F(y)+\mathcal{O}\left(x^{2}\right) \\
& \approx(x-y)^{T} \nabla_{x} F(y), \\
\text { if } F(y) & =0 .
\end{aligned}
$$

Example (Quadratic cost)

$$
\begin{aligned}
& g(x)=x^{T} x, \\
& F(x) \approx(x-y)^{T} \nabla_{x} F(y)
\end{aligned}
$$

$$
\text { for all } y: F(y)=0 \text {. }
$$

Linearisation algorithm

Linearising the constraints

$$
\begin{aligned}
F(x) & =F(y)+(x-y)^{T} \nabla_{x} F(y)+\mathcal{O}\left(x^{2}\right) \\
& \approx(x-y)^{T} \nabla_{x} F(y), \\
\text { if } F(y) & =0 .
\end{aligned}
$$

Example (Quadratic cost)

$$
\begin{aligned}
& g(x)=x^{T} x, \\
& F(x) \approx(x-y)^{T} \nabla_{x} F(y)
\end{aligned}
$$

for all $y: F(y)=0$.

Linearisation algorithm

Linearising the constraints

$$
\begin{aligned}
F(x) & =F(y)+(x-y)^{T} \nabla_{x} F(y)+\mathcal{O}\left(x^{2}\right) \\
& \approx(x-y)^{T} \nabla_{x} F(y), \\
\text { if } F(y) & =0 .
\end{aligned}
$$

Example (Quadratic cost)

$$
\begin{aligned}
& g(x)=x^{T} x, \\
& F(x) \approx(x-y)^{T} \nabla_{x} F(y)
\end{aligned}
$$

$$
\text { for all } y: F(y)=0 \text {. }
$$

(2) Constrained optimisation

- The Langranian
- Linearisation
(3) Optimisation for geometric estimation
- The covariance matrix
- "A posteriori" covariance matrices

44 Hypothesis testing
(5) Corrections

- Image points and lines

Optimisation for geometric estimation

Two sets of constraints

$$
\begin{aligned}
& F(u) \approx \Delta u^{T} \nabla_{u} F(\bar{u}) \\
& M(\Delta u)=\Delta u^{T} v
\end{aligned}
$$

Noise model

$$
\begin{equation*}
p(u \mid x) \propto \exp \left(-\frac{1}{2}(u-\bar{u})^{T} \Sigma^{-1}(u-\bar{u})\right), \quad x=\mathcal{N}(\bar{u}, \Sigma) . \tag{5}
\end{equation*}
$$

Solution

- F is linear, g is quadratic, solve for $\lambda=W F$,

$$
W=\nabla_{u} F^{\top} V \nabla_{u} F .
$$

- Noise constraints irrelevant.

Optimisation for geometric estimation

Two sets of constraints

$$
\begin{aligned}
F(u) & \approx \Delta u^{T} \nabla_{u} F(\bar{u}) \\
M(\Delta u) & =\Delta u^{T} v
\end{aligned}
$$

Noise model

$$
\begin{equation*}
p(u \mid x) \propto \exp \left(-\frac{1}{2}(u-\bar{u})^{T} \Sigma^{-1}(u-\bar{u})\right), \quad x=\mathcal{N}(\bar{u}, \Sigma) . \tag{5}
\end{equation*}
$$

Problems

- $\Sigma=V[\bar{u}] \approx V[u]$
- III-defined problem: Constraints depend on $F(\bar{u})$

The covariance matrix

The noise and the constraints

- We need V to estimate λ

Estimating the covariance

- Approximate \bar{V} (the actual covariance) with V (the empirical covariance).
- Problem: small $\|V-\hat{V}\|$ does not imply small $\left\|V^{-1}-\hat{V}^{-1}\right\|$.
- Kanatani's solution: Use linear algebra magic.

Estimating a good covariance matrix

Finding the Lagrange vector
F is linear, g is quadratic, solve for $\lambda=W F$,

$$
\begin{equation*}
W=\left(\nabla_{u} F^{T} V \nabla_{u} F\right)^{-1} \tag{6}
\end{equation*}
$$

Estimating the covariance V

- Approximate \bar{V} by V and $F(\bar{u})$ by $F(u)$.
- We know that the rank of \bar{V} is r.

Estimating a good covariance matrix

Finding the Lagrange vector

F is linear, g is quadratic, solve for $\lambda=W F$,

$$
\begin{equation*}
W=\left(\nabla_{u} F^{T} V \nabla_{u} F\right)^{-1} \tag{6}
\end{equation*}
$$

Some set-like notation
$W=Z^{-1}$, where $Z=\left(Z^{k l}\right), W=\left(W^{k l}\right)$

$$
\begin{aligned}
Z & =\left(\nabla_{u} F_{k}^{T} V \nabla_{u} F_{l}\right) \\
W & =\left(\nabla_{u} F_{k}^{T} V \nabla_{u} F_{l}\right)^{-1}
\end{aligned}
$$

Estimating the covariance V

- Approximate \bar{V} by V and $F(\bar{u})$ by $F(u)$.
- We know that the rank of \bar{V} is r.

Estimating a good covariance matrix

Finding the Lagrange vector

F is linear, g is quadratic, solve for $\lambda=W F$,

$$
\begin{equation*}
W=\left(\nabla_{u} F^{T} V \nabla_{u} F\right)^{-1} \tag{6}
\end{equation*}
$$

Estimating the covariance V

- Approximate \bar{V} by V and $F(\bar{u})$ by $F(u)$.
- We know that the rank of \bar{V} is r.

Rank-constrained generalized inverse

$$
\begin{equation*}
W_{i}=\left(\nabla_{u} F^{T} V[u] \nabla_{u} F\right)_{r}^{-1} \tag{7}
\end{equation*}
$$

Iterated linearisation

> Iterated linearised constrained optimisation
> 1: for $t=1,2, \ldots$ do
> 2: $\quad \hat{F}_{t}=\Delta u^{t} \nabla_{u} F\left(\hat{u}_{t}\right)$
> 3: $\quad \Sigma_{t}=\mathcal{P}_{\hat{u}_{t}} \hat{V}[u]$
> 4: $\quad g\left(u \mid \hat{u}, \Sigma_{t}\right) \triangleq \frac{1}{2}(u-\hat{u})^{T} \Sigma_{t}^{-1}(u-\hat{u})$.
> 5: $\quad \hat{u}_{t+1}=\arg \min _{\hat{u}} g\left(u \mid \hat{u}, \Sigma_{t}\right)$.
> 6: end for

Cost function changes at every step

$\Sigma_{t} \neq \Sigma_{t+1}$. Does it still converge?
Convergence conditions unclear.

What is covariance here?

- We have an "a priori" $m \times m$ covariance matrix V, assumed known
- For \mathcal{T} a n-dimensional linear subspace of $\mathbb{R}^{m}, V_{\mathcal{T}}=\mathcal{P}_{\mathcal{T}} V$.
- $\mathcal{T}(u)$ is the tangent space to an n-dimensional manifold in \mathbb{R}^{m}, evaluated at u.
- $\bar{V}=V_{\mathcal{T}(\bar{u})}, V[u]=V_{\mathcal{T}_{U}}$.

What does "a posteriori" mean?

- Unrelated to conditional measures
- The "a priori" covariance matrix is merely the covariance evaluated at u.
- The "a posteriori" covariance matrix is the covariance evaluated at \hat{u}.

"Confidence regions" and noise

- Uncertainty about parameters must not be confused with observation noise.
- i.e. certainty that a coin is fair: $\theta=0.5$ w.p. 1 .
- Noisy measurements.

(1) Introduction

(2) Constrained optimisation

- The Langranian
- Linearisation
(3) Optimisation for geometric estimation
- The covariance matrix
- "A posteriori" covariance matrices

4 Hypothesis testing
(5. Corrections

- Image points and lines

Christos Dimitrakakis (ISLA/UvA)
Geometric correction

Finding the correct hypothesis

The setting

- Parameters/distribution $\theta \in \Theta$.
- Estimate $\widehat{\theta}_{n} \in \Theta$ from observations $z^{n} \triangleq\left\{z_{1}, \ldots, z_{n}\right\}, z_{i} \in \mathcal{Z}$.
- Obtain different estimate $\widehat{\theta}_{n}(H)$ under different hypotheses H. Which hypothesis to use?

The meaning of hypothesis testing

- Estimate how good the estimates (hypothesis) are
- Select the most suitable hypothesis, reporting error probability δ.
- Ultimately, a decision problem.

Frequentist principle

In repeated practical use of a statistical procedure, the long-run average actual error should not be greater than (and ideally should equal) the long-run average reported error.

Tail bound

Tail bound

Fix some $Z^{n} \subset \mathcal{Z}^{n}$. Then:

$$
\mathbf{P}\left(z^{n} \notin Z^{n} \mid \theta\right)<f\left(\theta, Z^{n}\right),
$$

f decreasing with $\left|Z^{n}\right|$.

Example (χ^{2}-test)

$$
\begin{align*}
& T(z) \triangleq \int_{R_{\Sigma}(z)}^{\infty} p_{\chi^{2}}(x) \mathrm{d} x \tag{8}\\
& R_{\Sigma}(z)=\left\langle z, \Sigma^{-1} z\right\rangle \tag{9}
\end{align*}
$$

Has the property:

$$
T(z) \sim \operatorname{Uniform}(0,1), \quad \text { if } z \sim \mathcal{N}(0, \Sigma) .
$$

So:

$$
\mathbf{P}(T(z)<\delta \mid z \sim \mathcal{N}(0, \Sigma))<\delta, \quad \forall \delta \in[0,1] .
$$

Testing for normality

The χ^{2} test's performancer

Rejection ratio of χ^{2} test with $\delta=0.1$

Concentration inequality

Concentration inequality

Let D be a distance on Θ. Generally,

$$
\begin{equation*}
\mathbf{P}\left(D\left(\widehat{\theta}_{n}, \theta\right)>\epsilon \mid \theta\right)<\mathcal{O}\left(\exp \left(-n \epsilon^{2}\right)\right), \quad \forall \theta \in \Theta, \epsilon>0 \tag{12}
\end{equation*}
$$

Example (Hoeffding bound)

For $x \in[0,1], \hat{x} \triangleq \frac{1}{n} \sum_{i=1}^{n} x_{i}$ and for any \mathbf{P} and $\epsilon>0$:

$$
\begin{equation*}
\mathbf{P}(\hat{x} \geq \mathbf{E} x+\epsilon) \leq \exp \left(-2 n \epsilon^{2}\right) \Leftrightarrow \mathbf{P}(\hat{x} \geq \mathbf{E} x+\sqrt{\log (1 / \delta) / 2 n}) \leq \delta . \tag{13}
\end{equation*}
$$

Application to general measures

Let P_{n} be the empirical measure over \sqrt{n} disjoint subsets S_{i} derived from z^{n} (i.e. a histogram with \sqrt{n} bins). We can apply Hoeffding (or other concentration inequalities) to the distance between $P_{n}\left(z \in S_{i}\right)$ and $\mathbf{P}\left(z \in S_{i}\right)$, by setting $x^{(i)}=\mathbb{I}\left\{z \in S_{i}\right\}$.

The non-parametric Hoeffding-Kolmogoroff goodness-of-fit test

Rejection ratio of Hoeffding-Kolmogoroff test with $\delta<0.5$

Bayesian hypothesis tests

Multiple hypotheses test

Given a set of hypotheses $H \triangleq\left\{h_{i}: i=1, \ldots, k\right\}$, with associated prior probabilities $\left\{\pi\left(h_{i}\right): i=1, \ldots, k\right\}$, and data z, estimate

$$
\begin{equation*}
\pi\left(h_{i} \mid z\right) \triangleq \frac{\mathbf{P}\left(z \mid h_{i}\right) \pi\left(h_{i}\right)}{\sum_{j=1}^{k} \mathbf{P}\left(z \mid h_{j}\right) \pi\left(h_{j}\right)} \tag{14}
\end{equation*}
$$

ϵ-Null hypothesis test

Given a null hypothesis $h_{0}=\mathbb{I}\left\{\theta \in \Theta_{0}\right\}$, with associated prior probability $\pi\left(h_{0}\right)$, construct $h_{\epsilon} \triangleq \mathbb{I}\left\{\theta \in \Theta_{\epsilon}\right\}$, where

$$
\begin{gather*}
\Theta_{\epsilon}=\left\{\theta \in \Theta: \inf _{\theta^{\prime} \in \Theta_{0}} D\left(\theta, \theta^{\prime}\right)<\epsilon\right\} \\
\pi\left(h_{0} \mid z\right) \leq \pi\left(h_{\epsilon} \mid z\right) \triangleq \frac{\mathbf{P}\left(z \mid h_{\epsilon}\right) \pi\left(h_{\epsilon}\right)}{\mathbf{P}\left(z \mid h_{\epsilon}\right) \pi\left(h_{\epsilon}\right)+\mathbf{P}\left(z \mid h_{A}\right)\left[1-\pi\left(h_{\epsilon}\right)\right]} . \tag{15}
\end{gather*}
$$

(1) Introduction

(2) Constrained optimisation

- The Langranian
- Linearisation
(3) Optimisation for geometric estimation
- The covariance matrix
- "A posteriori" covariance matrices

4 Hypothesis testing
(5) Corrections

- Image points and lines

Coincidence

Assumptions and constraints

$$
\bar{x}_{1}=\bar{x}_{2} .
$$

x_{1}, x_{2} independent, $\mathbf{E} x_{i}=\bar{x}_{i}$.
Estimate $\hat{x}_{i}=x_{i}-\Delta x_{i}$.

Constrained cost minimisation

$$
\begin{equation*}
J\left(\hat{x}_{i}\right) \triangleq \sum_{i} g\left(x_{i} \mid \hat{x}_{i}, \Sigma\right), \quad g\left(x_{i} \mid \hat{x}_{i}, \Sigma_{i}\right) \triangleq \frac{1}{2}\left(x_{i}-\hat{x}_{i}\right)^{T} \Sigma_{i}^{-1}\left(x_{i}-\hat{x}_{i}\right) \tag{16}
\end{equation*}
$$

under constraints

$$
\begin{equation*}
\hat{x}_{1}=\hat{x}_{2}, \quad \Delta x_{1}, \Delta x_{2} \text { colinear. } \tag{17}
\end{equation*}
$$

Coincidence

First order solution

$$
\begin{align*}
\Delta x_{1} & =V\left[x_{1}\right] \mathbf{W}\left(x_{1}-x_{2}\right) \tag{18}\\
\Delta x_{2} & =V\left[x_{2}\right] \mathbf{W}\left(x_{2}-x_{1}\right) \tag{19}\\
\mathbf{W} & \triangleq\left(V\left[x_{1}\right]+V\left[x_{2}\right]\right)^{-1} . \tag{20}
\end{align*}
$$

Residual

"A posteriori" covariance matrix

$$
\begin{equation*}
V[\hat{x}]=V\left[x_{1}\right] \mathbf{W} V\left[x_{2}\right]=V\left[x_{2}\right]\left(\mathbf{I}-\mathbf{W} V\left[x_{2}\right]\right) \tag{21}
\end{equation*}
$$

Residual $\widehat{\jmath}=\left\langle x_{2}-x_{1}, \mathbf{W} x_{2}-x 1\right\rangle$, with $\widehat{\jmath} \sim \chi^{2}(2)$.

Hypothesis test
Perhaps better to test $\left\|x_{2}-x_{1}\right\|<\epsilon$.

```
More examples??
```

