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Abstract

A general overview of hypothesis testing is given. The Bayesian and

distribution-free framework to multiple hypothesis testing and to null hy-

pothesis testing are discussed. Some practical algorithms are introduced,

together with associated performance bounds.

1 Introduction

Hypothesis testing is a decision making problem, where we are asked to decide
between hypotheses. As is usual with decision making problems, each choice
reasults in a loss. The aim of the decision maker is to minimise this loss.

More specifically, imagine that we have a choice from a set of decisions
H = {hi : i = 1, . . . ,m }. In addition, consider that the state of the world is
θ ∈ Θ, where Θ is the set of all possible world states. We are given a loss
function ℓ : H × Θ → R. We wish to choose h ∈ H such that the expected loss
is minimised

E(ℓ|h) ,

∫

Θ

ℓ(h, θ)p(θ) dθ, (1.1)

where p(θ) is a suitable density over Θ, which we for the moment shall leave
unspecified.

We distinguish two types of decision making problems. We shall call the
first, where H is given, multiple hypothesis testing. In the second type of
problem we are only given a single hypothesis, h0, referred to hereafter as the
null hypothesis. In this setting, we must construct an alternative hypothesis to
compare against. We shall call this type of problem null hypothesis testing.

2 Multiple hypothesis testing

Let some measurable space (X ,B) and Γ = { p(·|θ) : θ ∈ Θ } be a set of densities
on (X ,B), indexed by θ and equipped with distance D(·‖·) on Θ. In the sequel
we use Pθ and Eθ to denote probabilities and expectations for the density p(·|θ).

We are given a sequence xn = x1, . . . , xn, with xi ∈ X and a collection of
sets {Θi : i = 1, . . . ,m }, with Θi ⊂ Θ for all i 6= j. Given a prior probability
ξ(Θi) describing how certain we are, before seeing any data, that the particular
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set Θi contains the true θ from which the data is generated, we wish to estimate
the posterior probability ξ(Θi|xn). This is our belief that the data has been
generated by some θ ∈ Θi after we have seen all the data. It is relatively easy
to calculate the resulting belief via conditional probabilities:

ξ(Θi|xn) =
pw(xn|Θi)ξ(Θi)

∑

j pw(xn|Θj)ξ(Θj)
, (2.1)

where pw(xn|Θi) is the data likelihood under θ ∈ Θi and w is a prior density
over Θi. Usually there is more than one element θ in Θi for which w(θ) > 0.
Then the likelihood implies a marginalization:

pw(xn|Θi) =

∫

Θi

p(xn|θ)w(θ|Θi) dθ. (2.2)

After we have calculated the posterior over Θ it is a simple matter to calculate
the expected loss under our belief ξ:

Eξ(ℓ|h) ,

∫

Θ

ℓ(h, θ)ξ(θ) dθ, ξ(θ) =
∑

i

w(θ|Θi)ξ(Θi). (2.3)

Then we merely must take h minimising the expected loss.

2.1 Selecting between mutually exclusive hypotheses

A very common case in hypothesis testing is each hypothesis hi corresponds to
guessing that θ ∈ Θi, while the subsets are mutually exclusive: Θi ∩Θj = ∅ for
all i 6= j and the function is the zero-one loss for guessing the correct subset Θi:

ℓ(hi, θ) =

{

0, if θ ∈ Θi

1, if θ /∈ Θi.

A second case is when the subsets form a sequence ∅ ⊂ Θ1 ⊂ · · · ⊂ Θm ⊂ Θ.
This is a classic problem in the model selection literature and thus we shall not
deal with it here.

3 Null hypothesis testing

Let some measurable space (X ,B) and Γ = { p(·|θ) : θ ∈ Θ } be a set of densities
on (X ,B), indexed by θ and equipped with distance D(·‖·) on Θ. In the sequel
we use Pθ and Eθ to denote probabilities and expectations for the density p(·|θ).

We are given a sequence xn = x1, . . . , xn, with xi ∈ X and a subset Θ0 ⊂ Θ.
We wish to test the hypothesis that x ∼ θ, from some θ ∈ Θ0, which we call the
null hypothesis. In addition, we define the ǫ-null subset of Θ:

Θǫ , { θ′ ∈ Θ : ρ(θ′,Θ0) ≤ ǫ } , ρ(θ′,Θ0) , inf
θ∈Θ0

D(θ‖θ′), (3.1)
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which is the ǫ-extended set of the null set Θ0. It holds that

∅ ⊂ Θ0 ⊂ Θǫ ⊂ Θ. (3.2)

This is illustrated in Figure 1.

ε
Θ

Θε

0

Figure 1: The null hypothesis is that the distribution θ lies in Θ0 ⊂ Θ. The
alternative hypothesis is that the distribution θ lies outside the ǫ-null set Θǫ

Our aim is to use the observations xn to guess a set Θ′ ⊂ Θ that is ǫ-close
to θ, i.e. such that ρ(θ,Θ′) < ǫ, with high probability. We limit the decision
problem to two choices: between h0, where we decide that θ ∈ Θ0 and h1,
where we decide that θ /∈ Θǫ. We wish to bound the probability of deciding
h0 when h1 is true by δ1 and conversely, the probability of deciding h0 when
h1 is true by δ0. When θ ∈ Θǫ \ Θ0, the set we choose is always ǫ-close to θ
by construction. When θ is in that indeterminate region, we cannot make any
probabilistic guarantees about our guess.

Finally, if we suffer a loss ℓi with probability at most δi, then we can bound
our expected loss by

E ℓ ≤
∑

i

δiℓi. (3.3)

In the case where the loss is 0 if we are within ǫ, and 1 if we make the wrong
guess, then the total loss is simply bounded by δ1 + δ2.

3.1 Testing a mean

As a motivational example, consider mean estimation. Let µ , Eθ∗ x and
x̂ , 1

n

∑n
i=1 xi. We form a point null hypothesis, the set Θ0 = {θ∗}. Define

D(x̂‖µ) , |x̂− µ|. Then, from Hoeffding’s inequality (A.2) we have:

Pθ∗(|x̂− µ| > t) < 2 exp(−2nt2). (3.4)
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Let φ ∈ Θ such that |µ− Eφ x| ≥ ǫ. Then

Pφ

(

|x̂− µ| ≤ t
∣

∣

∣
|µ− Eφ x| ≥ ǫ

)

= Pφ

(

x̂− µ ≤ t ∨ µ− x̂ ≤ t
∣

∣

∣
|µ− Eφ x| ≥ ǫ

)

≤ Pφ(x̂ ≤ µ+ t|Eφ x > µ+ ǫ) + Pφ(x̂ ≥ µ− t|Eφ x < µ− ǫ).

The worst case for the first term, is Eφ x = µ+ ǫ thus

Pφ(x̂ ≤ µ+ t|Eφ x > µ+ ǫ) ≤ Pφ(x̂ ≤ µ+ t|Eφ x = µ+ ǫ) (3.5)

≤ exp
(

−2n(t− ǫ)2
)

, (3.6)

via Hoeffding. It is easy to see that second term also gives rise to the same
inequality, which allows us to write:

Pφ

(

|x̂− µ| ≤ t
∣

∣

∣
|µ− Eφ x| ≥ ǫ

)

≤ 2 exp
(

−2n(ǫ− t)2
)

. (3.7)

If we now take the enlargement ǫ to be 2t, the above becomes bounded by
2 exp

(

−2nt2
)

as well. Thus, both (3.7) and (3.4) are bounded by the same
quantity.

Thus, let us choose some probability δ to bound (3.4). This leads in choosing
the confidence bound

t =

√

log(2/δ)

2n
.

We employ this confidence bound in Algorithm 1, which accepts the null hy-
pothesis if the difference between the estimated mean and the mean of θ∗ is
within the confidence bound.

Algorithm 1 Hypothesis mean accept

1: procedure Mean test(µ, xn, δ)
2: x̂ = 1

n

∑n
i=1 xi

3: ǫ =
√

2 log 2/δ
n

4: if |x̂− µ| ≤ ǫ/2 then

5: Decide θ ∈ Θ0.
6: else

7: Decide θ /∈ Θǫ.
8: end if

9: end procedure

Lemma 3.1. Algorithm 1 decides for a set Θ′, with the property that ρ(θ,Θ′) <
√

log 2/δ
2n , with probability at least 1 − δ.

The proof of this lemma follows immediately from the above discussion.
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3.2 Testing a distribution with distribution-free methods

Let us now turn to the problem of estimating a distribution from a sample
xn ∈ Xn. Using this sample we form the empirical distribution by creating a
partition Bn of X , of size k, such that, each set X in the partition Bn contains
at least n

k observations. More precisely,

Bn ,

{

Xj ⊂ X , j = 1, . . . , k :

k
⋃

i=1

Xi = X ∧Xi ∩Xj = ∅ ∀i 6= j

}

, (3.8)

and if we denote the number of samples contained in each subset Xj by sj ,
∑n
i=1 I {xi ∈ Xj}, then

sj ≥
⌊n

k

⌋

, ∀Xj ∈ Bn. (3.9)

This is the only property we require of Bn, so the exact details of selecting the
partition are not relevant. Then, the empirical measure Pψ arising from the
partition Bn is

Pψ(Xj) ,
sj
n
. (3.10)

Furthermore, the true measure Pθ for this partition is

Pθ(Xj) , Pθ(x ∈ Xj). (3.11)

Then we define the distance

Dk(ψ‖θ) ,

k
∑

j=1

|Pψ(Xj) − Pθ(Xj)|. (3.12)

Using this distance, we can employ Algorithm 2 to decide whether the observed
data are from a distribution in Θ0, or from some distribution that is not more
than ǫ-close to Θ0.

Lemma 3.2. Algorithm 2 decides for a set Θ′, with the property that ρ(θ,Θ′) <
√

8
n [k log 2 + log 1/δ], with probability at least 1 − δ.

Proof. Let ǫ ,

√

8
n [k log 2 + log 1/δ]. There are three, mutually exclusive cases.

That θ ∈ Θ0, that θ ∈ Θǫ \Θ0 and that Θ ∈ Θ \Θǫ. Let h0 be the decision that
θ ∈ Θ0 and h1 that θ /∈ Θǫ.

If θ ∈ Θǫ \ Θ0, then we are always ǫ-close to θ no matter what we decide.
Thus, in that case the lemma is trivially satisfied.

If θ ∈ Θ0, then we are ǫ-close to θ only if we decide h0. Thus, we must bound
the probability that we decide h1. We only decide h1 when ρ(ψ,Θ0) > ǫ/2, but
since ρ(ψ,Θ0) ≤ Dk(ψ‖θ) for any θ ∈ Θ0 by definition:

Pθ(h1) ≤ Pθ(Dk(ψ‖θ) > ǫ/2) = Pθ(‖ψ − θ‖1 > ǫ/2) (3.13)

< (2k − 2) exp(−n
8
ǫ2) < 2k exp(−n

8
ǫ2), (3.14)
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Algorithm 2 Histogram test

1: procedure Histogram test(Θ0, x
n, δ)

2: k =
√
n.

3: Let Pψ be the empirical measure on an 1
k -net from xn.

4: ǫ =
√

8
n [k log 2 + log 1/δ].

5: if ρ(ψ,Θ0) ≤ ǫ/2 then

6: Decide θ ∈ Θ0.
7: else

8: Decide θ /∈ Θǫ.
9: end if

10: end procedure

from Weissman’s inequality (A.5). Substituting ǫ, we obtain

Pθ(h1) < 2k exp(−k log 2 − log 1/δ) = δ. (3.15)

Conversely, if θ /∈ Θǫ, then we are only ǫ-close to θ if we decide h1. Thus, we
must bound the probability that we decide h0. This occurs if ρ(ψ,Θ0) ≤ ǫ/2,
thus, for any θ ∈ Θ0:

Pθ(h1) ≤ Pθ(ρ(ψ, θ) ≤ ǫ/2) = Pθ(‖ψ − θ‖1 ≤ ǫ/2) (3.16)

≤ (2k − 2) exp(−n
8
ǫ2) < 2k exp(−n

8
ǫ2), (3.17)

from Weissman’s inequality as before. Substituting ǫ, we obtain Pθ(h1) < δ
once more.

The empirical measure estimated by Algortihm 2 is only ǫ-close to the true
distribution θ with respect to the defined n−1/2-net. However, it is possible to
relate this distance Dk(ψ‖θ) to the L1 distance over X

D(ψ‖θ) ,

∫

X

|p(x|ψ) − p(x|θ)|dµ. (3.18)

This requires that we are more careful with the choice of the partition Bn.

Lemma 3.3. If ∃L,M > 0 such that p(x|θ) satisfies

|p(x|θ) − p(x′|θ)| < L‖x− x′‖, µ ({x : p(x|θ) < t }) , < Mt (3.19)

for all t > 0, while the empirical measure ψ over the partition Bn satisfies

Dk(ψ‖θ) < ǫ, (3.20)

then

D(ψ‖θ) ,

∫

X

|p(x|ψ) − p(x|θ)|dµ ≤ L|X |ǫ. (3.21)
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Proof.

D(ψ‖θ) =

∫

X

|p(x|ψ) − p(x|θ)|dµ(x) =
∑

X∈Bn

∫

X

|p(x|ψ) − p(x|θ)|dµ(x)

(3.22)

≤
∑

X∈Bn

∫

X

ǫdµ(X) ≤ ǫ
∑

X∈Bn

L|X| = L|X |ǫ. (3.23)

A Auxilliary results

A.1 Hoeffding inequality

The general Hoeffding inequality states that for any sequence of xi ∈ [bi, bi+hi],
then

P

(

n
∑

i=1

|xi − Exi| ≥ nǫ

)

≤ 2 exp

(

− 2n2ǫ2
∑n
i=1 h

2
i

)

(A.1)

A specific form of the Hoeffding inequality for x ∈ [0, 1], x̂ , 1
n

∑n
i=1 xi, is often

useful:
P (x̂− Ex ≥ ǫ) ≤ exp

(

−2nǫ2
)

, (A.2)

where the two-sided form can be recovered via a union bound.
We can use the Hoeffding inequality to get a bound on the first order devi-

ation between p̂ and p, two multinomial distributions of order m.

Corollary A.1. If p̂ = 1
n

∑n
i=1 p(i) and p(i) ∈ R

m are observations from some

multinomial distribution with m outcomes, then

P(‖p̂− p‖1 ≥ ǫ) ≤ 2m exp

[

−2n
( ǫ

m

)2
]

. (A.3)

Proof. Note that

‖p̂− p‖1 = ‖
∑

i

p̂(i) − p(i)‖ ≤
∑

i

|p̂(i) − p(i)|. (A.4)

If A implies B then P(A) ≤ P(B). 1 This, since from (A.4), ‖p̂ − p‖1 ≥ ǫ
implies

∑

i |p̂(i) − p(i)| ≥ ǫ,

P (‖p̂− p‖1 ≥ ǫ) ≤ P

(

m
∑

i=1

|p̂(i) − p(i)| ≥ ǫ

)

≤ P

(

m
∨

i=1

|p̂(i) − p(i)| ≥ ǫ/m

)

≤
m
∑

i=1

P (|p̂(i) − p(i)| ≥ ǫ/m) ≤ 2m exp

[

−2n
( ǫ

m

)2
]

.

1This is easy to prove. Note that P(B) = P(B|A)P(A) + P(B|Ā)P(Ā). Since A implies
B, P(B|A) = 1, thus P(B) = P(A) + P(B|Ā)P(Ā) ≥ P(A) since P(B|Ā),P(Ā) ≥ 0
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A.2 Weissman inequality

For p ∈ [0, 1]m, a multinomial distribution with m outcomes, p̂ , 1
n

∑n
i=1 pi:

P (‖p̂− p‖1 ≥ ǫ) ≤ (2m − 2) exp
(

−n
2
ǫ2
)

. (A.5)

This inequality was proved by Weissman et al. [1].
This inequality might look slightly worse than (A.3) due to the exponential

terms. Howeverm this is not true for the case of interest. If the Weissman
bound is smaller than 1, then the Hoeffding bound is larger than the Weissman
bound.
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