

Backward Induction Table				
n	U/E	U/O	T/E	T/0
18	U	U	T / 1	Τ/2
17	U	Т	T / 1	U
16	U	Т	U	T / 3
15	U	U	Τ/2	T / 3
14	U	U	T / 2	T / 1
13	Т	U	U	T / 1
12	T	U	T / 3	U
11	U	U	Τ/3	T / 2
10	U	U	T / 1	T / 2
9	U	T	T / 1	U
8	U	Т	U	T / 3
7	U	U	Τ/2	T / 3
6	U	U	Τ/2	T / 1
5	Т	U	U	T / 1
4	Т	U	Τ/3	U
3	U	U	Τ/3	T / 2
2	U	U	T / 1	T / 2
1	U	T	T / 1	U
0	U	Т	U	Т
Veter van Emde Boas: The Games of Computer Science, April 2000				

Alternating Computation as a Game

Negating states are unnecessary - by dualizing parts of the computation tree they can be removed.

Infinite branches don't contribute to the game value (non-trivial to prove)

What remains is a Computation Game where both Thorgrim and Urgat control nondeterministic choices in the computation. Thorgrim wants the computation to accept. Urgat wants to prevent this from happening.....

Peter van Emde Boas: The Games of Computer Science, April 2000

Š.

20 d 21 go

Amplification Lemma

Answer: it suffices to select $\mathbf{k} = \mathbf{O}(|\log(\delta)|)$

Proof: let $\gamma := \varepsilon (1-\varepsilon)$, then $\gamma < 1/4$ WLOG: $\varepsilon > 1/2$ so 1 is more probable. The probability that the majority event is 0 is bounded by:

$$\sum_{j=0}^{k/2} \binom{k}{j} \left(\varepsilon^{j} (1-\varepsilon)^{(k-j)} \right) \leq \sum_{j=0}^{k/2} \binom{k}{j} \left(\varepsilon^{k/2} (1-\varepsilon)^{(k/2)} \right) =$$
$$= \gamma^{k/2} \sum_{j=0}^{k/2} \binom{k}{j} \leq \gamma^{k/2} 2^{k} = (4\gamma)^{k/2}$$
Peter van Emde Boas: The Games of Computer Science, April 2000

10 da 41 da

Various Models	
Verifier vs. Prover	
Stragtos vs. Orion:	Probabilistic Computation Rabin, Strassen Solovay
Orion vs. Thorgrim: unbounded error	Games against Nature Papadimitriou's model
Orion vs. Thorgrim:	Arthur Merlin Games Babai & Moran
Urgat vs. Thorgrim:	Interactive Protocols Goldwasser Micali Rackoff
Peter van Emde Boas: The Games of Computer Science, April 2000	

