Fundamentals of Linguistic Interaction

Raquel Fernández

Institute for Logic, Language & Computation University of Amsterdam

NASSLLI 2016

- timing coordination turn taking
- meaning coordination dialogue acts
- meaning coordination grounding
- style coordination alignment and adaptation
- language *acquisition* in interaction

- Main theories of first language acquisition.
 - Nativist
 - Empiricist
 - Interactive
- Interaction view. Two examples of recent work:
 - convergence in child-adult interaction
 - corrective feedback

Knowledge of grammar is innate, in the form of a Universal Grammar that is the initial state of the language faculty.

"Language learning is not really something that the child does; it is something that happens to the child placed in an appropriate environment, much as the child's body grows and matures in a predetermined way when provided with appropriate nutrition and environmental stimulation" (Chomsky 1993, p. 519)

Main motivation:

- Acquisition is fast and easy,
- in spite of inadequate input (poverty of stimulus),
- and happens without direct instruction (no negative evidence).

None of these claims is well supported empirically.

• Fast?

Children are exposed to language around 10 hours per day (millions of words/sentence in the first 5 years).

• Easy?

Children go through learning stages and make errors over several years (meaning extension, morphological regularisation, word order).

• Poor input?

Child-directed speech is simpler, clearer, and more well formed than adult-adult speech.

• No negative evidence?

Typically no explicit correction, but plenty of implicit feedback (more later).

input vs. interaction

sensitivity to statistical regularities in the input ignoring interaction sensitivity to when & how the input is offered in interaction

Adult: Help me put your toys away, darling. Child: I'm going to Colin's and I need some toys. Adult: You don't need a lot of toys. Child: Only a little bit toys. Adult: You only need a few. Child: Yes, a few toys.

 $child \rightarrow adult$ language learning $child \leftarrow adult$ child-directed speech

The interactive view

"Relevant input" — *joint attention, engagement, topic continuity, contingent replies* ... — has been shown to be a positive predictor of language development (Tamis-LeMonda et al. 2001; Hoff & Naigles, 2002; Rollins, 2003; Mazur et al. 2005; Hoff, 2006; a.o.)

McGillion et al. (2013): what sort of responsiveness matters?

- semantic responsiveness: related to the child's focus of attentions
- *temporal responsiveness*: temporally contingent with an act produced by the child.
- \rightsquigarrow combined measure only significant predictor of vocabulary growth

Longer-term: use computational modelling to investigate how these aspects relate to the learning mechanisms employed by the child – and what this can tell us about theories of dialogue.

Today: recent work on methodologies for studying *interaction* and *contingent responsiveness* in corpus data.

Ways of investigating how speakers pick up on each other's language (*coordinate*) at different degrees of locality.

R. Fernández & R. Grimm. Quantifying Categorical and Conceptual Convergence in Child-Adult Dialogue, 36th Annual Conference of the Cognitive Science Society. 2014.

Empirical study on impact of one particular interactive phenomenon on learning:

S. Hiller & R. Fernández (2016) A Data-driven Investigation of Corrective Feedback on Subject Omission Errors in First Language Acquisition. In *Proceedings of CoNLL*.

Turn-based Cross-Recurrence Plots

- global recurrence: average coordination over all turn pairs
- *local recurrence*: recurrence in (semi-)adjacent turns, separated by at most distance d < n (diagonal line of incidence)
- *upper recurrence*: child's turn comes after adult's *adult* ← *child*
- *lower recurrence*: adult's turn comes after child's *child* ← *adult*

Turn-based Cross-Recurrence Plots

CRP of a dialogue with Abe (2.5 years old):

Same *global* recurrence but very different *local* recurrence

 \rightsquigarrow global: chance recurrence regardless of temporal development of interaction

Linguistic Measures of Recurrence

Syntactic recurrence: number of shared part-of-speech bigrams factoring out lexical identity, normalised by length of longest turn.

Lexical recurrence: shared lexeme unigrams / biagrams factoring out lexical identity, normalised by length of longest turn.

Adult: you are pressing a button and what happens ? PROlyou AUX/be PART/press DET/a N/button CJ/and PRO/what V/happen Child: what happens the horse tail PRO/what V/happen DET/the N/horse N/tail

Conceptual recurrence: semantic similarity, e.g., $\langle N | dog \rangle \approx \langle V | bark \rangle$

- distributional semantic model: 2-billion-word WaCuk corpus and the DISSECT toolkit (Dinu, Pham & Baroni, 2013)
- one vector per turn by adding up the lexical vectors
- cosine of a turn pair (i, j) as the convergence score

379 *child-adult dialogues* from 3 children over a period of \sim 3 years.

corpus	age range	# dialogues	av. # turns/dialogue
Abe	2;5 - 5;0	210	191 (sd=74)
Sarah	2;6 - 5;1	107	340 (sd=84)
Naomi	1;11 - 4;9	62	152 (sd=100)

We generate a *CRP* for each dialogue, computing convergence values for all turn pairs (i, j) for each of the linguistic convergence measures: *lexical, syntactic, conceptual.*

Results: child-adult dialogue

- local vs. global: significantly more local coordination.
- *directionality*: both coordinate more at local levels, but the adult recurs with the child significantly more.

Results: adult-adult dialogue

For comparison: ~ 1000 *adult-adult dialogues* from Switchboard. We ignore backchannels (*"uh huh"*) since they are not considered proper turns (19% of all utterances).

- Semantic lexical/conceptual measures, same trend: above-chance convergence in close-by turns.
- Syntactic measure: very different coordination patterns, with adults showing syntactic *divergence* at adjacent turns:
 - \rightsquigarrow less recurrence than expected by chance.

Contrast with previous evidence of syntactic alignment in adult-adult dialogue (e.g., Pickering & Ferreira 2008), but not surprising

advancing a conversation requires *different dialogue acts* with distinct syntactic patterns.

Why is there syntactic recurrence in child-adult dialogue?

- *feedback mechanism* to ratify linguistic constructions?
- possibly related to reformulations / recasts / corrective feedback

Child: you're good to sharing. Mother: I'm good at sharing? M. Chouinard & E. Clark (2003) Adult reformulations of child errors as negative evidence, Journal of Child Language.

- Adults check up on the meaning intended by the child.
- 3 English and 2 French children (longitudinal data)
- Around 2/3 of erroneous utterances are reformulated by the adult.
- All types of errors (phonology, morphology, lexicon, syntax).
- Children attend to and respond to the reformulations

% of Abe's conventional utterances replayed and erroneous utterances reformulated.

S. Hiller & R. Fernández (2016) A Data-driven Investigation of Corrective Feedback on Subject Omission Errors in First Language Acquisition. In *Proceedings of CoNLL*.

An utterance by the child followed by an utterance by an adult constitutes an instance of *corrective feedback* if all the following constraints are met:

- (C1) The child's utterance contains a grammatical anomaly.
- (C2) There is some degree of overlap between the adult and child utterances: the adult's response is anchored to the child utterance through at least one exactly matching word.
- (C3) The adult utterance is not a mere repetition of the child's, i.e., there is some contrast.
- (C4) This contrast offers a correct counterpart of the child's erroneous form.

25 children	Total	Avg. per child			
transcripts	1,683	67.32			
utterances	1,598,838	63,953.52			
candidate CF pairs	136,152	5,446.08			

- Manual annotation: 4-6 files from four different children
- Extraction of candidate CF utterance pairs (partial repetition)

Results of corpus study

		Om	Add	Sub	Total
	Syntax				
Examples:	subject	171	-	1	172
	verb	90	1	-	91
	object	13	-	-	13
synt: subject, omission	N morph				
CHI: don't want to .	poss -'s	4	1	-	5
MOT: you don't want to ?	regular pl	-	3	-	3
WOT. you don't want to :	irregular pl	-	-	3	3
w morphy irregular pact substitution	V morph				
v. morph. megular past, substitution	3rd person	4	-	-	4
CHI: he falled out and bumped his head .	regular past	10	1	-	11
MOT: he fell out and bumped his head.	irregular past	1	-	4	5
	Unb. morph				
u morph: auxiliary addition	det	79	-	6	85
Chille Para and it	prep	21	1	12	34
CHI: I m read it .	aux verb	114	5	1	120
DAD: you read it to mummy .	progressive	9	0	0	9
	Other	4	2	19	25
	Total	520	14	46	580

- Focus on subject omission errors (SOE).
- Use of machine learning techniques to extract SEOs and CF on SOEs in the entire corpus.

CHI: I climb up daddy .					
– POS & morph	%mor: pro.sub I v climb prep up n daddy				
 dependency 	%gra: 1 2 SUBJ 2 0 ROOT 3 2 JCT 4 3 POBJ				
DAD: you did climb over daddy .					
– POS & morph	%mor: pro you v do.PAST v climb prep over n daddy				
 dependency 	%gra: 1 2 SUBJ 2 0 ROOT 3 2 OBJ 4 3 JCT 5 4 POBJ				
 overlap 	%adu: \$EXA:climb \$EXA:daddy \$ADD:you did \$ADD:over				
	<pre>\$DEL:i \$DEL:up \$REP=0.40</pre>				
manual annotation	%cof: \$CF \$ERR=umorph:prep; \$TYP=subst				

Automatic detection results:

- Detection of SOE: rule-based classifier, 83% precision.
- Detection of CF on SOE: SVM, 89%.

Corrective feedback and learning

Does CF on SOE contribute to error reduction?

We compute the amount of SOEs at two different time periods, t_0 and a later time t_1 . We then calculate the *relative error reduction* (rer) as the proportion of SOEs at t_0 that has been overcome at t_1 :

$$\operatorname{rer}(t_0, t_1) = \frac{SOE_{t_0} - SOE_{t_1}}{SOE_{t_0}}$$

Control variables:

- child age in months (age);
- mean length of utterance of child speech and of child directed speech (chi.mlu/cds.mlu);
- vocabulary size of child speech and of child directed speech (chi.vocab/cds.vocab);
- proportion of child SOEs (chi.soe);
- proportion of child directed utterances with subject omissions (cds.so);
- proportion of words uttered by the child over all words uttered in the child-adult interactions (chi.speech).

Corrective feedback and learning

- Linear regression model with all possible pairs (t_0, t_1) for the 25 children in the corpus (N= 2613): CF explains a significant proportion of the variance in relative error reduction of SOEs independently from all other factors.
- CF has a significant effect after a time lapse of 7 to 12 months,
- for any starting age t_0 for which there is available data.

- Local interaction can function as corrective feedback and contribute to language learning.
- Data-driven approach, but caution regarding errors introduced by automatic detectors.
- What does this tell us about acquisition and learning?
 - ► language learning in use is not totally unsupervised.
 - ► the learner is active in eliciting feedback
- How can we model this interactive learning process computationally?

- *timing* coordination turn taking
- *meaning* coordination dialogue acts
- *meaning* coordination grounding
- style coordination alignment and adaptation
- language *acquisition* in interaction

thank you