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ESTIMATION OF INTEGRATED VOLATILITY

Set up
[1 Classical framework: Observations X ., ¢+ =0,...,n of the process
t t
(BSM) X = Xy +/ audu+/ oudW,, | t €10,1]
0 0

a is the (locally bounded) drift, o is the cadlag volatility and W is a
standard Brownian motion.

[1 Generalisations:

[1 Noisy diffusion model:
Y. =X.i +U; 1=20,...,n

with (U;)o<i<p ii.d., independent of X; EU = 0 and EU? = w?.
[J Noisy jump-diffusion model:

Z2=Y+17],

where J is a jump process.

(3)
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Statement of the problem

[1 In this talk we propose a new methodology for the models (2) and (3) which
solves the following estimation/test problems:

[0 In model (2): Estimation of

1 1
IV:/ o2du IQ:/ aﬁdu,
0 0

or even more generally fol |y [Pdu, p > 0.

[J In model (3): Estimation of the joint quadratic variation
1
/ Zdut S AP
0 0<u<1

[J Test for the presence of jumps.

[0 Estimation of o2 for u € [0, 1].
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Review: realised volatility and bipower variation

[1 Realised volatility and bipower variation at sampling frequency n are defined
as:

n n—1
RV, =) |A?X|? and BV, =p;° ) |ATX|AY X, (4)
) 1=1

1=1

where A’ X = X — Xi—1 and p, = E(|¢|"), ¢ ~ N(0,1).

0 RV,,, BV, are both consistent for IV, i.e. as n — oo:
RV, — IV ,

BV, 21V, (5)
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Review: realised volatility and bipower variation

[ Distribution theory for RV,, and BV,,:
n'/2 (RV, — TV) % MN (0,2 IQ)
n'/2 (BV,, — IV) % MN (0,2.6 IQ) (6)

where d,; denotes stable convergence. We refer to

[0 Jacod (1994)
[ Barndorff-Nielsen & Shephard (2002)
[0 Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006)

for more details.
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Review: realised volatility and bipower variation

[1 Consider a jump-diffusion model of the form:
Zy = Xi 4+ Jy t €[0,1] (7)

[1 J is a jump process

[ In the jump-diffusion framework we have

1
RV, L/ oldu+ Y |AJ)?,
0

u<l
while

1
BV, 2 / o2 du.
0

[ Thus, RV, — BV,, estimates the jump component, if any, and may be
transformed into a test of continuous sample paths (Barndorff-Nielsen &
Shephard (2004, 2006)).
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Review: multiscale estimator and realised kernel

[1 The practical estimation of IV suffers from the presence of market

microstructure noise such as bid-ask bounds or price discreteness (e.g.,
Ait-Sahalia, Mykland & Zhang (2005), Bandi & Russell (2005),
Barndorff-Nielsen, Hansen, Lunde & Shephard (2006), and related papers.)

[0 A more realistic framework is the noisy diffusion model (2)
Y=X+U (8)

[1 In this setting usual statistics are inconsistent, e.g.

1 n b
~2 . E ( n 2 2

Vetter 2007 (p. 6)



ESTIMATION OF INTEGRATED VOLATILITY

Review: multiscale estimator and realised kernel

[1 There are basically two different methods of estimation of IV in the noisy

diffusion framework.

[ Zhang (2006) and Ait-Sahalia, Mykland & Zhang (2005) via a multiscale

estimator.

[0 Barndorff-Nielsen, Hansen, Lunde & Shephard (2006) via a realised kernel

estimator.

[1 Both proved a CLT for a standardized version of the estimators with an

—1/4

optimal convergence rate n . 1() appears in each theorem.

[1 However, both methods
[1 are not robust to jumps

[1 do not provide estimates for other powers of o
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Main results: Modulated bipower variation

[ We choose a number ¢ > 0 such that K = ¢nz and M = 57 are integers and

define the modulated bipower variation by

(r+1)

MBV(Y,r, 1), =n 3

M
IR ) T L N
m=1

Y, = Xokim-1) — X2km_K

mn

5 1
Xo= 2 > Y
=1
[1 This approach can be generalised. It is possible to choose other weights for

the random variables Y, . as long as certain regularity conditions are
fulfilled.
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Main results: Consistency

(] The number K = ¢n? controls the stochastic order of the term Y,,, i.e.
(_]m:()p(n_i) : )_(m:()p(n_i) :

and so the stochastic orders of U,,, and X,, are balanced!

Theorem 1: If E|U|?"+)+¢ < oo for some € > 0, as n — oo

1
MBV(Y,r,1), > MBV(Y,r,1) = “;‘” / (1102 + vow?) = du  (9)
¢ Jo

for some known constants 11 and 15 (which depend on c¢).
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Main results: Consistency

[J Theorem 1 shows that M BV (Y, r,[),, is inconsistent when estimating
arbitrary (integrated) powers of volatility. Though, when r + [ is an even
number (this condition is satisfied for the most interesting cases) a slight
modification of M BV (Y, r,l), turns out to be consistent.

[1 Consistent estimates of IV are given by

2eM BV (Y, 2.0), — o2 !
MRV(Y), o= 2BV 20 =00 p |
0

41

and

MBV(Y), = £

2—§MBV(Y, 1,1), —1p® /1
> o
Vl 0

Notice that the estimator M BV (Y'),, is robust to jumps.

[1 Consistent estimates of /() can be obtained similarly.
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Main results: Central limit theorem

[1 To prove a CLT, we need stronger conditions:
[ o is an Ito diffusion itself.

[1 The noise process U has the representation
Ui:\/ﬁu)(Bl—Bﬂ), (10)
where B is another Brownian motion independent of .

[1 The above condition on U ensures that X and U are measurable with respect
to the same type of filtration. This condition is important for the proof!

[ The normal distribution of the noise induced by (10) is not crucial for the
CLT! Other functions of rescaled increments of B can be considered.
However, this leads to a slight modification of the CLT.
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Main results: Central limit theorem

Theorem 2: Assume that U is of the form (10), o is an Ito-diffusion and
os # 0 for all s. Then we have

1
1 dc ~
i (MRV(Y)n —/ o2 du) dag MN(O, —ng) | (11)
0 "

4.,2

1 2 2 4
2 2y — 3pd) ~
n%(MBV(Y)n—/ o2 du) i MN(O, ey + 241 pto “1)IQ) L (12)
0 K1l

where

1
IQ = / (1102 + vow?)? du.
0
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Main results: Central limit theorem

0 The rate n~'/* is known to be optimal (see Gloter & Jacod (2001)).

[1 When o is constant the conditional variance of M RV (Y'),, is minimized at

3w
c= —
o
and is approximately equal to
210°w.

The corresponding expression for M BV (Y),, is given by 260°w. A natural
lower bound is given by

Row |
which is the variance of the maximum likelihood estimator (see Gloter &
Jacod (2001)).
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Modulated bipower variation: Modification
[J For estimating the quadratic variation of X + J we unfortunately have that
MRV (Z 74/ oodu+ > AT
0<u<l1

[1 However, a slight modification of the modulated bipower approach solves this
problem. For 0 < 7 < 2K — 1 we define the statistic

(J) ~2
MRV(Y)%?) - 2(3MBV(Y, 2, O)n — VoW ’

41

where M BV (Y, 2, 0)55') is the same quantity as M BV (Y, 2,0),, but with
starting point j/n. Finally, we consider the statistic

2K—-1

MRV (Y)2v .= Z MRV(Y)$),

and the quantity M BV (Y)%"¢ is defined similarly.

n
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Modulated bipower variation: Modification

[1 By construction we obtain the convergence in probability

1 1
MRV(Y)WL/ o2du MRV(Z)@“GL/ ordu+ Y AT
0 0

n n
0<u<l

Moreover, we can show a stable CLT for M RV (Y )%v¢ (with convergence rate

n~'/%). When o is constant the conditional variance of M RV (Y )¢ (for the

n

optimal choice of ¢) is approximately equal to

8.50°w.

[J For the bipower estimator of IV we have

1 1
MBV(Y)ave L, / o2du,  MBV(Z)%e / o
0 0

n n
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Applications: Confidence bands for quadratic variation

[1 For the noisy jump-diffusion model we can prove the stable convergence

1
nt/* (MRV(Z);;?e — (/ opdu+ ) ]AJu\Q)) Lt MIN(0,V2).
0

0<u<li

0 By an estimation of the conditional (asymptotic) variance V? we can obtain

a standard CLT, and so the confidence bands for the quadratic variation of
Y 4 J.
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Applications: Tests for jumps

[J Since we have derived stable CLT’s for M RV (Y)%'¢ and M BV (Y )%"¢ (i.e.
when there are no jumps), we are able to test for jumps. More precisely, we

reject the null hypothesis of no jumps for large values of

nt/4(MRV(2)5 — MBV(2)5")

n

or

)

n

[0 Another possibility is to apply the idea of Ait-Sahalia & Jacod (2006), which,

however, envolves hard calculations in our case.
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