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Estimation of Integrated Volatility

Set up

✘ Classical framework: Observations X i

n

, i = 0, . . . , n of the process

(BSM) Xt = X0 +

∫ t

0

audu +

∫ t

0

σudWu , t ∈ [0, 1] (1)

a is the (locally bounded) drift, σ is the càdlàg volatility and W is a

standard Brownian motion.

✘ Generalisations:

❏ Noisy diffusion model:

Y i

n

= X i

n

+ Ui i = 0, . . . , n (2)

with (Ui)0≤i≤n i.i.d., independent of X; EU = 0 and EU2 = ω2.

❏ Noisy jump-diffusion model:

Z = Y + J , (3)

where J is a jump process.
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Statement of the problem

✘ In this talk we propose a new methodology for the models (2) and (3) which

solves the following estimation/test problems:

❏ In model (2): Estimation of

IV =

∫ 1

0

σ2
udu , IQ =

∫ 1

0

σ4
udu ,

or even more generally
∫ 1

0
|σu|pdu, p ≥ 0.

❏ In model (3): Estimation of the joint quadratic variation

∫ 1

0

σ2
udu +

∑

0≤u≤1

|∆Ju|2

❏ Test for the presence of jumps.

❏ Estimation of σ2
u for u ∈ [0, 1].
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Estimation of Integrated Volatility

Review: realised volatility and bipower variation

✘ Realised volatility and bipower variation at sampling frequency n are defined

as:

RVn =
n∑

i=1

|∆n
i X|2 and BVn = µ−2

1

n−1∑

i=1

|∆n
i X||∆n

i+1X| , (4)

where ∆n
i X = X i

n

− X i−1
n

and µr = E (|φ|r), φ ∼ N(0, 1).

✘ RVn, BVn are both consistent for IV , i.e. as n → ∞:

RVn
P−→ IV ,

BVn
P−→ IV. (5)
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Review: realised volatility and bipower variation

✘ Distribution theory for RVn and BVn:

n1/2 (RVn − IV )
dst→ MN (0, 2 IQ)

n1/2 (BVn − IV )
dst→ MN (0, 2.6 IQ) (6)

where dst denotes stable convergence. We refer to

❏ Jacod (1994)

❏ Barndorff-Nielsen & Shephard (2002)

❏ Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006)

for more details.

Vetter 2007 (p. 4)



Estimation of Integrated Volatility

Review: realised volatility and bipower variation

✘ Consider a jump-diffusion model of the form:

Z̃t = Xt + Jt , t ∈ [0, 1] (7)

✘ J is a jump process

✘ In the jump-diffusion framework we have

RVn
P−→

∫ 1

0

σ2
udu +

∑

u≤1

|∆Ju|2 ,

while

BVn
P−→

∫ 1

0

σ2
udu.

✘ Thus, RVn − BVn estimates the jump component, if any, and may be

transformed into a test of continuous sample paths (Barndorff-Nielsen &

Shephard (2004, 2006)).

Vetter 2007 (p. 5)



Estimation of Integrated Volatility

Review: multiscale estimator and realised kernel

✘ The practical estimation of IV suffers from the presence of market

microstructure noise such as bid-ask bounds or price discreteness (e.g.,

Ait-Sahalia, Mykland & Zhang (2005), Bandi & Russell (2005),

Barndorff-Nielsen, Hansen, Lunde & Shephard (2006), and related papers.)

✘ A more realistic framework is the noisy diffusion model (2)

Y = X + U (8)

✘ In this setting usual statistics are inconsistent, e.g.

ω̂2 :=
1

2n

n∑

i=1

|∆n
i Y |2 P−→ ω2.
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Review: multiscale estimator and realised kernel

✘ There are basically two different methods of estimation of IV in the noisy

diffusion framework.

❏ Zhang (2006) and Ait-Sahalia, Mykland & Zhang (2005) via a multiscale

estimator.

❏ Barndorff-Nielsen, Hansen, Lunde & Shephard (2006) via a realised kernel

estimator.

✘ Both proved a CLT for a standardized version of the estimators with an

optimal convergence rate n−1/4. IQ appears in each theorem.

✘ However, both methods

❏ are not robust to jumps

❏ do not provide estimates for other powers of σ
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Main results: Modulated bipower variation

✘ We choose a number c > 0 such that K = c n
1
2 and M = n

2K are integers and

define the modulated bipower variation by

MBV (Y, r, l)n = n
(r+l)

4 − 1
2

M∑

m=1

|Ȳm|r|Ȳm+1|l r, l ≥ 0

Ȳm = X̂ 2K(m−1)
n

− X̂ 2Km−K

n

X̂a =
1

K

K∑

l=1

Ya+ l

n

.

✘ This approach can be generalised. It is possible to choose other weights for

the random variables Ya+ l

n

as long as certain regularity conditions are

fulfilled.
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Main results: Consistency

✘ The number K = c n
1
2 controls the stochastic order of the term Ȳm, i.e.

Ūm = Op(n
− 1

4 ) , X̄m = Op(n
− 1

4 ) ,

and so the stochastic orders of Ūm and X̄m are balanced!

Theorem 1: If E|U |2(r+l)+ǫ < ∞ for some ǫ > 0, as n → ∞

MBV (Y, r, l)n
P−→ MBV (Y, r, l) =

µrµl

2c

∫ 1

0

(ν1σ
2
u + ν2ω

2)
r+l

2 du (9)

for some known constants ν1 and ν2 (which depend on c).
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Main results: Consistency

✘ Theorem 1 shows that MBV (Y, r, l)n is inconsistent when estimating

arbitrary (integrated) powers of volatility. Though, when r + l is an even

number (this condition is satisfied for the most interesting cases) a slight

modification of MBV (Y, r, l)n turns out to be consistent.

✘ Consistent estimates of IV are given by

MRV (Y )n :=
2cMBV (Y, 2, 0)n − ν2ω̂

2

ν1

P−→
∫ 1

0

σ2
u du

and

MBV (Y )n :=

2c
µ2

1
MBV (Y, 1, 1)n − ν2ω̂

2

ν1

P−→
∫ 1

0

σ2
u du.

Notice that the estimator MBV (Y )n is robust to jumps.

✘ Consistent estimates of IQ can be obtained similarly.
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Main results: Central limit theorem

✘ To prove a CLT, we need stronger conditions:

❏ σ is an Ito diffusion itself.

❏ The noise process U has the representation

Ui =
√

n ω (B i

n

− B i−1
n

) , (10)

where B is another Brownian motion independent of W .

✘ The above condition on U ensures that X and U are measurable with respect

to the same type of filtration. This condition is important for the proof!

✘ The normal distribution of the noise induced by (10) is not crucial for the

CLT! Other functions of rescaled increments of B can be considered.

However, this leads to a slight modification of the CLT.
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Main results: Central limit theorem

Theorem 2: Assume that U is of the form (10), σ is an Ito-diffusion and

σs 6= 0 for all s. Then we have

n
1
4

(
MRV (Y )n −

∫ 1

0

σ2
u du

)
dst→ MN

(
0,

4c

ν2
1

ĨQ
)

, (11)

n
1
4

(
MBV (Y )n−

∫ 1

0

σ2
u du

)
dst→ MN

(
0,

2c(µ2
2 + 2µ2

1µ2 − 3µ4
1)

µ4
1ν

2
1

ĨQ
)

, (12)

where

ĨQ =

∫ 1

0

(ν1σ
2
u + ν2ω

2)2 du.
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Main results: Central limit theorem

✘ The rate n−1/4 is known to be optimal (see Gloter & Jacod (2001)).

✘ When σ is constant the conditional variance of MRV (Y )n is minimized at

c =
3ω

σ

and is approximately equal to

21σ3ω.

The corresponding expression for MBV (Y )n is given by 26σ3ω. A natural

lower bound is given by

8σ3ω ,

which is the variance of the maximum likelihood estimator (see Gloter &

Jacod (2001)).
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Modulated bipower variation: Modification

✘ For estimating the quadratic variation of X + J we unfortunately have that

MRV (Z)n 6→
∫ 1

0

σ2
udu +

∑

0≤u≤1

|∆Ju|2

✘ However, a slight modification of the modulated bipower approach solves this

problem. For 0 ≤ j ≤ 2K − 1 we define the statistic

MRV (Y )(j)n :=
2cMBV (Y, 2, 0)

(j)
n − ν2ω̂

2

ν1
,

where MBV (Y, 2, 0)
(j)
n is the same quantity as MBV (Y, 2, 0)n but with

starting point j/n. Finally, we consider the statistic

MRV (Y )ave
n :=

1

2K

2K−1∑

j=0

MRV (Y )(j)n ,

and the quantity MBV (Y )ave
n is defined similarly.
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Modulated bipower variation: Modification

✘ By construction we obtain the convergence in probability

MRV (Y )ave
n

P−→
∫ 1

0

σ2
udu , MRV (Z)ave

n
P−→

∫ 1

0

σ2
udu +

∑

0≤u≤1

|∆Ju|2.

Moreover, we can show a stable CLT for MRV (Y )ave
n (with convergence rate

n−1/4). When σ is constant the conditional variance of MRV (Y )ave
n (for the

optimal choice of c) is approximately equal to

8.5σ3ω.

✘ For the bipower estimator of IV we have

MBV (Y )ave
n

P−→
∫ 1

0

σ2
udu , MBV (Z)ave

n
P−→

∫ 1

0

σ2
udu.
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Applications: Confidence bands for quadratic variation

✘ For the noisy jump-diffusion model we can prove the stable convergence

n1/4
(
MRV (Z)ave

n −
( ∫ 1

0

σ2
udu +

∑

0≤u≤1

|∆Ju|2
))

dst→ MN(0, V 2).

✘ By an estimation of the conditional (asymptotic) variance V 2 we can obtain

a standard CLT, and so the confidence bands for the quadratic variation of

Y + J .
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Applications: Tests for jumps

✘ Since we have derived stable CLT’s for MRV (Y )ave
n and MBV (Y )ave

n (i.e.

when there are no jumps), we are able to test for jumps. More precisely, we

reject the null hypothesis of no jumps for large values of

n1/4
(
MRV (Z)ave

n − MBV (Z)ave
n

)

or

n1/4
(MRV (Z)ave

n

MBV (Z)ave
n

− 1
)
.

✘ Another possibility is to apply the idea of Ait-Sahalia & Jacod (2006), which,

however, envolves hard calculations in our case.
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