Let (X, Y) be bivariate normal with parameters $\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma, Y$ and assume that X and Y are independent. Then (X, Y) has density

$$
f(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y}} \exp \left(-\frac{1}{2}\left(\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}\right)\right) .
$$

Consider now the transformation $U=X+Y, V=X-Y$. So we can represent U as $g_{1}(X, Y)$ with $g_{1}(x, y)=x+y$ and V as $g_{2}(X, Y)$ with $g_{2}(x, y)$. Conversely, given (U, V) we have $(X, Y)=h(U, V)$, with $h_{1}(u, v)=\frac{1}{2}(u+v)$ and $h_{2}(u, v)=$ $\frac{1}{2}(u-v)$.

We compute the joint density $f_{U, V}$ of (U, V) by using the transformating rule. To that end we need the determinant that appears in that rule, which has in our case the value -2 (you check). With the proper substitutions we then get that

$$
\begin{equation*}
f_{U, V}(u, v)=\frac{1}{4 \pi \sigma_{X} \sigma_{Y}} \exp \left(-\frac{1}{2}\left(\frac{\left(\frac{1}{2}(u+v)-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(\frac{1}{2}(u-v)-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}\right)\right) . \tag{1}
\end{equation*}
$$

This expression looks quite horrible, so let's see if we can rewrite this such that it gets a better looking appearence. Introduce the following new parameters. $\mu_{U}=\mu_{X}+\mu_{Y}, \mu_{V}=\mu_{X}-\mu_{Y}, \sigma_{U}^{2}=\sigma_{V}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}$ and $\rho=\frac{\sigma_{X}^{2}-\sigma_{Y}^{2}}{\sigma_{X}^{2}+\sigma_{Y}^{2}}$. Then we can rewrite (if you want, you may check this, but see also below!) the expression in the exponential as

$$
-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\left(u-\mu_{U}\right)^{2}}{\sigma_{U}^{2}}+\frac{\left(v-\mu_{V}\right)^{2}}{\sigma_{V}^{2}}-2 \rho \frac{\left(u-\mu_{U}\right)\left(v-\mu_{V}\right)}{\sigma_{U} \sigma_{V}}\right) .
$$

The term in front of the exponential can be rewritten as

$$
\frac{1}{2 \pi \sigma_{U} \sigma_{V} \sqrt{1-\rho^{2}}}
$$

From these considerations we conclude that (U, V) is bivariate normal with the parameters as we just defined them.

The computations simplify considerably if we take $\sigma_{X}^{2}=\sigma_{Y}^{2}=\sigma^{2}$. In that case we have $\sigma_{U}^{2}=\sigma_{V}^{2}=2 \sigma^{2}$ and $\rho=0$ and equation (1) reduces to

$$
f_{U, V}(u, v)=\frac{1}{4 \pi \sigma^{2}} \exp \left(-\frac{1}{2}\left(\frac{\left(\frac{1}{2}(u+v)-\mu_{X}\right)^{2}}{\sigma^{2}}+\frac{\left(\frac{1}{2}(u-v)-\mu_{Y}\right)^{2}}{\sigma^{2}}\right) .\right) .
$$

Now it is a good exercise for you (do it!) to verify that this expression can be rewritten as

$$
f_{U, V}(u, v)=\frac{1}{4 \pi \sigma^{2}} \exp \left(-\frac{1}{2}\left(\frac{\left(u-\mu_{U}\right)^{2}}{2 \sigma^{2}}+\frac{\left(v-\mu_{V}\right)^{2}}{2 \sigma^{2}}\right)\right) .
$$

Now you compute $f_{U}(u)$ and $f_{V}(v)$ (the marginal densities of U and V) and check that $f_{U, V}(u, v)$ can be written as the product of $f_{U}(u)$ and $f_{V}(v)$, which implies that U and V are independent.

