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Lecture 1a (10 september 2002)

e Sample spaces

e probability measures

e computing probabilities: counting methods
and the multiplication principle

e conditional probability

e independent events



Lecture 1b (11 september 2002)

e random variables (discrete or continuous)

e distribution function

e frequency (or probability mass) function

e density function

e specific discrete distributions

e specific continuous distributions

e transformations of a random variable



Lecture 2a (17 september 2002)

e random vectors (discrete or continuous)

e joint distribution function

e frequency (or probability mass) function

e density function

e independent random variables

e sums of independent random variables

e transformations of a random variable



the density of a bivariate random vector
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transformation rule

If X is a random variable and Y = ¢g(X), with
g monotone and differentiable with inverse h,
then

()
W) =10t

If X is a random variable and Y = g(X), where
g is invertible (with inverse h) and differen-
tiable, then

_ fx(h(y)
V&) =5
where
go-g1(z) -+ g2g1(x)
J(x) = det : :



Lecture 2b (18 september 2002)

e expected value of a random variable (dis-
crete and continuous)

e expectations of functions of a random vari-
able

e expectation of linear combinations

e variance and standard deviation

e covariance and correlation

e conditional probability and conditional ex-
pectation

e prediction



Lecture 3a (24 september 2002)

e Some extras

e Limit theorems
— Laws of large numbers
— Convergence in distribution

— the Central Limit T heorem

e Distributions derived from the normal dis-
tribution

— 2 distribution
— (student) t distribution

— F' distribution



Dependence and Correlation

Important implication: if X and Y are in-
dependent, then Cov(X,Y) = 0, so they are
uncorrelated.

BUT, if X and Y are uncorrelated, they are
not necessarily independent.

Example:

X[ -1 0 +1
0 [[1/4 0 1/4]1/2
1 0 1/2 0 |[1/2

1/4 1/2 1/4| 1

We see that EX = 0, E(XY) = 0,
so Cov(X,Y) =0,
but P(X =0,Y = 0) # P(X = 0)P(Y = 0).

However.........



Remember that in general
Cov(X,Y)
OXO0y '

p=p(X,Y) =

Let X and Y have a bivariate normal distribu-
tion with parameters ux (the expected value
of X), ny, ox (the standard deviation of X),
oy and (correlation coefficient) p.

We know that IN THIS CASE X and Y are
independent iff p = 0.

Hence for bivariate normal (X,Y) indepen-
dence is equivalent to being uncorrelated!

Warning: If X is normal and Y is normal, then
it does NOT necessarily follow that (X,Y) is
bivariate normal. But this certainly happens if
one also knows that X and Y are independent.
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Covariance matrix

If X = (X1,...,Xm)" and Y = (Y1,....,Y,)"
are random vectors, then Cov(X,Y) is the mxn
matrix with elements

COV(X, Y)z] = COV(X,,;, Y})
For X =Y we write Cov(X) instead of Cov(X,Y).

Properties:

1. Cov(X) is a symmetric nonnegative definite
matrix.

2. If a sub-vector of X is independent of a
sub-vector of Y, then their corresponding co-
variance matrix is the zero matrix.

3. If X has expectation vector u and covari-
ance matrix >, then Y = AX 4 b has expec-
tation vector Aup 4+ b and covariance matrix
AT AT
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the multivariate normal distribution

Let a random n-vector X have expecatation
vector pu and covariance matrix 2. Assume
that X is invertible. Then X is said to have
mulivariate normal distribution if the density of
X is

1
272 det ()12 ¥

(S @-w = ).,

Properties:

1. Two non-overlapping sub-vectors of X are
independent iff their covariance matrix is zero.

2. If X has a multivariate normal distribution
with expectation pu and covariance matrix 2,
then Y = AX +b (A a square invertible matrix,
b a vector) also has a multivariate normal dis-
tribution, with expectation vector Au 4+ b and
covariance matrix AXA".
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Relations between different types of con-
vergence

Let X, X1,Xo,... and Y7, Yo,... berandom vari-
ables, ¢ a real constant.

1. If X, £>X, then also X, iX.
d P
2. If X,, — ¢, then also X,, — c.

3. If X, 5 ¢, then also ¢(X,) 5 g(c), if g is a
continuous function.

4.1f X, 3 X and Y, % ¢, then g(Xp,Ys) 5
g(X,c), if g is continuous function (on R?).
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Lecture 3b (25 september 2002)

e parameter estimation, consistency

e method of moments

e Mmaximum likelihood, asymptotic distribu-
tion

e Cramer-Rao bound, optimality
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Lecture 4a (2 october 2002)

e hypothesis testing

e Neyman-Pearson, optimal tests

e properties of normal distribution

e (student) t distribution

e confidence intervals, relation with tests
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2 distribution

A random variable X is said to have a x2 distri-
bution with n degrees of freedom (x2 distribu-
tion) if it has the same distribution as Y%, Z?,
where the Z; are jid standard normal random
variables:

d n
x=Y z2

1
1=1

(student) ¢ distribution

A random variable X is said to have a t distribu-
tion with n degrees of freedom (¢, distribution)
if
x< 2
W/n
where Z and W are independent random vari-
ables, Z having a standard normal distribution

and W having a x2 distribution.

For large n, the t, distribution is approximately

normal.
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Theorem Let X1,...,X, be a sample form a
N(u,o?) distribution. Then

(1) X and %, (X; — X)? are independent.
(2) ézyzl(Xi—Y)Q has a x2 distribution with
n — 1 degrees of freedom.

(3) The statistic

X —p
s/v/n

has a t-distribution with n — 1 degrees of free-
dom.
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Application - t-statistic

The Gauss test statistic for 1 when we deal
with a sample from the N(u,o?) distribution is

V(X — p)
o)
which we can only use when o is known. If
this is not the case, we replace it in the above
statistic with § = (17 27, (X;—X)?)1/2. The
resulting statistic is
V(X — p)
g 3
which has a t,,_1 distribution.
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Confidence intervals based on MLE

Recall that (under some assumptions)

JnI(60)(8 — 60) ~ N(0,1).

Hence (1 — a)-confidence interval for g would
have limits

~  z(a/2) |

0 +
v nl(8p)

But, since 6y is unknown this does not work.
Instead we take the calculable confidence in-
terval

g4 z(a/2)

NSTOY

Justification: if I is continuous, also

JnI()(8 = 65) & N(0,1).
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Lecture 4b (3 october 2002)

e (generalized) likelihood ratio test

e regression

e least squares estimators

e Mmatrix approach

e statistical properties of the estimators (mean,
variance, confidence intervals)
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(generalized) likelihood ratio test

Neyman-Pearson test to testing Hp : 6 = 6
against Hy : 0 = 04 rejects Hg for small values
of

fo,(X)

fo,(X)’
when X is observed and where the fy are ‘den-
sities’.

For composite hypotheses testing this approach
IS generalized as follows. We consider Hg : 6 €
©g and Hy : 0 € © 4, where ©gN©4 = 0. Let
© =0gU®y. The GLR test rejects the null-
hypothesis for small values of

SUPgeo, fo(X)

supgeo fo(X)

Remark: notice that the denominator is maxi-
mized by the Maximum likelihood estimator (if
it exists).

A=AX)=
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To find the rejection region, one needs the
distribution of A (under the null-hypothesis).
Usually A and its distribution are difficult to
handle. Therefore one uses an asymptotic re-
sult for the case when we observe a large sam-
ple X = (X1,...,Xn).

Under certain conditions one has the following
result:

The distribution of —21og A(X) is approximately
Xg_q,r Where d = dim®© and dp = dim ©p.

Hence the rejection set R is approximated by

the set {z : —2log A(z) < X?i—do(l — ).
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