Statistics PhD course Tinbergen Institute 2002

Peter Spreij (UvA)

www.science.uva.nl/ \sim spreij spreij@science.uva.nl

Lecture 1a (10 september 2002)

- sample spaces
- probability measures
- computing probabilities: counting methods and the multiplication principle
- conditional probability
- independent events

Lecture 1b (11 september 2002)

- random variables (discrete or continuous)
- distribution function
- frequency (or probability mass) function
- density function
- specific discrete distributions
- specific continuous distributions
- transformations of a random variable

Lecture 2a (17 september 2002)

- random vectors (discrete or continuous)
- joint distribution function
- frequency (or probability mass) function
- density function
- independent random variables
- sums of independent random variables
- transformations of a random variable

the density of a bivariate random vector

$$f(x,y) = \frac{1}{2\pi\sigma_X \sigma_Y \sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left(\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - 2\rho \frac{(x-\mu_X)^2}{\sigma_X^2}\right)\right)$$

transformation rule

If X is a random variable and Y=g(X), with g monotone and differentiable with inverse h, then

$$f_Y(y) = \frac{f_X(h(y))}{|g'(h(y))|}.$$

If X is a random variable and Y=g(X), where g is invertible (with inverse h) and differentiable, then

$$f_Y(y) = \frac{f_X(h(y))}{|J(h(y))|},$$

where

$$J(x) = \det \begin{pmatrix} \frac{\partial}{\partial x_1} g_1(x) & \cdots & \frac{\partial}{\partial x_n} g_1(x) \\ \vdots & & \vdots \\ \frac{\partial}{\partial x_1} g_n(x) & \cdots & \frac{\partial}{\partial x_n} g_n(x). \end{pmatrix}$$

Lecture 2b (18 september 2002)

- expected value of a random variable (discrete and continuous)
- expectations of functions of a random variable
- expectation of linear combinations
- variance and standard deviation
- covariance and correlation
- conditional probability and conditional expectation
- prediction

Lecture 3a (24 september 2002)

- Some extras
- Limit theorems
 - Laws of large numbers
 - Convergence in distribution
 - the Central Limit Theorem
- Distributions derived from the normal distribution
 - $-\chi^2$ distribution
 - (student) t distribution
 - -F distribution

Dependence and Correlation

Important implication: if X and Y are independent, then Cov(X,Y)=0, so they are uncorrelated.

BUT, if X and Y are uncorrelated, they are not necessarily independent.

Example:

$Y \setminus X$	-1	0	+1	
0	1/4	0	1/4	1/2
1	0	1/2	0	1/2
	1/4	1/2	1/4	1

We see that
$$\mathbb{E}X=0$$
, $\mathbb{E}(XY)=0$, so $Cov(X,Y)=0$, but $\mathbb{P}(X=0,Y=0)\neq \mathbb{P}(X=0)\mathbb{P}(Y=0)$.

However.....

Remember that in general

$$\rho = \rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}.$$

Let X and Y have a bivariate normal distribution with parameters μ_X (the expected value of X), μ_Y , σ_X (the standard deviation of X), σ_Y and (correlation coefficient) ρ .

We know that IN THIS CASE X and Y are independent iff $\rho = 0$.

Hence for bivariate normal (X,Y) independence is equivalent to being uncorrelated!

Warning: If X is normal and Y is normal, then it does NOT necessarily follow that (X,Y) is bivariate normal. But this certainly happens if one also knows that X and Y are independent.

Covariance matrix

If $X = (X_1, \dots, X_m)^{\top}$ and $Y = (Y_1, \dots, Y_n)^{\top}$ are random vectors, then Cov(X, Y) is the $m \times n$ matrix with elements

$$Cov(X,Y)_{ij} = Cov(X_i,Y_j).$$

For X = Y we write Cov(X) instead of Cov(X, Y).

Properties:

- 1. Cov(X) is a symmetric nonnegative definite matrix.
- 2. If a sub-vector of X is independent of a sub-vector of Y, then their corresponding covariance matrix is the zero matrix.
- 3. If X has expectation vector μ and covariance matrix Σ , then Y = AX + b has expectation vector $A\mu + b$ and covariance matrix $A\Sigma A^{\top}$.

the multivariate normal distribution

Let a random n-vector X have expecatation vector μ and covariance matrix Σ . Assume that Σ is invertible. Then X is said to have mulivariate normal distribution if the density of X is

$$\frac{1}{(2\pi)^{n/2}\det(\boldsymbol{\Sigma})^{1/2}}\exp\left(-\frac{1}{2}(x-\mu)^{\top}\boldsymbol{\Sigma}^{-1}(x-\mu)\right).$$

Properties:

- 1. Two non-overlapping sub-vectors of X are independent *iff* their covariance matrix is zero.
- 2. If X has a multivariate normal distribution with expectation μ and covariance matrix Σ , then Y = AX + b (A a square invertible matrix, b a vector) also has a multivariate normal distribution, with expectation vector $A\mu + b$ and covariance matrix $A\Sigma A^{\top}$.

Relations between different types of convergence

Let X, X_1, X_2, \ldots and Y_1, Y_2, \ldots be random variables, c a real constant.

- 1. If $X_n \stackrel{P}{\to} X$, then also $X_n \stackrel{d}{\to} X$.
- 2. If $X_n \stackrel{d}{\to} c$, then also $X_n \stackrel{P}{\to} c$.
- 3. If $X_n \stackrel{P}{\to} c$, then also $g(X_n) \stackrel{P}{\to} g(c)$, if g is a continuous function.
- 4. If $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} c$, then $g(X_n, Y_n) \stackrel{d}{\to} g(X, c)$, if g is continuous function (on \mathbb{R}^2).

Lecture 3b (25 september 2002)

- parameter estimation, consistency
- method of moments
- maximum likelihood, asymptotic distribution
- Cramer-Rao bound, optimality

Lecture 4a (2 october 2002)

- hypothesis testing
- Neyman-Pearson, optimal tests
- properties of normal distribution
- (student) t distribution
- confidence intervals, relation with tests

χ^2 distribution

A random variable X is said to have a χ^2 distribution with n degrees of freedom (χ^2_n distribution) if it has the same distribution as $\sum_{i=1}^n Z_i^2$, where the Z_i are iid standard normal random variables:

$$X \stackrel{d}{=} \sum_{i=1}^{n} Z_i^2.$$

(student) t distribution

A random variable X is said to have a t distribution with n degrees of freedom (t_n distribution) if

$$X \stackrel{d}{=} \frac{Z}{W/n},$$

where Z and W are independent random variables, Z having a standard normal distribution and W having a χ_n^2 distribution.

For large n, the t_n distribution is approximately normal.

Theorem Let X_1, \ldots, X_n be a sample form a $N(\mu, \sigma^2)$ distribution. Then

- (1) \overline{X} and $\sum_{i=1}^{n} (X_i \overline{X})^2$ are independent.
- (2) $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i \overline{X})^2$ has a χ^2 distribution with n-1 degrees of freedom.
- (3) The statistic

$$\frac{\overline{X} - \mu}{s/\sqrt{n}}$$

has a t-distribution with n-1 degrees of freedom.

Application - t-statistic

The Gauss test statistic for μ when we deal with a sample from the $N(\mu, \sigma^2)$ distribution is

$$\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma}$$
,

which we can only use when σ is known. If this is not the case, we replace it in the above statistic with $S = (\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2)^{1/2}$. The resulting statistic is

$$\frac{\sqrt{n}(\overline{X}-\mu)}{S},$$

which has a t_{n-1} distribution.

Confidence intervals based on MLE

Recall that (under some assumptions)

$$\sqrt{nI(\theta_0)}(\widehat{\theta}-\theta_0)\stackrel{d}{\approx}N(0,1).$$

Hence $(1 - \alpha)$ -confidence interval for θ_0 would have limits

$$\widehat{ heta} \pm \frac{z(lpha/2)}{\sqrt{nI(heta_0)}}.$$

But, since θ_0 is unknown this does not work. Instead we take the calculable confidence interval

$$\widehat{ heta}\pmrac{z(lpha/2)}{\sqrt{nI(\widehat{ heta})}}.$$

Justification: if I is continuous, also

$$\sqrt{nI(\widehat{\theta})}(\widehat{\theta}-\theta_0)\stackrel{d}{pprox}N(0,1).$$

Lecture 4b (3 october 2002)

- (generalized) likelihood ratio test
- regression
- least squares estimators
- matrix approach
- statistical properties of the estimators (mean, variance, confidence intervals)

(generalized) likelihood ratio test

Neyman-Pearson test to testing H_0 : $\theta=\theta_0$ against H_A : $\theta=\theta_A$ rejects H_0 for small values of

$$\frac{f_{\theta_0}(X)}{f_{\theta_A}(X)},$$

when X is observed and where the f_{θ} are 'densities'.

For composite hypotheses testing this approach is generalized as follows. We consider $H_0: \theta \in \Theta_0$ and $H_1: \theta \in \Theta_A$, where $\Theta_0 \cap \Theta_A = \emptyset$. Let $\Theta = \Theta_0 \cup \Theta_A$. The GLR test rejects the null-hypothesis for small values of

$$\Lambda = \Lambda(X) = \frac{\sup_{\theta \in \Theta_0} f_{\theta}(X)}{\sup_{\theta \in \Theta} f_{\theta}(X)}.$$

Remark: notice that the denominator is maximized by the Maximum likelihood estimator (if it exists).

To find the rejection region, one needs the distribution of Λ (under the null-hypothesis). Usually Λ and its distribution are difficult to handle. Therefore one uses an asymptotic result for the case when we observe a large sample $X = (X_1, \dots, X_n)$.

Under certain conditions one has the following result:

The distribution of $-2\log\Lambda(X)$ is approximately $\chi^2_{d-d_0}$, where $d=\dim\Theta$ and $d_0=\dim\Theta_0$. Hence the rejection set R is approximated by the set $\{x: -2\log\Lambda(x) \leq \chi^2_{d-d_0}(1-\alpha).$