Opgaven kansrekening 2002-2003

- 1. Consider a measure space (S, Σ, μ) . Prove the following statements.
 - (a) The measure μ is finitely additive.
 - (b) If $A \subset B$ $(A, B \in \Sigma)$, then $\mu(A) \leq \mu(B)$.
 - (c) If $A \subset B$ $(A, B \in \Sigma)$ and μ is a finite measure, then $\mu(B \setminus A) = \mu(B) \mu(A)$.
- 2. Prove the following statements.
 - (a) The intersection of an arbitrary family of d-systems is again a dsystem.
 - (b) The intersection of an arbitrary family of σ -algebras is again a σ -algebra. Characterize $\sigma(\mathcal{C})$ for a given collection $\mathcal{C} \subset 2^{\Omega}$.
 - (c) If C_1 and C_2 are collections of subsets of Ω with $C_1 \subset C_2$, then $d(C_1) \subset d(C_2)$.
- 3. Let \mathcal{G} and \mathcal{H} be two σ -algebras on Ω . Let $\mathcal{C} = \{G \cap H : G \in \mathcal{G}, H \in \mathcal{H}\}$. Show that \mathcal{C} is a π -system and that $\sigma(\mathcal{C}) = \sigma(\mathcal{G} \cup \mathcal{H})$.
- 4. Let \mathcal{I} be a collection of subsets of a given set S and $\mathcal{D} = \{B \in d(\mathcal{I}) : B \cap C \in d(\mathcal{I}), \forall C \in \mathcal{I}\}$. Show that \mathcal{D} is a *d*-system. It \mathcal{I} is a *π*-system, then moreover $\mathcal{D} = d(\mathcal{I}) = \sigma(\mathcal{I})$.
- 5. Let $h : S \to \mathbb{R}$, Σ a σ -algebra on S and \mathcal{B} the Borel σ -algebra on \mathbb{R} . Consider the collection $\mathcal{C} = \{B \in \mathcal{B} : h^{-1}[B] \in \Sigma\}$. Show that \mathcal{C} is a σ -algebra.
- 6. If h_1 and h_2 are measurable functions, then h_1h_2 is measurable too.
- 7. Let Ω be a countable set. Let $\mathcal{F} = 2^{\Omega}$ and let $p : \Omega \to [0, 1]$ satisfy $\sum_{\omega \in \Omega} p(\omega) = 1$. Put $\mathbb{P}(A) = \sum_{\omega \in A} p(\omega)$ for $A \in \mathcal{F}$. Show that \mathbb{P} is a probability measure.
- 8. Let Ω be a countable set. Let \mathcal{A} be the collection of $A \subset \Omega$ such that A or its complement has finite cardinality. Show that \mathcal{A} is an algebra. What is $d(\mathcal{A})$?
- 9. Let $E_n, n \ge 1$ be subsets of some set S. Let $X_n(\omega) = 1_{E_n}(\omega)$. Show that $\limsup_n X_n(\omega) = 1_{\limsup_n E_n}(\omega)$ for all $\omega \in S$.
- 10. Let X be a random variable. Show that $\Pi(X) := \{X^{-1}(-\infty, x] : x \in \mathbb{R}\}$ is a π -system and that it generates $\sigma(X)$.
- 11. Consider an infinite sequence of coin tossing. We take $\Omega = \{H, T\}^{\infty}$, a typical element ω is an infinite sequence $(\omega_1, \omega_2, \ldots)$ with each $\omega_n \in \{H, T\}$, and $\mathcal{F} = \sigma(\{\omega \in \Omega : \omega_n = w\}, w \in \{H, T\}, n \in \mathbb{N})$. Define functions X_n by $X_n(\omega) = 1$ if $\omega_n = H$ and $X_n(\omega) = 0$ if $\omega_n = T$.
 - (a) Show that all X_n are random variables, i.e. everyone of them is measurable.

- (b) Let $S_n = \sum_{i=1}^n X_i$. Show that also S_n is a random variable.
- (c) Let $p \in [0,1]$ and $E_p = \{\omega \in \Omega : \lim_{n \to \infty} \frac{1}{n} S_n(\omega) = p\}$. Show that E_p is an \mathcal{F} -measurable set.
- 12. Let $\{Y_{\gamma} : \gamma \in C\}$ be an arbitrary collection of random variables and $\{X_n : n \in \mathbb{N}\}$ be a countable collection of random variables, all defined on the same probability space.
 - (a) Show that $\sigma\{Y_{\gamma}: \gamma \in C\} = \sigma\{Y_{\gamma}^{-1}(B): \gamma \in C, B \in \mathcal{B}\}.$
 - (b) Let $\mathcal{X}_n = \sigma\{X_1, \ldots, X_n\}$ $(n \in \mathbb{N})$ and $\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{X}_n$. Show that \mathcal{A} is an algebra and that $\sigma(\mathcal{A}) = \sigma\{X_n : n \in \mathbb{N}\}.$
- 13. Let \mathcal{F} be a σ -algebra on Ω with the property that for all $F \in \mathcal{F}$ it holds that $\mathbb{P}(F) \in \{0, 1\}$. Let $X : \Omega \to \mathbb{R}$ be \mathcal{F} -measurable. Show that for some $c \in \mathbb{R}$ one has $\mathbb{P}(X = c) = 1$. (*Hint:* $\mathbb{P}(X \le x) \in \{0, 1\}$ for all x.)
- 14. Find the λ -sets of Σ_0 in the following cases.
 - (a) $S = \mathbb{N}, \Sigma_0 = 2^S, \lambda(E) = |E|^2$ $(E \subset S)$, where |E| is the number of elements of E if E is a finite set and $|E| = \infty$ otherwise. Is λ an outer measure? Same question for $\lambda(E) = |E|^{1/2}$.
 - (b) The setting is that of exercise 8. Consider $p : \Omega \to [0,1]$ and define λ on $\Sigma_0 = \mathcal{A}$ by $\lambda(A) = \sum_{\omega \in A} p(\omega)$ if A is finite and $\lambda(A) = \sum_{\omega \in \Omega} p(\omega) \sum_{\omega \in A^c} p(\omega)$ if A has a finite complement. Is λ countably additive on Σ_0 ? Describe explicitly the (unique?) extension of λ (if it exists) to $\sigma(\Sigma_0)$. Under what condition is the extension a probability measure?
- 15. Let \mathcal{G}_0 be an algebra on a set $S, \lambda : \mathcal{G}_0 \to [0, \infty]$ with $\lambda(\emptyset) = 0$ and \mathcal{L}_0 the sub-algebra of \mathcal{G}_0 consisting of the λ -sets. Show that for disjoint $L_k \in \mathcal{L}_0$ (k = 1, ..., n) and $G \in \mathcal{G}_0$ it holds that

$$\lambda\big(\big(\bigcup_{k=1}^n L_k\big)\cap G\big)\big) = \sum_{k=1}^n \lambda(L_k\cap G).$$

- 16. Consider the collection Σ_0 of subsets of \mathbb{R} that can be written as a finite union of disjoint intervals of type (a, b] with $-\infty \leq a \leq b < \infty$ or (a, ∞) . Show that Σ_0 is an algebra and that $\sigma(\Sigma_0) = \mathcal{B}(\mathbb{R})$.
- 17. Show that a finitely additive map $\mu : \Sigma_0 \to [0, \infty]$ is countably additive if $\mu(H_n) \to 0$ for every decreasing sequence of sets $H_n \in \Sigma_0$ with $\bigcap_n H_n = \emptyset$. If μ is countably additive, do we necessarily have $\mu(H_n) \to 0$ for every decreasing sequence of sets $H_n \in \Sigma_0$ with $\bigcap_n H_n = \emptyset$?
- 18. Let F be a distribution function on \mathbb{R} . Then there exists a (probability) measure μ on $(\mathbb{R}, \mathcal{B})$ such that $F(x) = \mu(-\infty, x]$. Show this by proving it first for the case where F(0) = 0, F(1) = 1, then for the case where F(-N) = 0 and F(N) = 1 for some N > 0 and finally for the general case.

- Let (S, Σ, μ) be a measure space. Call a subset N of S a (μ, Σ)-null set if there exists a set N' ∈ Σ with N ⊂ N' and μ(N') = 0. Denote by N the collection of all (μ, Σ)-null sets. Let Σ* be the collection of subsets E of S for which there exist F, G ∈ Σ such that F ⊂ E ⊂ G and μ(G \ F) = 0. For E ∈ Σ* and F, G as above we define μ*(E) = μ(F).
 - (a) Show that Σ^* is a σ -algebra and that $\Sigma^* = \sigma(\mathcal{N} \cup \Sigma)$.
 - (b) Show that μ^* restricted to Σ coincides with μ and that $\mu^*(E)$ doesn't depend on the specific choice of F in its definition.
 - (c) Show that the collection of (μ^*, Σ^*) -null sets is \mathcal{N} .
- 20. Let X be a (real) random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define $\Lambda(B) = \mathbb{P}(X^{-1}[B])$ for every $B \in \mathcal{B}(\mathbb{R})$ and $F(x) = \Lambda((-\infty, x])$, $x \in \mathbb{R}$. Prove the following.
 - (a) Λ is a probability measure on $\mathcal{B}(\mathbb{R})$.
 - (b) F is increasing with $\lim_{x\to\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$ and F is right continuous.
 - (c) For every $d \in \mathbb{R}$ we have $\mathbb{P}(X = d) = F(d) F(d-)$ (where $F(d-) = \lim_{x \uparrow d} F(x)$). Show that the set $D = \{d \in \mathbb{R} : \mathbb{P}(X = d) > 0\}$ is at most countable.
- 21. Let (S, Σ, μ) be a measure space and let f be a nonnegative simple function, $f = \sum_{k=1}^{n} a_k \mathbf{1}_{A_k}$ say, where the A_k are measurable sets. If f has the alternative representation $f = \sum_{k=1}^{m} a'_k \mathbf{1}_{A'_k}$, then $\sum_{k=1}^{n} a_k \mu(A_k) = \sum_{k=1}^{m} a'_k \mu(A'_k)$.
- 22. Let f and g be nonnegative simple functions on the measure space (S, Σ, μ) . Show that $\mu_0(f+g) = \mu_0(f) + \mu_0(g)$. (*Hint:* wite $f = \sum_k f_k \mathbf{1}_{F_k}$ with the F_k disjoint, $g = \sum_j g_j \mathbf{1}_{G_j}$ with the G_j disjoint and look at what happens on the intersections $F_k \cap G_j$).
- 23. Consider the measurable space (S, Σ) . Let $f : S \to [0, \infty]$ be measurable. Put $E_k^n = \{k2^{-n} \leq f < (k+1)2^{-n}\}$ for $n, k \geq 0$ and $F^n = \{f \geq n\}$. Define

$$f_n = \sum_{k=0}^{n2^n - 1} k2^{-n} 1_{E_k^n} + n1_{F^n}.$$

Show that the f_n are simple functions and that $f_n(s) \uparrow f(s)$ for all $s \in S$.

- 24. Consider the measure space (S, Σ, μ) . Let $f : S \to \mathbb{R}$ be measurable with $\mu(|f|) < \infty$. Show that $|\mu(f)| \le \mu(|f|)$.
- 25. Consider the measure space (S, Σ, μ) . Show that the mapping $f \mapsto \mu(f)$ is linear on $\mathcal{L}^1(S, \Sigma, \mu)$.
- 26. Consider the measure space $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$, where μ is the counting measure, i.e. $\mu(E) \leq \infty$ is equal to the number of elements of $E \subset \mathbb{N}$. Interpret the integrals $\mu(f)$ in 'simpler' terms in this case.

- 27. Let f be a simple function on some measure space (S, Σ, μ) , with representation $f = \sum_{k=1}^{n} a_k \mathbf{1}_{A_k}$ say, where the A_k are measurable sets. Describe a procedure to turn this representation of f into $f = \sum_{j=1}^{m} d_j \mathbf{1}_{D_j}$, where the D_j are certain disjoint measurable sets. Show also that for this procedure one has $\sum_{k=1}^{n} a_k \mu(A_k) = \sum_{j=1}^{m} d_j \mu(D_j)$. If the distincts numbers f_1, \ldots, f_r are all possible values of f, then $\mu(f) = \sum_{k=1}^{r} f_k \mu(\{f = f_k\})$.
- 28. Consider the measure space (S, Σ, μ) , where $\Sigma = \sigma(\mathcal{P})$ for a finite partition \mathcal{P} of S and μ a finite measure. Let $f : S \to \mathbb{R}$ be measurable. Show that f is constant on the elements P_k of \mathcal{P} . Let f_k be the common value of f on such a P_k . Show that $\mu(f)$ is well defined and express it in terms of the f_k . How would you interpret the result if μ is a probability measure?
- 29. Show that the Borel-Cantelli lemma 2.7 follows from (c) in section 6.5.
- 30. If c is convex on a convex set $G \subset \mathbb{R}$, then for all u < v < w in G one has

$$\frac{c(v) - c(u)}{v - u} \le \frac{c(w) - c(v)}{w - v}.$$

Show this inequality. Give an example of a set G and a convex function on it that is not continuous.

- 31. Let $p \ge 1$ and show that for all $x, y \in \mathbb{R}$ one has $|x+y|^p \le 2^{p-1}(|x|^p+|y|^q)$. (*Hint:* $x \mapsto x^p$ is convex on $[0, \infty)$.)
- 32. Let $X, Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Show that $XY \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and that the (Cauchy-)Schwartz inequality

$$|\mathbb{E}XY| \le \left(\mathbb{E}X^2\mathbb{E}Y^2\right)^{1/2}$$

holds. (*Hint*: Use that $\mathbb{E}(X + aY)^2 \ge 0$, for all $a \in \mathbb{R}$.)

- 33. Consider a measure space (S, Σ, μ) and $f : S \to \mathbb{R}$ that is nonnegative and measurable. Define $\nu : \Sigma \to [0, \infty]$ by $\nu(A) = \mu(1_A f)$. Show that ν is a measure on (S, Σ) and that for $h \in \mathcal{L}^1(S, \Sigma, \nu)$ one has $\nu(h) = \mu(hf)$.
- 34. Consider the setting of the previous exercise. Let $E \in \Sigma$ be such that $\mu(E) = 0$. Show that $\nu(E) = 0$. Assume now that S is a countable set with Σ the power set of S and let μ be such that $\mu(\{s\}) = m(s) \in [0, \infty)$. Let ν be a measure of (S, Σ) such that $\nu(E) = 0$ as soon as $\mu(E) = 0$. Show that there is measurable function f on S such that $\nu(E) = \mu(1_E f)$. Can we do the same if some of the m(s) are infinite.
- 35. Williams, exercise E4.1.
- 36. Williams, exercise E4.6.
- 37. If Z_1, Z_2, \ldots is a sequence of nonnegative random variables, then $\mathbb{E} \sum_{k=1}^{\infty} Z_k = \sum_{k=1}^{\infty} \mathbb{E} Z_k$. Show that this follows from Fubini's theorem.

- 38. Show that $\mathbb{E} X^2 \mathbb{1}_{\{|X| > \varepsilon\}} \leq \mathbb{E} |X|^{2+\delta} \varepsilon^{-\delta}$ for all $\delta, \varepsilon > 0$.
- 39. Call a measurable function on some (S, Σ, μ) essentially bounded if there is M > 0 such that $\mu(\{|f| > M\}) = 0$ and define $||f||_{\infty} = \inf\{M > 0 :$ $\mu(\{|f| > M\}) = 0\}$. Show that $|| \cdot ||$ has all properties of a norm, except one (which one?). Show that Hölders inequality holds for $p = \infty, q = 1$.
- 40. Consider measure space (S_1, Σ_1, μ_1) , (S_2, Σ_2, μ_2) and the product space $S_1 \times S_2$ with the product σ -algebra. Show that the set of measurable rectangles $A_1 \times A_2$ (with $A_1 \in \Sigma_1$ and $A_2 \in \Sigma_2$) is a π -system that generates the product σ -algebra.
- 41. Use polar coordinates to show that $\int_{\mathbb{R}^2} \exp(-\frac{1}{2}(x^2+y^2)) dx dy = 2\pi$ and Fubini-'s theorem to show that $\int_{\mathbb{R}} \exp(-\frac{1}{2}x^2) dx = \sqrt{2\pi}$.
- 42. Show (use a famous theorem) that $\lim_{T\to\infty} \int_0^\infty \int_0^T \sin x e^{-xt} dx dt = \frac{\pi}{2}$ and show (use another famous theorem) that also $\lim_{T\to\infty} \int_0^T \frac{\sin x}{x} dx = \frac{\pi}{2}$. Is the function $x \mapsto \frac{\sin x}{x}$ Lebesgue-integrable on $[0, \infty)$?
- 43. Let $F, G : \mathbb{R} \to \mathbb{R}$ be nondecreasing and right-continuous. Use Fubini's theorem to show the integration by parts formula, valid for all a < b,

$$F(b)G(b) - F(a)G(a) = \int_{(a,b]} F(s-) \, dG(s) + \int_{(a,b]} G(s) \, dF(s).$$

Hint: integrate $1_{(a,b]^2}$ and split the square into a lower and an upper triangle.

44. Let F be the distribution function of a nonnegative random variable X and assume that $\mathbb{E} X^{\alpha} < \infty$ for some $\alpha > 0$. Use exercise 43 to show that

$$\mathbb{E} X^{\alpha} = \alpha \int_0^\infty x^{\alpha - 1} (1 - F(x)) \, dx$$

- 45. Let X be a random variable and let $\Pi(X) = \{X^{-1}(-\infty, x] : x \in \mathbb{R}\}$. Show that $\Pi(X)$ is a π -system that generates $\sigma(X)$.
- 46. Let the vector of random variables (X, Y) have a joint probability density function f. Let f_X and f_Y be the (marginal) probability density functions of X and Y respectively. Show that X and Y are independent iff f(x, y) = $f_X(x)f_Y(y)$ for all x, y except in a set of Leb×Leb-measure zero.
- 47. Let X, X_1, X_2, \ldots be random variables defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show that the set $\{\omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}$ is measurable.
- 48. Let X_1, X_2, \ldots be an a.s. bounded sequence of random variables $\mathbb{P}(|X_n| \le M) = 1$, for some real number M. Assume that for some random variable X one has $X_n \xrightarrow{P} X$. Show that also $\mathbb{P}(|X| \le M) = 1$ and that for all $p \ge 1$ one has $X_n \xrightarrow{\mathcal{L}^p} X$.

- 49. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with $\mathbb{E} X_1^2 < \infty$. The aim is to show is that both $\overline{X}_n \xrightarrow{\mathcal{L}^2} \mu$ where $\mu = \mathbb{E} X_1$ and $\overline{X}_n \xrightarrow{a.s.} \mu$.
 - (a) Show the \mathcal{L}^2 convergence.
 - (b) Use Chebychev's inequality to show that $\sum_{n} \mathbb{P}(|\overline{X}_{n^2} \mu| > \varepsilon) < \infty$ and deduce form a wellknown lemma that $\overline{X}_{n^2} \xrightarrow{a.s.} \mu$.
 - (c) Show the almost sure convergence of \overline{X}_n by "filling the gaps".
- 50. Let $\alpha > 1$ and $\beta_k = [\alpha^k]$. Show that
 - (a) $\beta_k \ge \alpha^k (1 \frac{1}{\alpha})$ (b) $\sum_{k=m}^{\infty} \frac{1}{\beta_k^2} \le (\frac{\alpha}{\alpha - 1})^4 \frac{1}{\beta_m^2}$. (c) $\frac{\beta_{k+1}}{\beta_k} \to \alpha$.
- 51. Exercise E7.1 of Williams.
- 52. Let X_1, X_2, \ldots be real random variables and $g : \mathbb{R} \to \mathbb{R}$ a uniformly continuous function. Show that $g(X_n) \xrightarrow{P} g(X)$ if $X_n \xrightarrow{P} X$. What can be said of the $g(X_n)$ if $X_n \xrightarrow{a.s.} X$?
- 53. Let x_n be real numbers with $x_n \to x$. Let $y_n = \frac{1}{n} \sum_{i=1}^n x_i$. Show that $y_n \to x$.
- 54. Let $X_1, Y_1, X_2, Y_2, \ldots$ be an i.i.d. sequence whose members have a uniform distribution on [0, 1] and let $f : [0, 1] \rightarrow [0, 1]$ be continuous. Define $Z_i = 1_{\{f(X_i) > Y_i\}}$.
 - (a) Show that $\frac{1}{n} \sum_{i=1}^{n} Z_i \to \int_0^1 f(x) dx$ a.s.
 - (b) Show that $\mathbb{E}(\frac{1}{n}\sum_{i=1}^{n}Z_{i} \int_{0}^{1}f(x)\,dx)^{2} \leq \frac{1}{4n}.$
 - (c) Explain why these two results are useful.
- 55. If $X_n \xrightarrow{P} X$ and g is a continuous function, then also $g(X_n) \xrightarrow{P} g(X)$. Show this.
- 56. Let X be a random variable with $\mathbb{E} X^2 < \infty$ and let $\phi(\theta) = \mathbb{E} e^{i\theta X}$. Show that $\phi''(0) = -\mathbb{E} X^2$.
- 57. Let X be a random variable with values in \mathbb{Z} and ϕ its characteristic function. Show that $\mathbb{P}(X = k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\theta) e^{-ki\theta} d\theta$ for $k \in \mathbb{Z}$. Is $\int_{\mathbb{R}} |\phi(\theta)| d\theta < \infty$?
- 58. Verify the formulas for the characteristic functions in each of the following cases.
 - (a) $\phi_{N(0,1)}(\theta) = \exp(-\frac{1}{2}\theta^2)$
 - (b) $\phi_{N(\mu,\sigma^2)}(\theta) = \exp(i\theta\mu \frac{1}{2}\sigma^2\theta^2)$

- (c) If X has an exponential distribution with parameter λ , then $\phi_X(\theta) = \lambda/(\lambda i\theta)$.
- (d) If X has a Cauchy distribution, then $\phi_X(\theta) = \exp(-|\theta|)$.
- 59. Read the proof of the Helly-Bray lemma. Show that the function F defined on page 184 is (a) right-continuous and that (b) $\lim F_{n_i}(x) = F(x)$ for all x where F is continuous. *Hint:* Fix x and $\varepsilon > 0$. Then there is $c \in \mathbb{Q}$ such that $F(x) \leq H(c) < F(x) + \varepsilon$. If F is continuous at x, then there exists also $c' < c \in \mathbb{Q}$ and y < x such that $F(x) - \varepsilon \leq F(y) \leq H(c') \leq H(c)$.
- 60. Let (F_n) be a sequence of distribution functions on \mathbb{R} such that $\lim_{n\to\infty} F_n(x) = F(x)$ for all x where the distribution function F is continuous. Show that $\lim_{n\to\infty} \int_{\mathbb{R}} h \, dF_n = \int_{\mathbb{R}} h \, dF$ for all bounded and continuous $h : \mathbb{R} \to \mathbb{R}$.
- 61. Let X, X_1, X_2, \ldots be real-valued random variables with $F_{X_n} \xrightarrow{w} F_X$. Let $h : \mathbb{R} \to \mathbb{R}$ be continuous and put Y = h(X) and $Y_n = h(X_n)$ for every $n \in \mathbb{N}$. Show that $F_{Y_n} \xrightarrow{w} F_Y$.
- 62. Suppose that X, X_1, X_2, \ldots are real valued random variables, defined on one the same probability space, with $X_n \to X$ in probability. Show that $F_{X_n} \xrightarrow{w} F_X$.
- 63. Let $\mu, \mu_1, \mu_2, \ldots$ be probability measures on \mathbb{R} and suppose that for any open $G \subset \mathbb{R}$ that $\liminf \mu_n(G) \ge \mu(G)$. Then $\mu_n \to \mu$. Show this as follows. Let h be a bounded continuous function on \mathbb{R} . Assume w.l.og. that $0 \le h < 1$. Let $k \in \mathbb{N}$ and define $F_i = \{x : \frac{i-1}{k} \le h(x) < \frac{i}{k}\}$. Split $\mu(h)$ into integrals over the F_i . Then

$$\frac{1}{k}\sum_{i=1}^{k}\mu(h > \frac{i}{k}) \le \mu(h) \le \frac{1}{k}\sum_{i=1}^{k}\mu(h > \frac{i-1}{k})$$

and something similar for μ_n . Deduce that $\liminf \mu_n(h) \ge \mu(h)$ and complete the proof with the aid of an inequality for $\limsup \mu_n(h)$.

- 64. Suppose that the real random variables X, X_1, X_2, \ldots are defined on a common probability space and that $F_{X_n} \xrightarrow{w} F_X$. Suppose that $X = x_0$ a.s. for some $x_0 \in \mathbb{R}$. Show that $X_n \to X$ in probability.
- 65. Let X_n have a Bin $(n, \lambda/n)$ distribution (for $n > \lambda$). Show that $X_n \xrightarrow{w} X$, where X has a Poisson (λ) distribution.
- 66. Exercise 18.3