Opgaven kansrekening 2002-2003

1. Consider a measure space (S, Σ, μ). Prove the following statements.
(a) The measure μ is finitely additive.
(b) If $A \subset B(A, B \in \Sigma)$, then $\mu(A) \leq \mu(B)$.
(c) If $A \subset B(A, B \in \Sigma)$ and μ is a finite measure, then $\mu(B \backslash A)=$ $\mu(B)-\mu(A)$.
2. Prove the following statements.
(a) The intersection of an arbitrary family of d-systems is again a d system.
(b) The intersection of an arbitrary family of σ-algebras is again a σ algebra. Characterize $\sigma(\mathcal{C})$ for a given collection $\mathcal{C} \subset 2^{\Omega}$.
(c) If \mathcal{C}_{1} and \mathcal{C}_{2} are collections of subsets of Ω with $\mathcal{C}_{1} \subset \mathcal{C}_{2}$, then $d\left(\mathcal{C}_{1}\right) \subset$ $d\left(\mathcal{C}_{2}\right)$.
3. Let \mathcal{G} and \mathcal{H} be two σ-algebras on Ω. Let $\mathcal{C}=\{G \cap H: G \in \mathcal{G}, H \in \mathcal{H}\}$. Show that \mathcal{C} is a π-system and that $\sigma(\mathcal{C})=\sigma(\mathcal{G} \cup \mathcal{H})$.
4. Let \mathcal{I} be a collection of subsets of a given set S and $\mathcal{D}=\{B \in d(\mathcal{I})$: $B \cap C \in d(\mathcal{I}), \forall C \in \mathcal{I}\}$. Show that \mathcal{D} is a d-system. It \mathcal{I} is a π-system, then moreover $\mathcal{D}=d(\mathcal{I})=\sigma(\mathcal{I})$.
5. Let $h: S \rightarrow \mathbb{R}, \Sigma$ a σ-algebra on S and \mathcal{B} the Borel σ-algebra on \mathbb{R}. Consider the collection $\mathcal{C}=\left\{B \in \mathcal{B}: h^{-1}[B] \in \Sigma\right\}$. Show that \mathcal{C} is a σ-algebra.
6. If h_{1} and h_{2} are measurable functions, then $h_{1} h_{2}$ is measurable too.
7. Let Ω be a countable set. Let $\mathcal{F}=2^{\Omega}$ and let $p: \Omega \rightarrow[0,1]$ satisfy $\sum_{\omega \in \Omega} p(\omega)=1$. Put $\mathbb{P}(A)=\sum_{\omega \in A} p(\omega)$ for $A \in \mathcal{F}$. Show that \mathbb{P} is a probability measure.
8. Let Ω be a countable set. Let \mathcal{A} be the collection of $A \subset \Omega$ such that A or its complement has finite cardinality. Show that \mathcal{A} is an algebra. What is $d(\mathcal{A})$?
9. Let $E_{n}, n \geq 1$ be subsets of some set S. Let $X_{n}(\omega)=1_{E_{n}}(\omega)$. Show that $\lim \sup _{n} X_{n}(\omega)=1_{\limsup }^{n} E_{n}(\omega)$ for all $\omega \in S$.
10. Let X be a random variable. Show that $\Pi(X):=\left\{X^{-1}(-\infty, x]: x \in \mathbb{R}\right\}$ is a π-system and that it generates $\sigma(X)$.
11. Consider an infinite sequence of coin tossing. We take $\Omega=\{H, T\}^{\infty}$, a typical element ω is an infinite sequence $\left(\omega_{1}, \omega_{2}, \ldots\right)$ with each $\omega_{n} \in$ $\{H, T\}$, and $\mathcal{F}=\sigma\left(\left\{\omega \in \Omega: \omega_{n}=w\right\}, w \in\{H, T\}, n \in \mathbb{N}\right)$. Define functions X_{n} by $X_{n}(\omega)=1$ if $\omega_{n}=H$ and $X_{n}(\omega)=0$ if $\omega_{n}=T$.
(a) Show that all X_{n} are random variables, i.e. everyone of them is measurable.
(b) Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Show that also S_{n} is a random variable.
(c) Let $p \in[0,1]$ and $E_{p}=\left\{\omega \in \Omega: \lim _{n \rightarrow \infty} \frac{1}{n} S_{n}(\omega)=p\right\}$. Show that E_{p} is an \mathcal{F}-measurable set.
12. Let $\left\{Y_{\gamma}: \gamma \in C\right\}$ be an arbitrary collection of random variables and $\left\{X_{n}: n \in \mathbb{N}\right\}$ be a countable collection of random variables, all defined on the same probability space.
(a) Show that $\sigma\left\{Y_{\gamma}: \gamma \in C\right\}=\sigma\left\{Y_{\gamma}^{-1}(B): \gamma \in C, B \in \mathcal{B}\right\}$.
(b) Let $\mathcal{X}_{n}=\sigma\left\{X_{1}, \ldots, X_{n}\right\}(n \in \mathbb{N})$ and $\mathcal{A}=\bigcup_{n=1}^{\infty} \mathcal{X}_{n}$. Show that \mathcal{A} is an algebra and that $\sigma(\mathcal{A})=\sigma\left\{X_{n}: n \in \mathbb{N}\right\}$.
13. Let \mathcal{F} be a σ-algebra on Ω with the property that for all $F \in \mathcal{F}$ it holds that $\mathbb{P}(F) \in\{0,1\}$. Let $X: \Omega \rightarrow \mathbb{R}$ be \mathcal{F}-measurable. Show that for some $c \in \mathbb{R}$ one has $\mathbb{P}(X=c)=1$. (Hint: $\mathbb{P}(X \leq x) \in\{0,1\}$ for all x.)
14. Find the λ-sets of Σ_{0} in the following cases.
(a) $S=\mathbb{N}, \Sigma_{0}=2^{S}, \lambda(E)=|E|^{2}(E \subset S)$, where $|E|$ is the number of elements of E if E is a finite set and $|E|=\infty$ otherwise. Is λ an outer measure? Same question for $\lambda(E)=|E|^{1 / 2}$.
(b) The setting is that of exercise 8. Consider $p: \Omega \rightarrow[0,1]$ and define λ on $\Sigma_{0}=\mathcal{A}$ by $\lambda(A)=\sum_{\omega \in A} p(\omega)$ if A is finite and $\lambda(A)=$ $\sum_{\omega \in \Omega} p(\omega)-\sum_{\omega \in A^{c}} p(\omega)$ if A has a finite complement. Is λ countably additive on Σ_{0} ? Describe explictely the (unique?) extension of λ (if it exists) to $\sigma\left(\Sigma_{0}\right)$. Under what condition is the extension a probability measure?
15. Let \mathcal{G}_{0} be an algebra on a set $S, \lambda: \mathcal{G}_{0} \rightarrow[0, \infty]$ with $\lambda(\emptyset)=0$ and \mathcal{L}_{0} the sub-algebra of \mathcal{G}_{0} consisting of the λ-sets. Show that for disjoint $L_{k} \in \mathcal{L}_{0}$ $(k=1, \ldots, n)$ and $G \in \mathcal{G}_{0}$ it holds that

$$
\left.\lambda\left(\left(\bigcup_{k=1}^{n} L_{k}\right) \cap G\right)\right)=\sum_{k=1}^{n} \lambda\left(L_{k} \cap G\right) .
$$

16. Consider the collection Σ_{0} of subsets of \mathbb{R} that can be written as a finite union of disjoint intervals of type $(a, b]$ with $-\infty \leq a \leq b<\infty$ or (a, ∞). Show that Σ_{0} is an algebra and that $\sigma\left(\Sigma_{0}\right)=\mathcal{B}(\mathbb{R})$.
17. Show that a finitely additive map $\mu: \Sigma_{0} \rightarrow[0, \infty]$ is countably additive if $\mu\left(H_{n}\right) \rightarrow 0$ for every decreasing sequence of sets $H_{n} \in \Sigma_{0}$ with $\bigcap_{n} H_{n}=\emptyset$. If μ is countably additive, do we necessarily have $\mu\left(H_{n}\right) \rightarrow 0$ for every decreasing sequence of sets $H_{n} \in \Sigma_{0}$ with $\bigcap_{n} H_{n}=\emptyset$?
18. Let F be a distribution function on \mathbb{R}. Then there exists a (probability) measure μ on $(\mathbb{R}, \mathcal{B})$ such that $F(x)=\mu(-\infty, x]$. Show this by proving it first for the case where $F(0)=0, F(1)=1$, then for the case where $F(-N)=0$ and $F(N)=1$ for some $N>0$ and finally for the general case.
19. Let (S, Σ, μ) be a measure space. Call a subset N of S a (μ, Σ)-null set if there exists a set $N^{\prime} \in \Sigma$ with $N \subset N^{\prime}$ and $\mu\left(N^{\prime}\right)=0$. Denote by \mathcal{N} the collection of all (μ, Σ)-null sets. Let Σ^{*} be the collection of subsets E of S for which there exist $F, G \in \Sigma$ such that $F \subset E \subset G$ and $\mu(G \backslash F)=0$. For $E \in \Sigma^{*}$ and F, G as above we define $\mu^{*}(E)=\mu(F)$.
(a) Show that Σ^{*} is a σ-algebra and that $\Sigma^{*}=\sigma(\mathcal{N} \cup \Sigma)$.
(b) Show that μ^{*} restricted to Σ coincides with μ and that $\mu^{*}(E)$ doesn't depend on the specific choice of F in its definition.
(c) Show that the collection of $\left(\mu^{*}, \Sigma^{*}\right)$-null sets is \mathcal{N}.
20. Let X be a (real) random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define $\Lambda(B)=\mathbb{P}\left(X^{-1}[B]\right)$ for every $B \in \mathcal{B}(\mathbb{R})$ and $F(x)=\Lambda((-\infty, x])$, $x \in \mathbb{R}$. Prove the following.
(a) Λ is a probability measure on $\mathcal{B}(\mathbb{R})$.
(b) F is increasing with $\lim _{x \rightarrow \infty} F(x)=1, \lim _{x \rightarrow-\infty} F(x)=0$ and F is rightcontinuous.
(c) For every $d \in \mathbb{R}$ we have $\mathbb{P}(X=d)=F(d)-F(d-)$ (where $F(d-)=$ $\left.\lim _{x \uparrow d} F(x)\right)$. Show that the set $D=\{d \in \mathbb{R}: \mathbb{P}(X=d)>0\}$ is at most countable.
21. Let (S, Σ, μ) be a measure space and let f be a nonnegative simple function, $f=\sum_{k=1}^{n} a_{k} 1_{A_{k}}$ say, where the A_{k} are measurable sets. If f has the alternative representation $f=\sum_{k=1}^{m} a_{k}^{\prime} 1_{A_{k}^{\prime}}$, then $\sum_{k=1}^{n} a_{k} \mu\left(A_{k}\right)=$ $\sum_{k=1}^{m} a_{k}^{\prime} \mu\left(A_{k}^{\prime}\right)$.
22. Let f and g be nonnegative simple functions on the measure space (S, Σ, μ). Show that $\mu_{0}(f+g)=\mu_{0}(f)+\mu_{0}(g)$. (Hint: wite $f=\sum_{k} f_{k} 1_{F_{k}}$ with the F_{k} disjoint, $g=\sum_{j} g_{j} 1_{G_{j}}$ with the G_{j} disjoint and look at what happens on the intersections $F_{k} \cap G_{j}$).
23. Consider the measurable space (S, Σ). Let $f: S \rightarrow[0, \infty]$ be measurable. Put $E_{k}^{n}=\left\{k 2^{-n} \leq f<(k+1) 2^{-n}\right\}$ for $n, k \geq 0$ and $F^{n}=\{f \geq n\}$. Define

$$
f_{n}=\sum_{k=0}^{n 2^{n}-1} k 2^{-n} 1_{E_{k}^{n}}+n 1_{F^{n}}
$$

Show that the f_{n} are simple functions and that $f_{n}(s) \uparrow f(s)$ for all $s \in S$.
24. Consider the measure space (S, Σ, μ). Let $f: S \rightarrow \mathbb{R}$ be measurable with $\mu(|f|)<\infty$. Show that $|\mu(f)| \leq \mu(|f|)$.
25. Consider the measure space (S, Σ, μ). Show that the mapping $f \mapsto \mu(f)$ is linear on $\mathcal{L}^{1}(S, \Sigma, \mu)$.
26. Consider the measure space $\left(\mathbb{N}, 2^{\mathbb{N}}, \mu\right)$, where μ is the counting measure, i.e. $\mu(E) \leq \infty$ is equal to the number of elements of $E \subset \mathbb{N}$. Interpret the integrals $\mu(f)$ in 'simpler' terms in this case.
27. Let f be a simple function on some measure space (S, Σ, μ), with representation $f=\sum_{k=1}^{n} a_{k} 1_{A_{k}}$ say, where the A_{k} are measurable sets. Describe a procedure to turn this representation of f into $f=\sum_{j=1}^{m} d_{j} 1_{D_{j}}$, where the D_{j} are certain disjoint measurable sets. Show also that for this procedure one has $\sum_{k=1}^{n} a_{k} \mu\left(A_{k}\right)=\sum_{j=1}^{m} d_{j} \mu\left(D_{j}\right)$. If the distincts numbers f_{1}, \ldots, f_{r} are all possible values of f, then $\mu(f)=\sum_{k=1}^{r} f_{k} \mu\left(\left\{f=f_{k}\right\}\right)$.
28. Consider the measure space (S, Σ, μ), where $\Sigma=\sigma(\mathcal{P})$ for a finite partition \mathcal{P} of S and μ a finite measure. Let $f: S \rightarrow \mathbb{R}$ be measurable. Show that f is constant on the elements P_{k} of \mathcal{P}. Let f_{k} be the common value of f on such a P_{k}. Show that $\mu(f)$ is well defined and express it in terms of the f_{k}. How would you interpret the result if μ is a probability measure?
29. Show that the Borel-Cantelli lemma 2.7 follows from (c) in section 6.5.
30. If c is convex on a convex set $G \subset \mathbb{R}$, then for all $u<v<w$ in G one has

$$
\frac{c(v)-c(u)}{v-u} \leq \frac{c(w)-c(v)}{w-v}
$$

Show this inequality. Give an example of a set G and a convex function on it that is not continuous.
31. Let $p \geq 1$ and show that for all $x, y \in \mathbb{R}$ one has $|x+y|^{p} \leq 2^{p-1}\left(|x|^{p}+|y|^{q}\right)$. (Hint: $x \mapsto x^{p}$ is convex on $[0, \infty)$.)
32. Let $X, Y \in \mathcal{L}^{2}(\Omega, \mathcal{F}, \mathbb{P})$. Show that $X Y \in \mathcal{L}^{1}(\Omega, \mathcal{F}, \mathbb{P})$ and that the (Cauchy-)Schwartz inequality

$$
|\mathbb{E} X Y| \leq\left(\mathbb{E} X^{2} \mathbb{E} Y^{2}\right)^{1 / 2}
$$

holds. (Hint: Use that $\mathbb{E}(X+a Y)^{2} \geq 0$, for all $a \in \mathbb{R}$.)
33. Consider a measure space (S, Σ, μ) and $f: S \rightarrow \mathbb{R}$ that is nonnegative and measurable. Define $\nu: \Sigma \rightarrow[0, \infty]$ by $\nu(A)=\mu\left(1_{A} f\right)$. Show that ν is a measure on (S, Σ) and that for $h \in \mathcal{L}^{1}(S, \Sigma, \nu)$ one has $\nu(h)=\mu(h f)$.
34. Consider the setting of the previous exercise. Let $E \in \Sigma$ be such that $\mu(E)=0$. Show that $\nu(E)=0$. Assume now that S is a countable set with Σ the power set of S and let μ be such that $\mu(\{s\})=m(s) \in[0, \infty)$. Let ν be a measure of (S, Σ) such that $\nu(E)=0$ as soon as $\mu(E)=0$. Show that there is measurable function f on S such that $\nu(E)=\mu\left(1_{E} f\right)$. Can we do the same if some of the $m(s)$ are infinite.
35. Williams, exercise E4.1.
36. Williams, exercise E4.6.
37. If Z_{1}, Z_{2}, \ldots is a sequence of nonnegative random variables, then $\mathbb{E} \sum_{k=1}^{\infty} Z_{k}=$ $\sum_{k=1}^{\infty} \mathbb{E} Z_{k}$. Show that this follows from Fubini's theorem.
38. Show that $\mathbb{E} X^{2} 1_{\{|X|>\varepsilon\}} \leq \mathbb{E}|X|^{2+\delta} \varepsilon^{-\delta}$ for all $\delta, \varepsilon>0$.
39. Call a measurable function on some (S, Σ, μ) essentially bounded if there is $M>0$ such that $\mu(\{|f|>M\})=0$ and define $\|f\|_{\infty}=\inf \{M>0$: $\mu(\{|f|>M\})=0\}$. Show that $\|\cdot\|$ has all properties of a norm, except one (which one?). Show that Hölders inequality holds for $p=\infty, q=1$.
40. Consider measure space $\left(S_{1}, \Sigma_{1}, \mu_{1}\right),\left(S_{2}, \Sigma_{2}, \mu_{2}\right)$ and the product space $S_{1} \times S_{2}$ with the product σ-algebra. Show that the set of measurable rectangles $A_{1} \times A_{2}$ (with $A_{1} \in \Sigma_{1}$ and $A_{2} \in \Sigma_{2}$) is a π-system that generates the product σ-algebra.
41. Use polar coordinates to show that $\int_{\mathbb{R}^{2}} \exp \left(-\frac{1}{2}\left(x^{2}+y^{2}\right)\right) d x d y=2 \pi$ and Fubini-'s theorem to show that $\int_{\mathbb{R}} \exp \left(-\frac{1}{2} x^{2}\right) d x=\sqrt{2 \pi}$.
42. Show (use a famous theorem) that $\lim _{T \rightarrow \infty} \int_{0}^{\infty} \int_{0}^{T} \sin x e^{-x t} d x d t=\frac{\pi}{2}$ and show (use another famous theorem) that also $\lim _{T \rightarrow \infty} \int_{0}^{T} \frac{\sin x}{x} d x=\frac{\pi}{2}$. Is the function $x \mapsto \frac{\sin x}{x}$ Lebesgue-integrable on $[0, \infty)$?
43. Let $F, G: \mathbb{R} \rightarrow \mathbb{R}$ be nondecreasing and right-continuous. Use Fubini's theorem to show the integration by parts formula, valid for all $a<b$,

$$
F(b) G(b)-F(a) G(a)=\int_{(a, b]} F(s-) d G(s)+\int_{(a, b]} G(s) d F(s) .
$$

Hint: integrate $1_{(a, b]^{2}}$ and split the square into a lower and an upper triangle.
44. Let F be the distribution function of a nonnegative random variable X and assume that $\mathbb{E} X^{\alpha}<\infty$ for some $\alpha>0$. Use exercise 43 to show that

$$
\mathbb{E} X^{\alpha}=\alpha \int_{0}^{\infty} x^{\alpha-1}(1-F(x)) d x
$$

45. Let X be a random variable and let $\Pi(X)=\left\{X^{-1}(-\infty, x]: x \in \mathbb{R}\right\}$. Show that $\Pi(X)$ is a π-system that generates $\sigma(X)$.
46. Let the vector of random variables (X, Y) have a joint probability density function f. Let f_{X} and f_{Y} be the (marginal) probability density functions of X and Y respectively. Show that X and Y are independent iff $f(x, y)=$ $f_{X}(x) f_{Y}(y)$ for all x, y except in a set of Leb \times Leb-measure zero.
47. Let X, X_{1}, X_{2}, \ldots be random variables defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show that the set $\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}$ is measurable.
48. Let X_{1}, X_{2}, \ldots be an a.s. bounded sequence of random variables $\mathbb{P}\left(\left|X_{n}\right| \leq\right.$ $M)=1$, for some real number M. Assume that for some random variable X one has $X_{n} \xrightarrow{P} X$. Show that also $\mathbb{P}(|X| \leq M)=1$ and that for all $p \geq 1$ one has $X_{n} \xrightarrow{\mathcal{L}^{p}} X$.
49. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables with $\mathbb{E} X_{1}^{2}<\infty$. The aim is to show is that both $\bar{X}_{n} \xrightarrow{\mathcal{L}^{2}} \mu$ where $\mu=\mathbb{E} X_{1}$ and $\bar{X}_{n} \xrightarrow{\text { a.s. }} \mu$.
(a) Show the \mathcal{L}^{2} convergence.
(b) Use Chebychev's inequality to show that $\sum_{n} \mathbb{P}\left(\left|\bar{X}_{n^{2}}-\mu\right|>\varepsilon\right)<\infty$ and deduce form a wellknown lemma that $\bar{X}_{n^{2}} \xrightarrow{\text { a.s. }} \mu$.
(c) Show the almost sure convergence of \bar{X}_{n} by "filling the gaps".
50. Let $\alpha>1$ and $\beta_{k}=\left[\alpha^{k}\right]$. Show that
(a) $\beta_{k} \geq \alpha^{k}\left(1-\frac{1}{\alpha}\right)$
(b) $\sum_{k=m}^{\infty} \frac{1}{\beta_{k}^{2}} \leq\left(\frac{\alpha}{\alpha-1}\right)^{4} \frac{1}{\beta_{m}^{2}}$.
(c) $\frac{\beta_{k+1}}{\beta_{k}} \rightarrow \alpha$.
51. Exercise E7.1 of Williams.
52. Let X_{1}, X_{2}, \ldots be real random variables and $g: \mathbb{R} \rightarrow \mathbb{R}$ a uniformly continuous function. Show that $g\left(X_{n}\right) \xrightarrow{P} g(X)$ if $X_{n} \xrightarrow{P} X$. What can be said of the $g\left(X_{n}\right)$ if $X_{n} \xrightarrow{\text { a.s. }} X$?
53. Let x_{n} be real numbers with $x_{n} \rightarrow x$. Let $y_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$. Show that $y_{n} \rightarrow x$.
54. Let $X_{1}, Y_{1}, X_{2}, Y_{2}, \ldots$ be an i.i.d. sequence whose members have a uniform distribution on $[0,1]$ and let $f:[0,1] \rightarrow[0,1]$ be continuous. Define $Z_{i}=1_{\left\{f\left(X_{i}\right)>Y_{i}\right\}}$.
(a) Show that $\frac{1}{n} \sum_{i=1}^{n} Z_{i} \rightarrow \int_{0}^{1} f(x) d x$ a.s.
(b) Show that $\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\int_{0}^{1} f(x) d x\right)^{2} \leq \frac{1}{4 n}$.
(c) Explain why these two results are useful.
55. If $X_{n} \xrightarrow{P} X$ and g is a continuous function, then also $g\left(X_{n}\right) \xrightarrow{P} g(X)$. Show this.
56. Let X be a random variable with $\mathbb{E} X^{2}<\infty$ and let $\phi(\theta)=\mathbb{E} e^{i \theta X}$. Show that $\phi^{\prime \prime}(0)=-\mathbb{E} X^{2}$.
57. Let X be a random variable with values in \mathbb{Z} and ϕ its characteristic function. Show that $\mathbb{P}(X=k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \phi(\theta) e^{-k i \theta} d \theta$ for $k \in \mathbb{Z}$. Is $\int_{\mathbb{R}}|\phi(\theta)| d \theta<\infty ?$
58. Verify the formulas for the characteristic functions in each of the following cases.
(a) $\phi_{N(0,1)}(\theta)=\exp \left(-\frac{1}{2} \theta^{2}\right)$
(b) $\phi_{N\left(\mu, \sigma^{2}\right)}(\theta)=\exp \left(i \theta \mu-\frac{1}{2} \sigma^{2} \theta^{2}\right)$
(c) If X has an exponential distribution with parameter λ, then $\phi_{X}(\theta)=$ $\lambda /(\lambda-i \theta)$.
(d) If X has a Cauchy distribution, then $\phi_{X}(\theta)=\exp (-|\theta|)$.
59. Read the proof of the Helly-Bray lemma. Show that the function F defined on page 184 is (a) right-continuous and that (b) $\lim F_{n_{i}}(x)=F(x)$ for all x where F is continuous. Hint: Fix x and $\varepsilon>0$. Then there is $c \in \mathbb{Q}$ such that $F(x) \leq H(c)<F(x)+\varepsilon$. If F is continuous at x, then there exists also $c^{\prime}<c \in \mathbb{Q}$ and $y<x$ such that $F(x)-\varepsilon \leq F(y) \leq H\left(c^{\prime}\right) \leq H(c)$.
60. Let $\left(F_{n}\right)$ be a sequence of distribution functions on \mathbb{R} such that $\lim _{n \rightarrow \infty} F_{n}(x)=$ $F(x)$ for all x where the distribution function F is continuous. Show that $\lim _{n \rightarrow \infty} \int_{\mathbb{R}} h d F_{n}=\int_{\mathbb{R}} h d F$ for all bounded and continuous $h: \mathbb{R} \rightarrow \mathbb{R}$.
61. Let X, X_{1}, X_{2}, \ldots be real-valued random variables with $F_{X_{n}} \xrightarrow{w} F_{X}$. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and put $Y=h(X)$ and $Y_{n}=h\left(X_{n}\right)$ for every $n \in \mathbb{N}$. Show that $F_{Y_{n}} \xrightarrow{w} F_{Y}$.
62. Suppose that X, X_{1}, X_{2}, \ldots are real valued random variables, defined on one the same probability space, with $X_{n} \rightarrow X$ in probability. Show that $F_{X_{n}} \xrightarrow{w} F_{X}$.
63. Let $\mu, \mu_{1}, \mu_{2}, \ldots$ be probability measures on \mathbb{R} and suppose that for any open $G \subset \mathbb{R}$ that $\lim \inf \mu_{n}(G) \geq \mu(G)$. Then $\mu_{n} \rightarrow \mu$. Show this as follows. Let h be a bounded continuous function on \mathbb{R}. Assume w.l.og. that $0 \leq h<1$. Let $k \in \mathbb{N}$ and define $F_{i}=\left\{x: \frac{i-1}{k} \leq h(x)<\frac{i}{k}\right\}$. Split $\mu(h)$ into integrals over the F_{i}. Then

$$
\frac{1}{k} \sum_{i=1}^{k} \mu\left(h>\frac{i}{k}\right) \leq \mu(h) \leq \frac{1}{k} \sum_{i=1}^{k} \mu\left(h>\frac{i-1}{k}\right)
$$

and something similar for μ_{n}. Deduce that $\liminf \mu_{n}(h) \geq \mu(h)$ and complete the proof with the aid of an inequality for $\lim \sup \mu_{n}(h)$.
64. Suppose that the real random variables X, X_{1}, X_{2}, \ldots are defined on a common probability space and that $F_{X_{n}} \xrightarrow{w} F_{X}$. Suppose that $X=x_{0}$ a.s. for some $x_{0} \in \mathbb{R}$. Show that $X_{n} \rightarrow X$ in probability.
65. Let X_{n} have a $\operatorname{Bin}(n, \lambda / n)$ distribution (for $n>\lambda$). Show that $X_{n} \xrightarrow{w} X$, where X has a $\operatorname{Poisson}(\lambda)$ distribution.
66. Exercise 18.3

