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1. Consider a measure space (S,Σ, µ). Prove the following statements.

(a) The measure µ is finitely additive.

(b) If A ⊂ B (A,B ∈ Σ), then µ(A) ≤ µ(B).

(c) If A ⊂ B (A,B ∈ Σ) and µ is a finite measure, then µ(B \ A) =
µ(B)− µ(A).

2. Prove the following statements.

(a) The intersection of an arbitrary family of d-systems is again a d-
system.

(b) The intersection of an arbitrary family of σ-algebras is again a σ-
algebra. Characterize σ(C) for a given collection C ⊂ 2Ω.

(c) If C1 and C2 are collections of subsets of Ω with C1 ⊂ C2, then d(C1) ⊂
d(C2).

3. Let G and H be two σ-algebras on Ω. Let C = {G ∩H : G ∈ G, H ∈ H}.
Show that C is a π-system and that σ(C) = σ(G ∪ H).

4. Let I be a collection of subsets of a given set S and D = {B ∈ d(I) :
B ∩ C ∈ d(I),∀C ∈ I}. Show that D is a d-system. It I is a π-system,
then moreover D = d(I) = σ(I).

5. Let h : S → R, Σ a σ-algebra on S and B the Borel σ-algebra on R.
Consider the collection C = {B ∈ B : h−1[B] ∈ Σ}. Show that C is a
σ-algebra.

6. If h1 and h2 are measurable functions, then h1h2 is measurable too.

7. Let Ω be a countable set. Let F = 2Ω and let p : Ω → [0, 1] satisfy∑
ω∈Ω p(ω) = 1. Put P(A) =

∑
ω∈A p(ω) for A ∈ F . Show that P is a

probability measure.

8. Let Ω be a countable set. Let A be the collection of A ⊂ Ω such that A or
its complement has finite cardinality. Show that A is an algebra. What is
d(A)?

9. Let En, n ≥ 1 be subsets of some set S. Let Xn(ω) = 1En(ω). Show that
lim supnXn(ω) = 1lim supn En(ω) for all ω ∈ S.

10. Let X be a random variable. Show that Π(X) := {X−1(−∞, x] : x ∈ R}
is a π-system and that it generates σ(X).

11. Consider an infinite sequence of coin tossing. We take Ω = {H,T}∞,
a typical element ω is an infinite sequence (ω1, ω2, . . .) with each ωn ∈
{H,T}, and F = σ({ω ∈ Ω : ωn = w}, w ∈ {H,T}, n ∈ N). Define
functions Xn by Xn(ω) = 1 if ωn = H and Xn(ω) = 0 if ωn = T .

(a) Show that all Xn are random variables, i.e. everyone of them is me-
asurable.
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(b) Let Sn =
∑n
i=1Xi. Show that also Sn is a random variable.

(c) Let p ∈ [0, 1] and Ep = {ω ∈ Ω : limn→∞
1
nSn(ω) = p}. Show that

Ep is an F-measurable set.

12. Let {Yγ : γ ∈ C} be an arbitrary collection of random variables and
{Xn : n ∈ N} be a countable collection of random variables, all defined on
the same probability space.

(a) Show that σ{Yγ : γ ∈ C} = σ{Y −1
γ (B) : γ ∈ C,B ∈ B}.

(b) Let Xn = σ{X1, . . . , Xn} (n ∈ N) and A =
⋃∞
n=1 Xn. Show that A

is an algebra and that σ(A) = σ{Xn : n ∈ N}.

13. Let F be a σ-algebra on Ω with the property that for all F ∈ F it holds
that P(F ) ∈ {0, 1}. Let X : Ω→ R be F-measurable. Show that for some
c ∈ R one has P(X = c) = 1. (Hint: P(X ≤ x) ∈ {0, 1} for all x.)

14. Find the λ-sets of Σ0 in the following cases.

(a) S = N, Σ0 = 2S , λ(E) = |E|2 (E ⊂ S), where |E| is the number
of elements of E if E is a finite set and |E| = ∞ otherwise. Is λ an
outer measure? Same question for λ(E) = |E|1/2.

(b) The setting is that of exercise 8. Consider p : Ω → [0, 1] and de-
fine λ on Σ0 = A by λ(A) =

∑
ω∈A p(ω) if A is finite and λ(A) =∑

ω∈Ω p(ω) −
∑
ω∈Ac p(ω) if A has a finite complement. Is λ coun-

tably additive on Σ0? Describe explictely the (unique?) extension
of λ (if it exists) to σ(Σ0). Under what condition is the extension a
probability measure?

15. Let G0 be an algebra on a set S, λ : G0 → [0,∞] with λ(∅) = 0 and L0 the
sub-algebra of G0 consisting of the λ-sets. Show that for disjoint Lk ∈ L0

(k = 1, . . . , n) and G ∈ G0 it holds that

λ
(
(
n⋃
k=1

Lk) ∩G)
)

=
n∑
k=1

λ(Lk ∩G).

16. Consider the collection Σ0 of subsets of R that can be written as a finite
union of disjoint intervals of type (a, b] with −∞ ≤ a ≤ b <∞ or (a,∞).
Show that Σ0 is an algebra and that σ(Σ0) = B(R).

17. Show that a finitely additive map µ : Σ0 → [0,∞] is countably additive if
µ(Hn)→ 0 for every decreasing sequence of sets Hn ∈ Σ0 with

⋂
nHn = ∅.

If µ is countably additive, do we necessarily have µ(Hn) → 0 for every
decreasing sequence of sets Hn ∈ Σ0 with

⋂
nHn = ∅?

18. Let F be a distribution function on R. Then there exists a (probability)
measure µ on (R,B) such that F (x) = µ(−∞, x]. Show this by proving
it first for the case where F (0) = 0, F (1) = 1, then for the case where
F (−N) = 0 and F (N) = 1 for some N > 0 and finally for the general
case.
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19. Let (S,Σ, µ) be a measure space. Call a subset N of S a (µ,Σ)-null set if
there exists a set N ′ ∈ Σ with N ⊂ N ′ and µ(N ′) = 0. Denote by N the
collection of all (µ,Σ)-null sets. Let Σ∗ be the collection of subsets E of
S for which there exist F,G ∈ Σ such that F ⊂ E ⊂ G and µ(G \F ) = 0.
For E ∈ Σ∗ and F,G as above we define µ∗(E) = µ(F ).

(a) Show that Σ∗ is a σ-algebra and that Σ∗ = σ(N ∪ Σ).
(b) Show that µ∗ restricted to Σ coincides with µ and that µ∗(E) doesn’t

depend on the specific choice of F in its definition.
(c) Show that the collection of (µ∗,Σ∗)-null sets is N .

20. Let X be a (real) random variable defined on a probability space (Ω,F ,P).
Define Λ(B) = P(X−1[B]) for every B ∈ B(R) and F (x) = Λ((−∞, x]),
x ∈ R. Prove the following.

(a) Λ is a probability measure on B(R).
(b) F is increasing with limx→∞ F (x) = 1, limx→−∞ F (x) = 0 and F is

rightcontinuous.
(c) For every d ∈ R we have P(X = d) = F (d)−F (d−) (where F (d−) =

limx↑d F (x)). Show that the set D = {d ∈ R : P(X = d) > 0} is at
most countable.

21. Let (S,Σ, µ) be a measure space and let f be a nonnegative simple func-
tion, f =

∑n
k=1 ak1Ak

say, where the Ak are measurable sets. If f has
the alternative representation f =

∑m
k=1 a

′
k1A′

k
, then

∑n
k=1 akµ(Ak) =∑m

k=1 a
′
kµ(A′k).

22. Let f and g be nonnegative simple functions on the measure space (S,Σ, µ).
Show that µ0(f + g) = µ0(f) +µ0(g). (Hint: wite f =

∑
k fk1Fk

with the
Fk disjoint, g =

∑
j gj1Gj with the Gj disjoint and look at what happens

on the intersections Fk ∩Gj).

23. Consider the measurable space (S,Σ). Let f : S → [0,∞] be measurable.
Put Enk = {k2−n ≤ f < (k + 1)2−n} for n, k ≥ 0 and Fn = {f ≥ n}.
Define

fn =
n2n−1∑
k=0

k2−n1En
k

+ n1Fn .

Show that the fn are simple functions and that fn(s) ↑ f(s) for all s ∈ S.

24. Consider the measure space (S,Σ, µ). Let f : S → R be measurable with
µ(|f |) <∞. Show that |µ(f)| ≤ µ(|f |).

25. Consider the measure space (S,Σ, µ). Show that the mapping f 7→ µ(f)
is linear on L1(S,Σ, µ).

26. Consider the measure space (N, 2N, µ), where µ is the counting measure,
i.e. µ(E) ≤ ∞ is equal to the number of elements of E ⊂ N. Interpret the
integrals µ(f) in ‘simpler’ terms in this case.
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27. Let f be a simple function on some measure space (S,Σ, µ), with represen-
tation f =

∑n
k=1 ak1Ak

say, where the Ak are measurable sets. Describe
a procedure to turn this representation of f into f =

∑m
j=1 dj1Dj

, where
the Dj are certain disjoint measurable sets. Show also that for this pro-
cedure one has

∑n
k=1 akµ(Ak) =

∑m
j=1 djµ(Dj). If the distincts numbers

f1, . . . , fr are all possible values of f , then µ(f) =
∑r
k=1 fkµ({f = fk}).

28. Consider the measure space (S,Σ, µ), where Σ = σ(P) for a finite partition
P of S and µ a finite measure. Let f : S → R be measurable. Show that
f is constant on the elements Pk of P. Let fk be the common value of f
on such a Pk. Show that µ(f) is well defined and express it in terms of
the fk. How would you interpret the result if µ is a probability measure?

29. Show that the Borel-Cantelli lemma 2.7 follows from (c) in section 6.5.

30. If c is convex on a convex set G ⊂ R, then for all u < v < w in G one has

c(v)− c(u)
v − u

≤ c(w)− c(v)
w − v

.

Show this inequality. Give an example of a set G and a convex function
on it that is not continuous.

31. Let p ≥ 1 and show that for all x, y ∈ R one has |x+y|p ≤ 2p−1(|x|p+|y|q).
(Hint: x 7→ xp is convex on [0,∞).)

32. Let X,Y ∈ L2(Ω,F ,P). Show that XY ∈ L1(Ω,F ,P) and that the
(Cauchy-)Schwartz inequality

|EXY | ≤
(
EX2EY 2

)1/2
holds. (Hint: Use that E(X + aY )2 ≥ 0, for all a ∈ R.)

33. Consider a measure space (S,Σ, µ) and f : S → R that is nonnegative and
measurable. Define ν : Σ → [0,∞] by ν(A) = µ(1Af). Show that ν is a
measure on (S,Σ) and that for h ∈ L1(S,Σ, ν) one has ν(h) = µ(hf).

34. Consider the setting of the previous exercise. Let E ∈ Σ be such that
µ(E) = 0. Show that ν(E) = 0. Assume now that S is a countable set
with Σ the power set of S and let µ be such that µ({s}) = m(s) ∈ [0,∞).
Let ν be a measure of (S,Σ) such that ν(E) = 0 as soon as µ(E) = 0.
Show that there is measurable function f on S such that ν(E) = µ(1Ef).
Can we do the same if some of the m(s) are infinite.

35. Williams, exercise E4.1.

36. Williams, exercise E4.6.

37. If Z1, Z2, . . . is a sequence of nonnegative random variables, then E
∑∞
k=1 Zk =∑∞

k=1 EZk. Show that this follows from Fubini’s theorem.
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38. Show that EX21{|X|>ε} ≤ E |X|2+δε−δ for all δ, ε > 0.

39. Call a measurable function on some (S,Σ, µ) essentially bounded if there
is M > 0 such that µ({|f | > M}) = 0 and define ||f ||∞ = inf{M > 0 :
µ({|f | > M}) = 0}. Show that || · || has all properties of a norm, except
one (which one?). Show that Hölders inequality holds for p =∞, q = 1.

40. Consider measure space (S1,Σ1, µ1), (S2,Σ2, µ2) and the product space
S1 × S2 with the product σ-algebra. Show that the set of measurable
rectangles A1 × A2 (with A1 ∈ Σ1 and A2 ∈ Σ2) is a π-system that
generates the product σ-algebra.

41. Use polar coordinates to show that
∫
R2 exp(− 1

2 (x2 + y2)) dxdy = 2π and
Fubini-’s theorem to show that

∫
R

exp(−1
2x

2) dx =
√

2π.

42. Show (use a famous theorem) that limT→∞
∫∞

0

∫ T
0

sinxe−xt dx dt = π
2 and

show (use another famous theorem) that also limT→∞
∫ T

0
sin x
x dx = π

2 . Is
the function x 7→ sin x

x Lebesgue-integrable on [0,∞)?

43. Let F,G : R → R be nondecreasing and right-continuous. Use Fubini’s
theorem to show the integration by parts formula, valid for all a < b,

F (b)G(b)− F (a)G(a) =
∫

(a,b]

F (s−) dG(s) +
∫

(a,b]

G(s) dF (s).

Hint: integrate 1(a,b]2 and split the square into a lower and an upper
triangle.

44. Let F be the distribution function of a nonnegative random variable X
and assume that EXα <∞ for some α > 0. Use exercise 43 to show that

EXα = α

∫ ∞
0

xα−1(1− F (x)) dx.

45. Let X be a random variable and let Π(X) = {X−1(−∞, x] : x ∈ R}. Show
that Π(X) is a π-system that generates σ(X).

46. Let the vector of random variables (X,Y ) have a joint probability density
function f . Let fX and fY be the (marginal) probability density functions
of X and Y respectively. Show that X and Y are independent iff f(x, y) =
fX(x)fY (y) for all x, y except in a set of Leb×Leb-measure zero.

47. Let X,X1,X2, . . . be random variables defined on some probability space
(Ω,F ,P). Show that the set {ω : limn→∞Xn(ω) = X(ω)} is measurable.

48. Let X1, X2, . . . be an a.s. bounded sequence of random variables P(|Xn| ≤
M) = 1, for some real number M . Assume that for some random variable
X one has Xn

P→ X. Show that also P(|X| ≤ M) = 1 and that for all

p ≥ 1 one has Xn
Lp

→ X.
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49. Let X1,X2, . . . be a sequence of i.i.d. random variables with EX2
1 < ∞.

The aim is to show is that both Xn
L2

→ µ where µ = EX1 and Xn
a.s.→ µ.

(a) Show the L2 convergence.

(b) Use Chebychev’s inequality to show that
∑
n P(|Xn2 − µ| > ε) <∞

and deduce form a wellknown lemma that Xn2
a.s.→ µ.

(c) Show the almost sure convergence of Xn by ”filling the gaps”.

50. Let α > 1 and βk = [αk]. Show that

(a) βk ≥ αk(1− 1
α )

(b)
∑∞
k=m

1
β2

k
≤ ( α

α−1 )4 1
β2

m
.

(c) βk+1
βk
→ α.

51. Exercise E7.1 of Williams.

52. Let X1, X2, . . . be real random variables and g : R → R a uniformly
continuous function. Show that g(Xn) P→ g(X) if Xn

P→ X. What can be
said of the g(Xn) if Xn

a.s.→ X?

53. Let xn be real numbers with xn → x. Let yn = 1
n

∑n
i=1 xi. Show that

yn → x.

54. Let X1, Y1,X2, Y2, . . . be an i.i.d. sequence whose members have a uniform
distribution on [0, 1] and let f : [0, 1] → [0, 1] be continuous. Define
Zi = 1{f(Xi)>Yi}.

(a) Show that 1
n

∑n
i=1 Zi →

∫ 1

0
f(x) dx a.s.

(b) Show that E ( 1
n

∑n
i=1 Zi −

∫ 1

0
f(x) dx)2 ≤ 1

4n .

(c) Explain why these two results are useful.

55. If Xn
P→ X and g is a continuous function, then also g(Xn) P→ g(X). Show

this.

56. Let X be a random variable with EX2 <∞ and let φ(θ) = E eiθX . Show
that φ′′(0) = −EX2.

57. Let X be a random variable with values in Z and φ its characteristic
function. Show that P(X = k) = 1

2π

∫ π
−π φ(θ)e−kiθ dθ for k ∈ Z. Is∫

R
|φ(θ)| dθ <∞?

58. Verify the formulas for the characteristic functions in each of the following
cases.

(a) φN(0,1)(θ) = exp(−1
2θ

2)

(b) φN(µ,σ2)(θ) = exp(iθµ− 1
2σ

2θ2)
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(c) If X has an exponential distribution with parameter λ, then φX(θ) =
λ/(λ− iθ).

(d) If X has a Cauchy distribution, then φX(θ) = exp(−|θ|).

59. Read the proof of the Helly-Bray lemma. Show that the function F defined
on page 184 is (a) right-continuous and that (b) limFni(x) = F (x) for all
x where F is continuous. Hint: Fix x and ε > 0. Then there is c ∈ Q such
that F (x) ≤ H(c) < F (x) + ε. If F is continuous at x, then there exists
also c′ < c ∈ Q and y < x such that F (x)− ε ≤ F (y) ≤ H(c′) ≤ H(c).

60. Let (Fn) be a sequence of distribution functions on R such that limn→∞ Fn(x) =
F (x) for all x where the distribution function F is continuous. Show that
limn→∞

∫
R
h dFn =

∫
R
h dF for all bounded and continuous h : R→ R.

61. Let X,X1,X2, . . . be real-valued random variables with FXn

w→ FX . Let
h : R → R be continuous and put Y = h(X) and Yn = h(Xn) for every
n ∈ N. Show that FYn

w→ FY .

62. Suppose that X,X1, X2, . . . are real valued random variables, defined on
one the same probability space, with Xn → X in probability. Show that
FXn

w→ FX .

63. Let µ, µ1, µ2, . . . be probability measures on R and suppose that for any
open G ⊂ R that lim inf µn(G) ≥ µ(G). Then µn → µ.Show this as
follows. Let h be a bounded continuous function on R. Assume w.l.og.
that 0 ≤ h < 1. Let k ∈ N and define Fi = {x : i−1

k ≤ h(x) < i
k}. Split

µ(h) into integrals over the Fi. Then

1
k

k∑
i=1

µ(h >
i

k
) ≤ µ(h) ≤ 1

k

k∑
i=1

µ(h >
i− 1
k

)

and something similar for µn. Deduce that lim inf µn(h) ≥ µ(h) and
complete the proof with the aid of an inequality for lim supµn(h).

64. Suppose that the real random variables X,X1,X2, . . . are defined on a
common probability space and that FXn

w→ FX . Suppose that X = x0

a.s. for some x0 ∈ R. Show that Xn → X in probability.

65. Let Xn have a Bin(n, λ/n) distribution (for n > λ). Show that Xn
w→ X,

where X has a Poisson(λ) distribution.

66. Exercise 18.3
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