
Tinbergen Institute
Measure Theory and Asymptotic Statistics

Exam Questions

1. If X and Y are independent random variables with E |X| < ∞ and
E |Y | <∞ (assumed to hold throughout this exercise), then the prod-
uct formula E (XY ) = EX ·EY holds. To show this you have to apply
(parts of) the standard machine1 a couple of times.

(a) First a special case. Let X be positive but arbitrary otherwise,
and Y = 1A for some set A ∈ F . Use the standard machine to
show that E (X1A) = EX · P(A).

(b) Prove now, using the previous item and the standard machine
again, the product formula for X ≥ 0 and Y ≥ 0.

(c) Why are X+ and Y − also independent random variables?

(d) Complete the proof for arbitrary X and Y .

2. Let X and Y be random variables defined on some probability space
(Ω,F ,P) and let G = σ(Y ).

(a) Show that the collection of events {Y ∈ B}, where B runs through
the Borel sets B(R), forms a σ-algebra (so you show that it has
all the defining properties of a σ-algebra). This σ-algebra will be
denoted H.

(b) Show the two inclusions H ⊂ G and G ⊂ H. For the latter you
need the ‘minimality property’ of σ(Y ).

(c) Let X = 1G for some G ∈ G. Find a function f : R→ [0, 1] that is
Borel-measurable (and check this property!) such that X = f(Y ).

(d) Use the standard machine to prove the following result. If X
is G-measurable, then there exists a Borel-measurable function
f : R→ R such that X = f(Y ).

3. Let X1, X2, . . . be random variables defined on a probability space
(Ω,F ,P). Assume that the Xi are nonnegative and let Sn =

∑n
i=1 Xi

for n ≥ 1. It is known that the Sn are random variables (measurable
functions) as well. We define S(ω) = limn→∞ Sn(ω), which exists for
every ω ∈ Ω but may be infinite.

1Recall that the standard machine is a method of proving along steps: (1) for indicator
functions; (2) for nonnegative simple functions; (3) for nonnegative functions by approx-
imation with simple functions (the approximating sequence always exists); (4) general
case.
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(a) Show that S is a random variable (Hint: show first that {S >
a} =

⋃∞
n=1{Sn > a} for a > 0).

(b) Note that ES ≤ ∞ is well defined. Show that ES =
∑∞

i=1 EXi.

(c) Assume that
∑∞

i=1 EXi <∞. Show that P(S <∞) = 1.

4. Let X be a random variable defined on a probability space (Ω,F ,P).
A well known property is that EX = 0 if X = 0 a.s. In this exercise
you will show this.

(a) Suppose that X assumes finitely many values y0, y1, . . . , yn and
also that X = 0 a.s. Show that EX = 0.

(b) Suppose that X ≥ 0, but also X = 0 a.s. Argue by using lower
Lebesgue sums and the previous item that EX = 0.

(c) Let X be arbitrary but still X = 0 a.s. Show again that EX = 0.

5. Recall the definition of infimum, written as inf. If x1, x2, . . . is a finite or
infinite sequence of real numbers, then x = inf{x1, x2, . . .} iff (1) x ≤ xk
for all k and (2) if y > x, there exists xk such that xk < y. It may
happen that x = −∞. For finite sequences x1, . . . , xn, inf{x1, . . . , xn}
is the minimum of the xk. An example with an infinite sequence is
inf{1, 1

2
, 1

3
, 1

4
, . . .} = 0, another example is inf{1, 1

2
, 1, 1

3
, 1, 1

4
, . . .} = 0.

If we have an infinite sequence of random variables X1, X2, . . ., we
say that the random variable X is inf{X1, X2, . . .} if for every ω ∈ Ω
one has X(ω) = inf{X1(ω), X2(ω), . . .}. From now on we assume to
have a sequence of nonnegative random variables X1, X2, . . .. For each
n we define the random variable Yn := inf{Xn, Xn+1, Xn+2, . . .}, also
written as Yn = infm≥nXm.

(a) Show that (each) Yn is a random variable by considering events
like {Yn ≥ a}.

(b) Show that the Yn form an increasing sequence of random variables.
They then have a limit Y∞ ≤ ∞.

(c) Show that Yn ≤ Xm for all m ≥ n, and conclude that EYn ≤
yn := inf{EXn,EXn+1, . . .}. Note that the yn form an increasing
sequence too.

(d) Show that EY∞ ≤ limn→∞ yn. This property is often written
as E limn→∞ infm≥nXm ≤ limn→∞ infm≥n EXm, and is known as
Fatou’s lemma.
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(e) In the previous item, a strict inequality may occur. Consider
thereto the probability space with Ω = (0, 1), F the Borel sets in
(0, 1) and P the Lebesgue measure. We take Xn(ω) = n1(0,1/n)(ω).
Show that indeed strict inequality now takes place in Fatou’s
lemma (so you compute both sides of the inequality).

6. In this exercise we need limits of sequences of subsets of a given set
Ω, which we define in two cases. Suppose that we have an increasing
sequence of sets An (n ≥ 0), i.e. An ⊂ An+1 for all n ≥ 0. Then we
define A = limn→∞An :=

⋃∞
n=0An. If the sequence is decreasing, An ⊃

An+1 for all n, we define A = limn→∞An :=
⋂∞
n=0 An. We work with a

probability space (Ω,F ,P) and we consider an increasing sequence of
events An (so An ∈ F for all n). Let D0 = A0 and Dn = An \An−1 for
n ≥ 1.

(a) Show that P(An) =
∑n

k=0 P(Dk).

(b) Show that A =
⋃∞
k=0Dk.

(c) Show that P(An)→ P(A) for n→∞.

(d) Suppose that events Bn (n ≥ 0) form a decreasing sequence. Show
that P(Bn)→ P(B). (Hint: consider the Bc

n.)

7. Let X, Y be random variables, defined on a probability space (Ω,F ,P),
so they are both F -measurable.

(a) Let c ∈ R. Show (make a sketch!) that {(x, y) ∈ R2 : x + y >
c} =

⋃
q∈Q{(x, y) ∈ R2 : x > q, y > c− q}.

(b) Show that X+Y is also F -measurable. NB: For this it is sufficient
to show that {X + Y > c} ∈ F for all c ∈ R.

8. Let x1, x2, . . . be a sequence of real numbers. We put, for n ≥ 1,
xn = sup{xn, xn+1, . . .} and xn = inf{xn, xn+1, . . .}. Note that the xn
form a decreasing sequence and the xn an increasing one, and hence
both sequences have a limit, denoted x and x respectively. One always
has x ≥ x and x = inf{x1, x2, . . .}. Moreover, the original sequence
with the xn has a limit x iff x = x = x.

Consider now a sequence of random variables Xn defined on some
(Ω,F ,P). As these are measurable functions, we can define Xn as the
function s.t. Xn(ω) = sup{Xn(ω), Xn+1(ω), . . .} and likewise Xn, X,
X.
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(a) Consider Ea = {Xn ≤ a} for arbitrary a ∈ R. Show that Ea ∈ F
and conclude that Xn is a random variable (for every n).

(b) Show that Xn is a random variable.

(c) Show that X and X are random variables too.

(d) Show that {ω : limn→∞Xn(ω) exists} = {ω : X(ω) −X(ω) ≤ 0}
and that this set belongs to F .

(e) Assume that X(ω) = limn→∞Xn(ω) exists for every ω. Show that
X is a random variable.

9. Consider a sequence of random variables Xn defined on some (Ω,F ,P)
and put Sn =

∑n
k=1Xk for n ≥ 1.

(a) Assume all Xn ≥ 0. Show that E
∑∞

k=1 Xk =
∑∞

k=1 EXk. Hint:
apply the Monotone Convergence Theorem to the Sn.

From here on the assumption that the Xn are nonnegative is dropped.

(b) Show that E
∑∞

k=1 |Xk| =
∑∞

k=1 E |Xk|.
(c) Assume

∑∞
k=1 E |Xk| <∞. Show that E

∑∞
k=1Xk =

∑∞
k=1 EXk.

10. Consider a probability space and a sequence of events (En)n≥1. The
eventE := lim supEn is defined as E =

⋂∞
n=1 Un, where Un =

⋃∞
m=nEm.

Note that the Un form a decreasing sequence. Further we have Ec =⋃∞
n=1Dn, with Dn =

⋂∞
m=nE

c
m. We also write DN

n =
⋂N
m=nE

c
m for

N ≥ n.

(a) Show that P(E) ≤ P(Un) for every n and that P(E) = 0 if∑∞
n=1 P(En) <∞.

From now on we assume that the En are independent events.

(b) Show that P(DN
n ) ≤ exp(−

∑N
m=n P(Em)). [Recall e−x ≥ 1− x.]

(c) Assume further also that
∑∞

n=1 P(En) =∞. Show that P(Dn) = 0
for all n and deduce that P(E) = 1.

The conclusions in (a) and (c) are together known as the Borel-Cantelli
lemma.

11. Consider a probability space (Ω,F ,P) on which a random variable X
is defined with E |X| < ∞. Let G be a sub-σ-algebra of F and let
X̂ = E [X|G].
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(a) Show that E X̂+ ≤ E |X|1{X̂>0}. Hint: use x+ = x1{x>0} and the
definition of conditional expectation.

(b) Show that E |X̂| ≤ E |X|.

12. Consider the Pareto distribution with parameters α, µ > 0. This dis-
tribution has density

pα,µ(x) =
αµα

xα+1
1{x≥µ}.

Let Y1, . . . , Yn be a sample from this distribution, and Xi = log Yi, i =
1, . . . , n. It is possible to show that EX1 = log µ+ 1

α
and VarX1 = 1

α2 .
Suppose µ is known.

(a) Let α̂n be the maximum likelihood estimator of α. Show that
α̂n = 1

Xn−log µ
.

(b) Deduce from the Central limit theorem for averages and the Delta
method that

√
n(α̂n − α) converges in distribution to N(0, α2).

In the sequel also µ is unknown.

(c) Show that the maximum likelihood estimator of µ is µ̂n = exp(Xn),
where Xn = min{X1, . . . , Xn}.

(d) Show that Xi − log µ has an exponential distribution and that
P(n(Xn − log µ) > c) = exp(−cα) for any c > 0.

(e) Show that P(n(µ̂n − µ) > c) → exp(−cα/µ) for any c > 0. [De-
pending on the method, you may need log(1 + x) = x+O(x2) for
x→ 0.]

(f) What is the (obvious) maximum likelihood estimator, call it α̂n
again, of α in the present situation? Argue that the limit distri-
bution of

√
n(α̂n − α) is the same as in question ??.

13. Let X1, . . . , Xn be independent random variables with a N(θ, θ2) dis-
tribution. Here θ 6= 0 is an arbitrary real parameter. We consider
the maximum likelihood estimator θ̂n, a maximizer of Mn(θ), where

Mn(θ) = 1
n

∑n
i=1 log pθ(Xi)

pθ0 (Xi)
and pθ(Xi) the likelihood of θ when Xi is

observed and θ0 6= 0 is the true parameter. Probabilities or expec-
tations below are taken under the true parameter. It turns out that

θ̂n = −1
2
Xn + sign(Xn)

√
1
4
X

2

n +X2
n. Here Xn is the average of the Xi

and X2
n is the average of the X2

i . In the computations you may need
the following results: Eθ0X3 = 4θ3

0, Eθ0X4 = 10θ4
0.
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(a) Show thatMn(θ) = −1
2

log θ2

θ20
− 1

2n

∑n
i=1(Xi

θ
−1)2+ 1

2n

∑n
i=1(Xi

θ0
−1)2.

(b) Show: Mn(θ)
P→M(θ) = −1

2
log θ2 + 1

2
log θ2

0− 1
2

θ20
θ2
− 1

2
( θ0
θ
−1)2 + 1

2
.

(c) Show that M(θ0) = 0 and that θ0 is the maximizer of M .

(d) We expect that θ̂n is consistent. Show this by a direct argument,
using the law of large numbers for Xn and X2

n.

(e) Let Ψn(θ) = Ṁn(θ) and Ψ(θ) = Ṁ(θ). What would you expect
(ignoring certain conditions) for the asymptotic variance of θ̂n?

(f) Show that the Fisher information Iθ0 equals 3θ−2
0 .

(g) The central limit theorem gives
√
n

(
Xn − θ0

X2
n − 2θ2

0

)
 N2(0,Σ(θ0)),

where Σ(θ0) =

(
θ2

0 2θ3
0

2θ3
0 6θ4

0

)
. Use this and the fact that θ̂n =

φ(Xn, X2
n) (for which φ?) to deduce that indeed θ̂n is asymp-

totically normal with variance given by the inverse of the Fisher
information.

14. Consider a probability space (Ω,F ,P) on which is defined a random
variable X that has a standard exponential distribution, P(X ≤ x) =
1 − e−x for x ≥ 0. Let λ be a positive constant and consider Z =
λ exp(−(λ − 1)X), a positive random variable. Using Z we define a
new measure P′ on F by P′(F ) = E [1FZ] (theory guarantees that P′ is
indeed a measure).

(a) Show that EZ = 1. Is P′ a probability measure?

(b) Show (by computing an integral) that P′(X ≤ x) = 1 − e−λx. [It
follows that X has an exponential distribution with parameter λ
under P′.]

15. Consider a probability space (Ω,F ,P) and let X be a nonnegative
random variable defined on it. Let h be a monotone increasing function,
h : [0,∞) → [0,∞) with h(0) = 0. We will need the product space
S = Ω×[0,∞) with the product σ-algebra F×B[0,∞) and the product
measure P× λ, where λ is the Lebesgue measure on B[0,∞).

(a) Show that h is Borel-measurable. [Hint: consider the sets {h ≤ c}
for c > 0; these sets have a nice structure.]

(b) We can extend h to a function on S by putting h(ω, x) = h(x).
Show (use part (a)) that h is F×B[0,∞)-measurable. In a similar
way the identity map on [0,∞) (i.e. u 7→ u) can be considered
F × B[0,∞)-measurable.
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(c) Show that it follows that the set E := {(ω, u) ∈ Ω × [0,∞) :
h(X(ω)) ≥ u} is F × B[0,∞)-measurable.

(d) Use the set E above and Fubini’s theorem to show that Eh(X) =∫∞
0

(1 − F (h−1(u)) du, where F is the distribution function of X
and h−1 is the inverse function of h.

16. Consider a probability space (Ω,F ,P) on which is defined a random
variable X. Assume E |X| finite, G a sub-σ-algebra of F and let X̂ be
(a version of) E [X|G].

(a) Show that X̂ ≤ E [|X| |G] and conclude that |X̂| ≤ E [|X| |G].

(b) Let f be a convex differentiable function. Then for every x, x0

it holds that f(x) ≥ f(x0) + f ′(x0)(x − x0). Note that y =
f(x0) + f ′(x0)(x − x0) gives the tangent line of f at x0. Ver-
ify this inequality by a sketch for f(x) = |x|2. Use the inequality
with x = X and x0 = X̂, assuming that E |X|p <∞, to show that
E |X|p ≥ E |X̂|p for p > 1.

Consider also a sequence (Gn) of sub-σ-algebras of F and let, for each
n, Xn be (a version of) the conditional expectation E [X|Gn].

(c) Suppose that for some a > 0 it holds that E |X|1+a < ∞. Show

that |Xn|1{|Xn|>m} ≤
|Xn|1+a
ma

and deduce that supn E |Xn|1{|Xn|>m} →
0 for m → ∞. [A sequence (Xn) with this property is said to be
uniformly integrable.]

17. Under certain conditions, among them continuous dependence of Iθ on
θ, one has that

√
n(θ̂n − θ0) has an asymptotically normal N(0, 1

Iθ0
)

distribution. Here θ̂n is the maximum likelihood estimator, which is
assumed to be consistent, based on a sample from a distribution with
density pθ0 and θ0 is one-dimensional.

(a) Show that
√
nIθ̂n(θ̂n − θ0) N(0, 1).

Consider a sample X1, . . . , Xn from an exponential distribution with
density 1

θ
exp(−x/θ). Later we will use the different parametrization

with λ = 1/θ. Recall that EX1 = θ0 and VarX1 = θ2
0, θ0 is the ‘true’

parameter. Consider the maximum likelihood estimator θ̂n.

(b) Show by using the ordinary central limit theorem that
√
n(θ̂n −

θ0) N(0, θ2
0).
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(c) Compute the maximum likelihood estimator λ̂n of λ = 1/θ0 and
show by the delta method that

√
n(λ̂n − λ0) N(0, λ2

0).

(d) Compute (under the alternative parametrization) the Fisher in-
formation Iλ0 and show that the answer of question ?? agrees
with the general result on the asymptotic behaviour on maximum
likelihood estimators.

(e) Give a confidence interval of level 1− α for θ0.

18. In the formula for the asymptotic distribution of the Huber estimator
one needs the derivative Vθ w.r.t. θ of Pψθ =

∫
ψ(x− θ)p(x) dx, where

ψ is the usual Huber function and p a probability density function.
We define the measure µ on B(R) by µ(B) =

∫
B
1[−k,k](x) dx (the

integral can be seen as a Riemann integral and as an integral w.r.t. the
Lebesgue measure λ). The function ψ and the measure µ are related
by ψ(x) + k = µ((−∞, x]) =

∫
(−∞,x]

dµ. It follows that µ� λ and for

a measurable function h for which the integrals exist, one has µ(h) =∫
1[−k,k](x)h(x) dx.

(a) Understanding that ψ(x − θ) can be written as an integral mi-
nus the constant k, show by application of Fubini’s theorem that
Pψθ = k −

∫ k
−k F (u + θ) du, where F is the distribution function

with density p.

(b) Show that Vθ = F (θ − k)− F (θ + k).

(c) As an alternative to the ordinary Huber function, one can also use
the scaled Huber function ψ̄k = 1

k
ψ. Note that limk→0 ψ̄k(x) =

sign(x). Show that the asymptotic distribution of the Huber es-
timator doesn’t change if we replace ψ by ψ̄k in the estimation
procedure.

(d) Let V̄θ,k be the derivative of
∫
ψ̄k(x − θ)p(x) dx. Compute the

limit, you may assume that p is continuous, of V̄θ,k for k → 0.
Why can you expect this result?

19. Consider a probability space (Ω,F ,P) and let X be a nonnegative
random variable defined on it. For t ≥ 0 put φ(t) = E exp(−tX).

(a) Show that 0 ≤ φ(t) ≤ 1 for all t ≥ 0.

(b) Show (use dominated convergence) that φ is continuous at any
t ≥ 0,
i.e. limh→0 φ(t + h) = φ(t). [Note: for t = 0 one only has right
continuity.]
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(c) Assume EX < ∞ and consider r(h) := 1
h
(φ(t) − φ(t + h)) =

1
h
E (e−tX(1 − e−hX)) for any fixed t and h such that t + h ≥ 0.

Show that r(h) → E [e−tXX] for h → 0. Deduce that φ′(t) =
−E [e−tXX]. [You may use that |e−a − e−b| ≤ |a − b| for a, b ≥ 0
and 1

h
(1− e−hu)→ u for h→ 0.]

(d) Assume that EX2 < ∞. Knowing what φ′(t) is, you show that
φ′′(t) = E [e−tXX2].

(e) Look at φ(0), φ′(0) and φ′′(0). Guess what φ(k)(0) should be (k ∈
N), and what the needed assumption should be.

20. Let f, f1, f2, . . . be density functions of probability distributions on
(R,B), they are nonnegative, measurable and their integrals w.r.t. the
Lebesgue measure λ equal 1.

(a) Show that (fn − f)− ≤ f and |fn − f | = (fn − f) + 2(fn − f)−.

(b) Assume that fn → f a.e. Show that
∫
|fn − f | dλ→ 0.

(c) Assume that fn → f a.e. Show that Fn(x)→ F (x) for all x ∈ R.

21. Assume that X,X1, X2, . . . are R1-valued random variables. They have
the property that limn→∞ Eh(Xn) = Eh(X) for every bounded and
continuous function h on R. For every x ∈ R and m ∈ N we define
hx,m : R→ [0, 1] by

hx,m(u) =


1 if u < x,
1 +m(x− u) if x ≤ u ≤ x+ 1

m
,

0 if u > x+ 1
m
.

Note that 1(−∞,x](u) ≤ hx,m(u) ≤ 1(−∞,x+ 1
m

](u) (draw a picture, if you

like).

(a) Show that P(Xn ≤ x) ≤ Ehx,m(Xn), Ehx,m(X) ≤ P(X ≤ x+ 1
m

),
and conclude that lim supn→∞ P(Xn ≤ x) ≤ P(X ≤ x+ 1

m
).

(b) Show that lim infn→∞ P(Xn ≤ x) ≥ P(X ≤ x− 1
m

).

(c) Show that Xn  X.

22. Let ψ be the usual Huber function (depending on some k > 0),

ψ(u) =


−k if u < −k,
u if − k ≤ u ≤ k,
k if u > k.
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We also have a sample X1, . . . , Xn of IID random variables with a
common density function pθ0 that is everywhere strictly positive. The
parameter θ0 is to be estimated. We consider for θ ∈ R the random
variables Ψn(θ) = 1

n

∑n
i=1 ψ(Xi − θ) for θ ∈ R, and, with ψθ(x) =

ψ(x− θ), Ψ(θ) = EΨn(θ) = Eψθ(X1) = Pψθ.

(a) The equation Ψn(θ) = 0 has a solution, θ̂n say. Why?

(b) Show by a direct computation of the expectation Eψθ(X1) (you

have to compute an integral) that Ψ(θ) = k −
∫ θ+k
θ−k Fθ0(x) dx,

where Fθ0 is the distribution function of pθ0 . [The integral you can
compute as the sum of three integrals, one of them you further
compute using integration by parts. Or, you do integration by
parts on a single integral.]

It is now also given that pθ0(x) = p(x−θ0), where p is a density function
that is symmetric around zero.

(c) Show that Ψ̇(θ) < 0 for every θ and that Ψ(θ) = 0 iff θ = θ0. [In
your answer you may first show that Ψ(θ0) is the integral of an
odd function; recall that f is odd if f(−x) = −f(x).]

(d) Argue that θ̂n is a consistent estimator of θ0.

(e) Show that
√
n(θ̂n− θ0) is asymptotically normal with variance σ2

equal to

σ2 =

∫ k
−k x

2p(x) dx+ k2
∫
|x|≥k p(x) dx

(
∫ k
−k p(x) dx)2

.

23. Let X1, . . . , Xn be a sample from a distribution with a positive and
finite variance σ2. Independently from this sample there is another
sample Y1, . . . , Y2n from a distribution with positive and finite variance
τ 2. Note that in the second case the sample size is twice as big as
in the first case. Xi and Yi are one dimensional. The parameter σ2

is estimated by σ̂2 = 1
n

∑n
i=1(Xi − X)2 and τ 2 is estimated by τ̂ 2 =

1
2n

∑2n
i=1(Yi − Y )2. It is known that

√
n(σ̂2 − σ2) has a limit law which

is normal with variance equal to κX − σ4, where κX = E (X1−EX1)4,
which is assumed to be finite (in what follows only the constant κX
itself matters). Of course there is a parallel result for τ̂ 2 (but note
again the different sample size there).

(a) What is the limit law of the random vector
√
n

(
σ̂2 − σ2

τ̂ 2 − τ 2

)
?
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(b) We are interested in estimating the ratio r = σ2/τ 2 which we do
by r̂ = σ̂2/τ̂ 2. What is the limit law of

√
n(r̂ − r)? [There is a

certain method to apply here.]

(c) If the distribution of the Xi is normal, then it is known that κX =
3σ4 and a similar result holds for normal Yi. Show that in this
case the limit variance of

√
n(r̂ − r) is equal to 3σ4/τ 4.

(d) Give a (1 − α)-confidence interval for r under the normality as-
sumptions of the previous item.

24. Consider a probability space (Ω,F ,P). Let E1, E2, . . . be an arbitrary
sequence of events, put Un =

⋃
m≥nEm, n ≥ 1.

(a) Write the limit U of the Un in terms of the En.

(b) Show the following. If
∑

n≥1 P(En) <∞, then P(lim supEn) = 0.
[Hint: Find upper and lower bounds of P(Un).]

It is further assumed that the En are independent events (then also
their complements Ec

n are independent) and
∑

n≥1 P(En) = ∞. Put

DN
n =

⋂N
m=nE

c
m for N ≥ n ≥ 1.

(c) Show that P(DN
n ) ≤ exp(−

∑N
m=n P(Em)). [Hint: it holds that

1− x ≤ e−x.]

(d) Let D∞n :=
⋂∞
m=nE

c
m. Show that P(D∞n ) = 0.

(e) Show that P(lim inf Ec
n) = 0.

(f) Show that P(lim supEn) = 1.

25. Let X1, X2, . . . be a sequence of nonnegative random variables, defined
on a probability space (Ω,F ,P), and put S∞ =

∑∞
i=1Xi. We also have

the measurable space (N,N , τ), where N is the set of positive integers,
N is the power set of N and τ the counting measure.

We consider the product set N × Ω with the product σ-algebra
N ×F and the product measure τ × P. On the product set we define
the mapping X : N × Ω → R by X(k, ω) = Xk(ω). Let, for a given
Borel set B in R, A := X−1[B] = {(k, ω) : X(k, ω) ∈ B} and Ak :=
X−1
k [B] = {ω : Xk(ω) ∈ B} , for k ∈ N. Note that A = ∪k∈N({k}×Ak),

i.e. (k, ω) ∈ A iff ω ∈ Ak.

(a) Why are the sets {k} × Ak above elements of N ×F?

(b) Show that X is a measurable mapping on N×Ω with the product
σ-algebra N ×F , i.e. the set A above belongs to N ×F (for any
Borel set B).

11



(c) Show by an application of Fubini’s theorem (recall that summation
is an example of Lebesgue integration) that ES∞ =

∑∞
i=1 EXi.

(d) If the Xi are not necessarily nonnegative, give then an integrability
condition on the Xi such that the equality ES∞ =

∑∞
i=1 EXi is

still true.

26. Consider a probability space (Ω,F ,P) on which are defined nonnegative

random variables X, Xn (n ≥ 1) that have the property that Xn
P→ X

(so P(|Xn −X| > ε) → 0 as n → ∞ for every ε > 0). Let Yn = Xn
1+Xn

and Y = X
1+X

and note that Yn ≤ 1.

(a) Do we have Yn
P→ Y ?

(b) Show the two inequalities |Yn − Y | ≤ 2 and |Yn − Y | ≤ |Xn −X|.
(c) Show that E |Yn − Y | ≤ 2P(|Xn −X| > ε) + ε for every ε > 0.

(d) Show that Yn
L1→ Y , i.e. E |Yn − Y | → 0.

27. Consider a sample from exponential distribution, i.e. one has an IID
sequence X1, . . . , Xn where all Xi have a density pλ(x) = λe−λx for
x ≥ 0 and a parameter λ > 0. Along with the Xi one also observes
Yi = cosXi, i = 1, . . . , n. Probabilities, expectations, etc. depending
on λ, when necessary, are denoted Pλ, Eλ, etc. and Y n is the average
of the Yi.

(a) Show that EλYi = λ2

1+λ2
[Hint: use two times integration by parts,

for which you may want to use that d sinx
dx

= cosx and d cosx
dx

=
− sinx.]

(b) Show that the moment estimator using the Yi as (transformed)

observations is λ̂n =
√

Y n
1−Y n

, provided that Y n ∈ [0, 1).

(c) Show that Y n < 1 a.s. and show by invoking the Law of Large
Numbers (LLN) for Y n that Y n > 0 with probability tending to
1.

(d) Show by using the above LLN that λ̂n
Pλ→ λ (so, the λ̂n are consis-

tent estimators of λ).

The standardized moment estimator
√
n(λ̂n−λ) has a limit law, which

is normal with variance (1+λ2)4

4λ2
σ2(λ), where σ2(λ) is Varλ(Y1). [In fact

σ2(λ) = 5λ2+2
(λ2+4)(λ2+1)2

, which we take for granted.] Below you are asked
to provide two justifications of this result.

12



(e) Show by application of the theory of moment estimators that the
postulated limit law is correct. [If it is convenient for you, you
rename the above λ as λ0, the ‘true’ parameter.]

(f) Show by application of the theory for M-estimators that the postu-
lated limit law is correct. [You don’t have to verify the conditions
of the theorem you’d like to use; just blindly apply the assertions.]

28. Let Ω = [0, 1] and define a collection of subsets of Ω, call it F , by
F ∈ F if either F is at most countable or its complement F c is at most
countable. Furthermore, let the map P : F → [0, 1] be defined by

P(F ) =

{
0 if F is at most countable
1 if F c is at most countable,

and note that we don’t a priori impose that P is a measure.

(a) Show that F is a σ-algebra.

(b) LetA1, A2, . . . be a disjoint sequence in F . Show that P(
⋃∞
i=1Ai) =∑∞

i=1 P(Ai) if all Ai are at most countable, or if there is exactly
one Ai whose complement is at most countable.

(c) Suppose that A1, A2 ∈ F such that Ac1 and Ac2 are at most count-
able. Are A1 and A2 disjoint?

(d) Is P(
⋃∞
i=1Ai) =

∑∞
i=1 P(Ai) for all disjoint sequences A1, A2, . . .

in F?

(e) Is P a probability measure on F?

29. Let (Ω,F ,P) be a probability space and X1, X2, . . . be an IID sequence
of random variables defined on it with EX2

1 < ∞, EX1 = µ and
VarX1 = σ2. Furthermore N : Ω→ {1, 2, . . .} is a random variable on
this space that is independent of the Xi, with EN2 < ∞, EN = m
and VarN = v2. Put Sn =

∑n
i=1 Xi, S =

∑N
i=1Xi and note that

the number of terms in the latter sum is random. Observe that S =∑∞
n=1 1{N=n}Sn =

∑∞
n=1

∑n
i=1 1{N=n}Xi, |S| ≤

∑∞
n=1

∑n
i=1 1{N=n}|Xi|.

Moreover S2 ≤ N
∑N

i=1X
2
i .

(a) Show that E |S| <∞ and ES2 ≤ EN2 × EX2
1 <∞.

(b) Show that ES = mµ.

(c) Show that VarS = mσ2 + µ2v2.

13



30. Consider a probability space (Ω,F ,P) together with a sequence (Fn)∞n=1

of sub-σ-algebras of F satisfying Fn ⊂ Fn+1 for all n ≥ 0. Such
a sequence is called a filtration. Furthermore, there is sequence of
independent random variables (Xi)

∞
i=1 such that E |Xi| < ∞ for all i,

and every Xi is Fi-measurable. Put Sn =
∑n

i=1 Xi for n ≥ 1, S0 = 0,
and Pn =

∏n
i=1Xi for n ≥ 1, P0 = 1.

(a) Show that Sn and Pn are Fn-measurable for all n.

(b) Show that E |Sn| <∞ for all n.

(c) Show that E [Sn+1|Fn] = Sn for all n ≥ 0 if all Xn have zero
expectation.

(d) Show that E |Pn| <∞ for all n. [You may want to use induction
here.]

(e) Show that E [Pn+1|Fn] = Pn for all n ≥ 0 if allXn have expectation
equal to 1.

NB: The sequences (Sn) are (Pn) are known as examples of martingales.

31. Let X,X1, X2, . . . be random variables and suppose Xn  X. Let F
denote the distribution function of X.

(a) Show that lim supn→∞ P(Xn < x) ≤ F (x) for all x at which F is
continuous.

(b) Show that lim infn→∞ P(Xn < x) ≥ F (x) for all x at which F is
continuous. [Here P(Xn < x) ≥ P(Xn ≤ x − ε) for any ε > 0
comes in handy.

(c) Conclude that limn→∞ P(Xn < x) = F (x) for all x at which F is
continuous.

32. Consider a sample from an exponential distribution, i.e. one has an
IID sequence X1, . . . , Xn where all Xi have a density pλ(x) = λe−λx for
x ≥ 0 and a parameter λ > 0. Along with the Xi one also observes
Yi = sinXi, i = 1, . . . , n. Probabilities, expectations, etc. depending
on λ, when necessary, are denoted Pλ, Eλ, etc., and Y n is the average
of the Yi.

(a) Show that h(λ) := EλYi = λ
1+λ2

[Hint: use two times integration

by parts, for which you may want to use that d sinx
dx

= cosx and
d cosx

dx
= − sinx.]

(b) Show that h(λ) ≤ 1
2

with equality iff λ = 1, and h( 1
λ
) = h(λ).

[Note that therefore λ cannot be identified from EλYi.]
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(c) Show, use the law of large numbers, that Pλ(Y n ≤ 1
2
) → 1 for

λ 6= 1.

(d) Show that a possible moment estimator using the Yi as (trans-

formed) observations is λ̂n = 1
2Y n

(1±
√

1− 4(Y n)2) =: g±(Y n).

(e) Choose λ̂n = 1
2Y n

(1 +
√

1− 4(Y n)2) =: g+(Y n) as the estimator

of λ. Show that λ̂n
Pλ→ g(λ), where g(λ) = λ1λ>1 + 1

λ
1λ≤1 =

max{λ, 1
λ
}. [The λ̂n are consistent estimators of g(λ).]

To avoid identification and other technical problems, we assume that

it is known that λ > 1. As a result λ̂n
Pλ→ λ. The standardized moment

estimator
√
n(λ̂n − λ) has a limit law, which is normal with variance

(1+λ2)4

(1−λ2)2
σ2(λ), where σ2(λ) is Varλ(Y1), which we don’t compute. Below

you are asked to provide two justifications of this result.

(f) Show by application of the theory of moment estimators, and
check that the relevant conditions are satisfied, that the postu-
lated limit law is correct. [If it is convenient for you, you can
rename the above λ as λ0, the ‘true’ parameter.]

(g) Show by application of the theory for M-estimators that the postu-
lated limit law is correct. [You don’t have to verify the conditions
of the theorem you’d like to use; just blindly apply the assertions.]

33. We consider a sample from an inverse Gamma distribution. We have
nonnegative IID observations Xi with a common density, given by
pβ(x) = βα

Γ(α)
x−(α+1) exp(−β/x) where α > 0 is known and β > 0 a

parameter to be estimated. In order to do that we consider a moment
estimator with the function f(x) = 1

x
, that is we solve the equation

Eβf(X1) = 1
n

∑n
i=1 f(Xi), in alternative notation Pβf = Pnf . Some

additional information is Varβ
1
X1

= α
β2 , and VarβX1 = β2

(α−1)2(α−2)
if

α > 2.

(a) Show that Eβ 1
X1

= α
β
, and EβX1 = β

α−1
if α > 1. [Recall that

Γ(α + 1) = αΓ(α).]

(b) Show that the moment estimator of β with the given f as above
is β̂n = nα∑n

i=1
1
Xi

.

(c) Find the limit law of
√
n(β̂n − β). [You may want to use the

ordinary Central Limit Theorem as a first step.]
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(d) An alternative moment estimator, call it β̂′n, is obtained by solv-
ing the equation 1

n

∑n
i=1 Xi = EβX1. What is the asymptotic

distribution of this estimator?

(e) Which of the two estimators β̂n, β̂′n is preferred, both from a ‘qual-
ity’ point of view –think of some desirable properties as consis-
tency, efficiency, (asymptotic) mean squared error– and from the
point of view of weaker or stronger underlying assumptions?

(f) Is there an estimator that performs (strictly) better than the most
preferred one in (e) from the ‘quality’ point of view?

34. Let (Ω,F ,P) be a probability space on which random variables X, Y
are defined. It is assumed that the vector (X, Y ) has a joint density
w.r.t. Lebesgue measure, a nonnegative Borel-measurable function f :
R2 → R, integrating to 1. Moreover, f is such that the marginal density
fY of Y is strictly positive. One can now define the conditional density
of X given Y = y, fX|Y=y(x) := f(x,y)

fY (y)
for all x, y, where fY is the

marginal density of Y . It is assumed that E |X| < ∞. Integrals with
the densities can also be viewed as Riemann integrals.

(a) Show that fX|Y=y is a density for all y.

(b) Let g : R → R be defined by g(y) :=
∫
R xfX|Y=y(x) dx. The

theory for product measures says that g is a Borel function. Show
that g(Y ) is a proper random variable, i.e. a function on Ω that
is F -measurable.

(c) Let G = {Y ∈ B}, where B is a Borel set in R. Show by repre-
senting the expectations as (double) integrals that E [1Gg(Y )] =
E [1GX].

(d) What is E [X|Y ] in terms of g?

35. Let f , fn (n ≥ 1) be densities of probability measures on (R,B),
nonnegative Borel-measurable function such that their integrals w.r.t
Lebesgue measure (denoted λ) equal 1. By F , Fn we denote the corre-
sponding distribution functions. It is assumed that fn → f a.e. (w.r.t
Lebesgue measure), as n→∞.

(a) Show that F is everywhere left continuous, i.e. limn→∞ F (x− 1
n
) =

F (x) for all x ∈ R. [Consider
∫
1(x− 1

n
,x]f dλ.]

(b) Show that
∫
|f − fn| dλ = 2

∫
1{f>fn}(f − fn) dλ

(c) Show that 0 ≤ 1{f>fn}(f−fn) ≤ f and deduce that
∫
|f−fn| dλ→

0.
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(d) Show that Fn  F , i.e. Fn(x) → F (x) for all x ∈ R. [Use the
previous question and work on |Fn(x)− F (x)|.] Why do we have
convergence for all x?

36. Let X have a Binomial distribution with parameters n and p, p is
unknown. Independent of X, there is a random variable Y having a
Binomial distribution with parameters m and q, where q > 0 is also
unknown. Assume m = 2n. We are interested to estimate r := p

q
and

in asymptotic behavior of estimators for n→∞.

(a) Give a consistent estimator r̂n of r, and show its consistency.

(b) Give the limit distribution of
√
n(r̂n − r).

(c) It may happen that although p and q are unknown, it is known
that they are equal. Give a better estimator of r than the r̂n
above.

37. LetX1, . . . , Xn be independent random variables with a commonN(θ0, 1)
distribution with θ0 ∈ R. As an estimator θ̂n we use the minimizer of
the function θ 7→

∑n
i=1(Xi−θ)6. This minimizer also solves an equation

of the type Ψn(θ) = 0.

(a) Show that a well chosen Ψn(θ) converges in probability to a limit
Ψ(θ) and determine this limit. Show, compute a derivative, that
Ψ(θ), is a strictly monotone function of θ.

(b) Show that θ̂n is a consistent estimator of θ0.

(c) Show that
√
n(θ̂n − θ0) has a limiting normal distribution and

determine its expectation and variance. [Skip the verification of
all conditions of a theorem you want to use.]

You may want to use that for a standard normal random variable Z
it holds that EZp = 0 for an odd integer p and for an even integer
p = 2m one has EZ2m = 1 · 3 · · · (2m− 1), a product of odd integers.

38. A density of a 1-dimensional exponential family is of the form

pθ(x) = c(θ)h(x)eθt(x),

where h and t are known measurable functions on R, and h is non-
negative. It is also assumed that c is a known function of θ ∈ Θ.
Many well known distributions are of this type. Let Θ = {θ ∈ R :∫
R h(x)eθt(x) dx <∞}. Then for θ ∈ Θ one has

c(θ) =
1∫

R h(x)eθt(x) dx
. (1)
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Moreover, we can define, for θ ∈ Θ,

b(θ) = log

∫
R
h(x)eθt(x) dx,

as the integral is positive. In what follows we denote differentiation
w.r.t. θ by a dot. Integration and differentiation can be swapped at
will.

(a) Why does Equation (??) hold?

(b) Show that Θ is an interval, i.e. if θ1, θ2 ∈ Θ, then also 1
2
(θ1 + θ2) ∈

Θ.

(c) Show that ḃ(θ) = Eθt(X) (assuming that both expressions exist
as finite quantities).

(d) Show that b̈(θ) = Varθt(X) (assuming that both expressions exist
as finite quantities).

Let now X1, . . . , Xn be an IID sample from such an exponential family.

(e) Use t̄n := 1
n

∑n
i=1 t(Xi) as a statistic to derive a moment estimator

of θ and write explicitly the equation (in terms of the function c
and its derivative) θ has to solve to get this moment estimator,
call it θ̂mom

n .

(f) Find, informally, the asymptotic distribution of θ̂mom
n for n→∞.

(g) Also write down the equation that the Maximum likelihood esti-
mator, call it θ̂ml

n , has to satisfy.

(h) Compute the Fisher information Iθ in one observation.

(i) Find, informally, the asymptotic distribution of θ̂ml
n for n→∞.
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