Tinbergen Institute
 Measure Theory and Asymptotic Statistics Exam Questions

1. If X and Y are independent random variables with $\mathbb{E}|X|<\infty$ and $\mathbb{E}|Y|<\infty$ (assumed to hold throughout this exercise), then the product formula $\mathbb{E}(X Y)=\mathbb{E} X \cdot \mathbb{E} Y$ holds. To show this you have to apply (parts of) the standard machine ${ }^{1}$ a couple of times.
(a) First a special case. Let X be positive but arbitrary otherwise, and $Y=\mathbf{1}_{A}$ for some set $A \in \mathcal{F}$. Use the standard machine to show that $\mathbb{E}\left(X \mathbf{1}_{A}\right)=\mathbb{E} X \cdot \mathbb{P}(A)$.
(b) Prove now, using the previous item and the standard machine again, the product formula for $X \geq 0$ and $Y \geq 0$.
(c) Why are X^{+}and Y^{-}also independent random variables?
(d) Complete the proof for arbitrary X and Y.
2. Let X and Y be random variables defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{G}=\sigma(Y)$.
(a) Show that the collection of events $\{Y \in B\}$, where B runs through the Borel sets $\mathcal{B}(\mathbb{R})$, forms a σ-algebra (so you show that it has all the defining properties of a σ-algebra). This σ-algebra will be denoted \mathcal{H}.
(b) Show the two inclusions $\mathcal{H} \subset \mathcal{G}$ and $\mathcal{G} \subset \mathcal{H}$. For the latter you need the 'minimality property' of $\sigma(Y)$.
(c) Let $X=\mathbf{1}_{G}$ for some $G \in \mathcal{G}$. Find a function $f: \mathbb{R} \rightarrow[0,1]$ that is Borel-measurable (and check this property!) such that $X=f(Y)$.
(d) Use the standard machine to prove the following result. If X is \mathcal{G}-measurable, then there exists a Borel-measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $X=f(Y)$.
3. Let X_{1}, X_{2}, \ldots be random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Assume that the X_{i} are nonnegative and let $S_{n}=\sum_{i=1}^{n} X_{i}$ for $n \geq 1$. It is known that the S_{n} are random variables (measurable functions) as well. We define $S(\omega)=\lim _{n \rightarrow \infty} S_{n}(\omega)$, which exists for every $\omega \in \Omega$ but may be infinite.

[^0](a) Show that S is a random variable (Hint: show first that $\{S>$ $a\}=\bigcup_{n=1}^{\infty}\left\{S_{n}>a\right\}$ for $\left.a>0\right)$.
(b) Note that $\mathbb{E} S \leq \infty$ is well defined. Show that $\mathbb{E} S=\sum_{i=1}^{\infty} \mathbb{E} X_{i}$.
(c) Assume that $\sum_{i=1}^{\infty} \mathbb{E} X_{i}<\infty$. Show that $\mathbb{P}(S<\infty)=1$.
4. Let X be a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. A well known property is that $\mathbb{E} X=0$ if $X=0$ a.s. In this exercise you will show this.
(a) Suppose that X assumes finitely many values $y_{0}, y_{1}, \ldots, y_{n}$ and also that $X=0$ a.s. Show that $\mathbb{E} X=0$.
(b) Suppose that $X \geq 0$, but also $X=0$ a.s. Argue by using lower Lebesgue sums and the previous item that $\mathbb{E} X=0$.
(c) Let X be arbitrary but still $X=0$ a.s. Show again that $\mathbb{E} X=0$.
5. Recall the definition of infimum, written as inf. If x_{1}, x_{2}, \ldots is a finite or infinite sequence of real numbers, then $x=\inf \left\{x_{1}, x_{2}, \ldots\right\}$ iff (1) $x \leq x_{k}$ for all k and (2) if $y>x$, there exists x_{k} such that $x_{k}<y$. It may happen that $x=-\infty$. For finite sequences $x_{1}, \ldots, x_{n}, \inf \left\{x_{1}, \ldots, x_{n}\right\}$ is the minimum of the x_{k}. An example with an infinite sequence is $\inf \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}=0$, another example is $\inf \left\{1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, \ldots\right\}=0$.

If we have an infinite sequence of random variables X_{1}, X_{2}, \ldots, we say that the random variable X is $\inf \left\{X_{1}, X_{2}, \ldots\right\}$ if for every $\omega \in \Omega$ one has $X(\omega)=\inf \left\{X_{1}(\omega), X_{2}(\omega), \ldots\right\}$. From now on we assume to have a sequence of nonnegative random variables X_{1}, X_{2}, \ldots. For each n we define the random variable $Y_{n}:=\inf \left\{X_{n}, X_{n+1}, X_{n+2}, \ldots\right\}$, also written as $Y_{n}=\inf _{m \geq n} X_{m}$.
(a) Show that (each) Y_{n} is a random variable by considering events like $\left\{Y_{n} \geq a\right\}$.
(b) Show that the Y_{n} form an increasing sequence of random variables. They then have a limit $Y_{\infty} \leq \infty$.
(c) Show that $Y_{n} \leq X_{m}$ for all $m \geq n$, and conclude that $\mathbb{E} Y_{n} \leq$ $y_{n}:=\inf \left\{\mathbb{E} X_{n}, \mathbb{E} X_{n+1}, \ldots\right\}$. Note that the y_{n} form an increasing sequence too.
(d) Show that $\mathbb{E} Y_{\infty} \leq \lim _{n \rightarrow \infty} y_{n}$. This property is often written as $\mathbb{E} \lim _{n \rightarrow \infty} \inf _{m \geq n} X_{m} \leq \lim _{n \rightarrow \infty} \inf _{m \geq n} \mathbb{E} X_{m}$, and is known as Fatou's lemma.
(e) In the previous item, a strict inequality may occur. Consider thereto the probability space with $\Omega=(0,1), \mathcal{F}$ the Borel sets in $(0,1)$ and \mathbb{P} the Lebesgue measure. We take $X_{n}(\omega)=n \mathbf{1}_{(0,1 / n)}(\omega)$. Show that indeed strict inequality now takes place in Fatou's lemma (so you compute both sides of the inequality).
6. In this exercise we need limits of sequences of subsets of a given set Ω, which we define in two cases. Suppose that we have an increasing sequence of sets $A_{n}(n \geq 0)$, i.e. $A_{n} \subset A_{n+1}$ for all $n \geq 0$. Then we define $\bar{A}=\lim _{n \rightarrow \infty} A_{n}:=\bigcup_{n=0}^{\infty} A_{n}$. If the sequence is decreasing, $A_{n} \supset$ A_{n+1} for all n, we define $\underline{A}=\lim _{n \rightarrow \infty} A_{n}:=\bigcap_{n=0}^{\infty} A_{n}$. We work with a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and we consider an increasing sequence of events A_{n} (so $A_{n} \in \mathcal{F}$ for all n). Let $D_{0}=A_{0}$ and $D_{n}=A_{n} \backslash A_{n-1}$ for $n \geq 1$.
(a) Show that $\mathbb{P}\left(A_{n}\right)=\sum_{k=0}^{n} \mathbb{P}\left(D_{k}\right)$.
(b) Show that $\bar{A}=\bigcup_{k=0}^{\infty} D_{k}$.
(c) Show that $\mathbb{P}\left(A_{n}\right) \rightarrow \mathbb{P}(\bar{A})$ for $n \rightarrow \infty$.
(d) Suppose that events $B_{n}(n \geq 0)$ form a decreasing sequence. Show that $\mathbb{P}\left(B_{n}\right) \rightarrow \mathbb{P}(\underline{B})$. (Hint: consider the B_{n}^{c}.)
7. Let X, Y be random variables, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, so they are both \mathcal{F}-measurable.
(a) Let $c \in \mathbb{R}$. Show (make a sketch!) that $\left\{(x, y) \in \mathbb{R}^{2}: x+y>\right.$ $c\}=\bigcup_{q \in \mathbb{Q}}\left\{(x, y) \in \mathbb{R}^{2}: x>q, y>c-q\right\}$.
(b) Show that $X+Y$ is also \mathcal{F}-measurable. NB: For this it is sufficient to show that $\{X+Y>c\} \in \mathcal{F}$ for all $c \in \mathbb{R}$.
8. Let x_{1}, x_{2}, \ldots be a sequence of real numbers. We put, for $n \geq 1$, $\bar{x}_{n}=\sup \left\{x_{n}, x_{n+1}, \ldots\right\}$ and $\underline{x}_{n}=\inf \left\{x_{n}, x_{n+1}, \ldots\right\}$. Note that the \bar{x}_{n} form a decreasing sequence and the \underline{x}_{n} an increasing one, and hence both sequences have a limit, denoted \bar{x} and \underline{x} respectively. One always has $\bar{x} \geq \underline{x}$ and $\bar{x}=\inf \left\{\bar{x}_{1}, \bar{x}_{2}, \ldots\right\}$. Moreover, the original sequence with the x_{n} has a limit x iff $x=\bar{x}=\underline{x}$.

Consider now a sequence of random variables X_{n} defined on some $(\Omega, \mathcal{F}, \mathbb{P})$. As these are measurable functions, we can define \bar{X}_{n} as the function s.t. $\bar{X}_{n}(\omega)=\sup \left\{X_{n}(\omega), X_{n+1}(\omega), \ldots\right\}$ and likewise $\underline{X}_{n}, \bar{X}$, \underline{X}.
(a) Consider $E_{a}=\left\{\bar{X}_{n} \leq a\right\}$ for arbitrary $a \in \mathbb{R}$. Show that $E_{a} \in \mathcal{F}$ and conclude that \bar{X}_{n} is a random variable (for every n).
(b) Show that \underline{X}_{n} is a random variable.
(c) Show that \bar{X} and \underline{X} are random variables too.
(d) Show that $\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)\right.$ exists $\}=\{\omega: \bar{X}(\omega)-\underline{X}(\omega) \leq 0\}$ and that this set belongs to \mathcal{F}.
(e) Assume that $X(\omega)=\lim _{n \rightarrow \infty} X_{n}(\omega)$ exists for every ω. Show that X is a random variable.
9. Consider a sequence of random variables X_{n} defined on some $(\Omega, \mathcal{F}, \mathbb{P})$ and put $S_{n}=\sum_{k=1}^{n} X_{k}$ for $n \geq 1$.
(a) Assume all $X_{n} \geq 0$. Show that $\mathbb{E} \sum_{k=1}^{\infty} X_{k}=\sum_{k=1}^{\infty} \mathbb{E} X_{k}$. Hint: apply the Monotone Convergence Theorem to the S_{n}.

From here on the assumption that the X_{n} are nonnegative is dropped.
(b) Show that $\mathbb{E} \sum_{k=1}^{\infty}\left|X_{k}\right|=\sum_{k=1}^{\infty} \mathbb{E}\left|X_{k}\right|$.
(c) Assume $\sum_{k=1}^{\infty} \mathbb{E}\left|X_{k}\right|<\infty$. Show that $\mathbb{E} \sum_{k=1}^{\infty} X_{k}=\sum_{k=1}^{\infty} \mathbb{E} X_{k}$.
10. Consider a probability space and a sequence of events $\left(E_{n}\right)_{n>1}$. The event $E:=\lim \sup E_{n}$ is defined as $E=\bigcap_{n=1}^{\infty} U_{n}$, where $U_{n}=\bigcup_{m=n}^{\infty} E_{m}$. Note that the U_{n} form a decreasing sequence. Further we have $E^{c}=$ $\bigcup_{n=1}^{\infty} D_{n}$, with $D_{n}=\bigcap_{m=n}^{\infty} E_{m}^{c}$. We also write $D_{n}^{N}=\bigcap_{m=n}^{N} E_{m}^{c}$ for $N \geq n$.
(a) Show that $\mathbb{P}(E) \leq \mathbb{P}\left(U_{n}\right)$ for every n and that $\mathbb{P}(E)=0$ if $\sum_{n=1}^{\infty} \mathbb{P}\left(E_{n}\right)<\infty$.

From now on we assume that the E_{n} are independent events.
(b) Show that $\mathbb{P}\left(D_{n}^{N}\right) \leq \exp \left(-\sum_{m=n}^{N} \mathbb{P}\left(E_{m}\right)\right)$. [Recall $e^{-x} \geq 1-x$.]
(c) Assume further also that $\sum_{n=1}^{\infty} \mathbb{P}\left(E_{n}\right)=\infty$. Show that $\mathbb{P}\left(D_{n}\right)=0$ for all n and deduce that $\mathbb{P}(E)=1$.

The conclusions in (a) and (c) are together known as the Borel-Cantelli lemma.
11. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which a random variable X is defined with $\mathbb{E}|X|<\infty$. Let \mathcal{G} be a sub- σ-algebra of \mathcal{F} and let $\hat{X}=\mathbb{E}[X \mid \mathcal{G}]$.
(a) Show that $\mathbb{E} \hat{X}^{+} \leq \mathbb{E}|X| \mathbf{1}_{\{\hat{X}>0\}}$. Hint: use $x^{+}=x \mathbf{1}_{\{x>0\}}$ and the definition of conditional expectation.
(b) Show that $\mathbb{E}|\hat{X}| \leq \mathbb{E}|X|$.
12. Consider the Pareto distribution with parameters $\alpha, \mu>0$. This distribution has density

$$
p_{\alpha, \mu}(x)=\frac{\alpha \mu^{\alpha}}{x^{\alpha+1}} \mathbf{1}_{\{x \geq \mu\}} .
$$

Let Y_{1}, \ldots, Y_{n} be a sample from this distribution, and $X_{i}=\log Y_{i}, i=$ $1, \ldots, n$. It is possible to show that $\mathbb{E} X_{1}=\log \mu+\frac{1}{\alpha}$ and $\operatorname{Var} X_{1}=\frac{1}{\alpha^{2}}$. Suppose μ is known.
(a) Let $\hat{\alpha}_{n}$ be the maximum likelihood estimator of α. Show that $\hat{\alpha}_{n}=\frac{1}{\bar{X}_{n}-\log \mu}$.
(b) Deduce from the Central limit theorem for averages and the Delta method that $\sqrt{n}\left(\hat{\alpha}_{n}-\alpha\right)$ converges in distribution to $N\left(0, \alpha^{2}\right)$.

In the sequel also μ is unknown.
(c) Show that the maximum likelihood estimator of μ is $\hat{\mu}_{n}=\exp \left(\underline{X}_{n}\right)$, where $\underline{X}_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$.
(d) Show that $X_{i}-\log \mu$ has an exponential distribution and that $\mathbb{P}\left(n\left(\underline{X}_{n}-\log \mu\right)>c\right)=\exp (-c \alpha)$ for any $c>0$.
(e) Show that $\mathbb{P}\left(n\left(\hat{\mu}_{n}-\mu\right)>c\right) \rightarrow \exp (-c \alpha / \mu)$ for any $c>0$. [Depending on the method, you may need $\log (1+x)=x+O\left(x^{2}\right)$ for $x \rightarrow 0$.]
(f) What is the (obvious) maximum likelihood estimator, call it $\hat{\alpha}_{n}$ again, of α in the present situation? Argue that the limit distribution of $\sqrt{n}\left(\hat{\alpha}_{n}-\alpha\right)$ is the same as in question ??.
13. Let X_{1}, \ldots, X_{n} be independent random variables with a $N\left(\theta, \theta^{2}\right)$ distribution. Here $\theta \neq 0$ is an arbitrary real parameter. We consider the maximum likelihood estimator $\hat{\theta}_{n}$, a maximizer of $M_{n}(\theta)$, where $M_{n}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \log \frac{p_{\theta}\left(X_{i}\right)}{p_{\theta_{0}}\left(X_{i}\right)}$ and $p_{\theta}\left(X_{i}\right)$ the likelihood of θ when X_{i} is observed and $\theta_{0} \neq 0$ is the true parameter. Probabilities or expectations below are taken under the true parameter. It turns out that $\hat{\theta}_{n}=-\frac{1}{2} \bar{X}_{n}+\operatorname{sign}\left(\bar{X}_{n}\right) \sqrt{\frac{1}{4} \bar{X}_{n}^{2}+\overline{X_{n}^{2}}}$. Here \bar{X}_{n} is the average of the X_{i} and $\overline{X_{n}^{2}}$ is the average of the X_{i}^{2}. In the computations you may need the following results: $\mathbb{E}_{\theta_{0}} X^{3}=4 \theta_{0}^{3}, \mathbb{E}_{\theta_{0}} X^{4}=10 \theta_{0}^{4}$.
(a) Show that $M_{n}(\theta)=-\frac{1}{2} \log \frac{\theta^{2}}{\theta_{0}^{2}}-\frac{1}{2 n} \sum_{i=1}^{n}\left(\frac{X_{i}}{\theta}-1\right)^{2}+\frac{1}{2 n} \sum_{i=1}^{n}\left(\frac{X_{i}}{\theta_{0}}-1\right)^{2}$.
(b) Show: $M_{n}(\theta) \xrightarrow{\mathrm{P}} M(\theta)=-\frac{1}{2} \log \theta^{2}+\frac{1}{2} \log \theta_{0}^{2}-\frac{1}{2} \frac{\theta_{0}^{2}}{\theta^{2}}-\frac{1}{2}\left(\frac{\theta_{0}}{\theta}-1\right)^{2}+\frac{1}{2}$.
(c) Show that $M\left(\theta_{0}\right)=0$ and that θ_{0} is the maximizer of M.
(d) We expect that $\hat{\theta}_{n}$ is consistent. Show this by a direct argument, using the law of large numbers for \bar{X}_{n} and $\overline{X_{n}^{2}}$.
(e) Let $\Psi_{n}(\theta)=\dot{M}_{n}(\theta)$ and $\Psi(\theta)=\dot{M}(\theta)$. What would you expect (ignoring certain conditions) for the asymptotic variance of $\hat{\theta}_{n}$?
(f) Show that the Fisher information $I_{\theta_{0}}$ equals $3 \theta_{0}^{-2}$.
(g) The central limit theorem gives $\sqrt{n}\left(\begin{array}{c}\bar{X}_{n}-\theta_{0} \\ X_{n}^{2}\end{array}-2 \theta_{0}^{2}\right) \rightsquigarrow N_{2}\left(0, \Sigma\left(\theta_{0}\right)\right)$, where $\Sigma\left(\theta_{0}\right)=\left(\begin{array}{cc}\theta_{0}^{2} & 2 \theta_{0}^{3} \\ 2 \theta_{0}^{3} & 6 \theta_{0}^{4}\end{array}\right)$. Use this and the fact that $\hat{\theta}_{n}=$ $\phi\left(\bar{X}_{n}, \overline{X_{n}^{2}}\right)$ (for which ϕ ?) to deduce that indeed $\hat{\theta}_{n}$ is asymptotically normal with variance given by the inverse of the Fisher information.
14. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which is defined a random variable X that has a standard exponential distribution, $\mathbb{P}(X \leq x)=$ $1-e^{-x}$ for $x \geq 0$. Let λ be a positive constant and consider $Z=$ $\lambda \exp (-(\lambda-1) X)$, a positive random variable. Using Z we define a new measure \mathbb{P}^{\prime} on \mathcal{F} by $\mathbb{P}^{\prime}(F)=\mathbb{E}\left[1_{F} Z\right]$ (theory guarantees that \mathbb{P}^{\prime} is indeed a measure).
(a) Show that $\mathbb{E} Z=1$. Is \mathbb{P}^{\prime} a probability measure?
(b) Show (by computing an integral) that $\mathbb{P}^{\prime}(X \leq x)=1-e^{-\lambda x}$. [It follows that X has an exponential distribution with parameter λ under \mathbb{P}^{\prime}.]
15. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let X be a nonnegative random variable defined on it. Let h be a monotone increasing function, $h:[0, \infty) \rightarrow[0, \infty)$ with $h(0)=0$. We will need the product space $S=\Omega \times[0, \infty)$ with the product σ-algebra $\mathcal{F} \times \mathcal{B}[0, \infty)$ and the product measure $\mathbb{P} \times \lambda$, where λ is the Lebesgue measure on $\mathcal{B}[0, \infty)$.
(a) Show that h is Borel-measurable. [Hint: consider the sets $\{h \leq c\}$ for $c>0$; these sets have a nice structure.]
(b) We can extend h to a function on S by putting $h(\omega, x)=h(x)$. Show (use part (a)) that h is $\mathcal{F} \times \mathcal{B}[0, \infty)$-measurable. In a similar way the identity map on $[0, \infty$) (i.e. $u \mapsto u$) can be considered $\mathcal{F} \times \mathcal{B}[0, \infty)$-measurable.
(c) Show that it follows that the set $E:=\{(\omega, u) \in \Omega \times[0, \infty)$: $h(X(\omega)) \geq u\}$ is $\mathcal{F} \times \mathcal{B}[0, \infty)$-measurable.
(d) Use the set E above and Fubini's theorem to show that $\mathbb{E} h(X)=$ $\int_{0}^{\infty}\left(1-F\left(h^{-1}(u)\right) \mathrm{d} u\right.$, where F is the distribution function of X and h^{-1} is the inverse function of h.
16. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which is defined a random variable X. Assume $\mathbb{E}|X|$ finite, \mathcal{G} a sub- σ-algebra of \mathcal{F} and let \hat{X} be (a version of) $\mathbb{E}[X \mid \mathcal{G}]$.
(a) Show that $\hat{X} \leq \mathbb{E}[|X| \mid \mathcal{G}]$ and conclude that $|\hat{X}| \leq \mathbb{E}[|X| \mid \mathcal{G}]$.
(b) Let f be a convex differentiable function. Then for every x, x_{0} it holds that $f(x) \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$. Note that $y=$ $f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ gives the tangent line of f at x_{0}. Verify this inequality by a sketch for $f(x)=|x|^{2}$. Use the inequality with $x=X$ and $x_{0}=\hat{X}$, assuming that $\mathbb{E}|X|^{p}<\infty$, to show that $\mathbb{E}|X|^{p} \geq \mathbb{E}|\hat{X}|^{p}$ for $p>1$.

Consider also a sequence $\left(\mathcal{G}_{n}\right)$ of sub- σ-algebras of \mathcal{F} and let, for each n, X_{n} be (a version of) the conditional expectation $\mathbb{E}\left[X \mid \mathcal{G}_{n}\right]$.
(c) Suppose that for some $a>0$ it holds that $\mathbb{E}|X|^{1+a}<\infty$. Show that $\left|X_{n}\right| \mathbf{1}_{\left\{\left|X_{n}\right|>m\right\}} \leq \frac{\left|X_{n}\right|^{1+a}}{m^{a}}$ and deduce that $\sup _{n} \mathbb{E}\left|X_{n}\right| \mathbf{1}_{\left\{\left|X_{n}\right|>m\right\}} \rightarrow$ 0 for $m \rightarrow \infty$. [A sequence (X_{n}) with this property is said to be uniformly integrable.]
17. Under certain conditions, among them continuous dependence of I_{θ} on θ, one has that $\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)$ has an asymptotically normal $N\left(0, \frac{1}{I_{\theta_{0}}}\right)$ distribution. Here $\hat{\theta}_{n}$ is the maximum likelihood estimator, which is assumed to be consistent, based on a sample from a distribution with density $p_{\theta_{0}}$ and θ_{0} is one-dimensional.
(a) Show that $\sqrt{n I_{\hat{\theta}_{n}}}\left(\hat{\theta}_{n}-\theta_{0}\right) \rightsquigarrow N(0,1)$.

Consider a sample X_{1}, \ldots, X_{n} from an exponential distribution with density $\frac{1}{\theta} \exp (-x / \theta)$. Later we will use the different parametrization with $\lambda=1 / \theta$. Recall that $\mathbb{E} X_{1}=\theta_{0}$ and $\operatorname{Var} X_{1}=\theta_{0}^{2}, \theta_{0}$ is the 'true' parameter. Consider the maximum likelihood estimator $\hat{\theta}_{n}$.
(b) Show by using the ordinary central limit theorem that $\sqrt{n}\left(\hat{\theta}_{n}-\right.$ $\left.\theta_{0}\right) \rightsquigarrow N\left(0, \theta_{0}^{2}\right)$.
(c) Compute the maximum likelihood estimator $\hat{\lambda}_{n}$ of $\lambda=1 / \theta_{0}$ and show by the delta method that $\sqrt{n}\left(\hat{\lambda}_{n}-\lambda_{0}\right) \rightsquigarrow N\left(0, \lambda_{0}^{2}\right)$.
(d) Compute (under the alternative parametrization) the Fisher information $I_{\lambda_{0}}$ and show that the answer of question ?? agrees with the general result on the asymptotic behaviour on maximum likelihood estimators.
(e) Give a confidence interval of level $1-\alpha$ for θ_{0}.
18. In the formula for the asymptotic distribution of the Huber estimator one needs the derivative V_{θ} w.r.t. θ of $P \psi_{\theta}=\int \psi(x-\theta) p(x) \mathrm{d} x$, where ψ is the usual Huber function and p a probability density function.
We define the measure μ on $\mathcal{B}(\mathbb{R})$ by $\mu(B)=\int_{B} \mathbf{1}_{[-k, k]}(x) \mathrm{d} x$ (the integral can be seen as a Riemann integral and as an integral w.r.t. the Lebesgue measure λ). The function ψ and the measure μ are related by $\psi(x)+k=\mu((-\infty, x])=\int_{(-\infty, x]} \mathrm{d} \mu$. It follows that $\mu \ll \lambda$ and for a measurable function h for which the integrals exist, one has $\mu(h)=$ $\int \mathbf{1}_{[-k, k]}(x) h(x) \mathrm{d} x$.
(a) Understanding that $\psi(x-\theta)$ can be written as an integral minus the constant k, show by application of Fubini's theorem that $P \psi_{\theta}=k-\int_{-k}^{k} F(u+\theta) \mathrm{d} u$, where F is the distribution function with density p.
(b) Show that $V_{\theta}=F(\theta-k)-F(\theta+k)$.
(c) As an alternative to the ordinary Huber function, one can also use the scaled Huber function $\bar{\psi}_{k}=\frac{1}{k} \psi$. Note that $\lim _{k \rightarrow 0} \bar{\psi}_{k}(x)=$ $\operatorname{sign}(x)$. Show that the asymptotic distribution of the Huber estimator doesn't change if we replace ψ by $\bar{\psi}_{k}$ in the estimation procedure.
(d) Let $\bar{V}_{\theta, k}$ be the derivative of $\int \bar{\psi}_{k}(x-\theta) p(x) \mathrm{d} x$. Compute the limit, you may assume that p is continuous, of $\bar{V}_{\theta, k}$ for $k \rightarrow 0$. Why can you expect this result?
19. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let X be a nonnegative random variable defined on it. For $t \geq 0$ put $\phi(t)=\mathbb{E} \exp (-t X)$.
(a) Show that $0 \leq \phi(t) \leq 1$ for all $t \geq 0$.
(b) Show (use dominated convergence) that ϕ is continuous at any $t \geq 0$,
i.e. $\lim _{h \rightarrow 0} \phi(t+h)=\phi(t)$. [Note: for $t=0$ one only has right continuity.]
(c) Assume $\mathbb{E} X<\infty$ and consider $r(h):=\frac{1}{h}(\phi(t)-\phi(t+h))=$ $\frac{1}{h} \mathbb{E}\left(e^{-t X}\left(1-e^{-h X}\right)\right)$ for any fixed t and h such that $t+h \geq 0$. Show that $r(h) \rightarrow \mathbb{E}\left[e^{-t X} X\right]$ for $h \rightarrow 0$. Deduce that $\phi^{\prime}(t)=$ $-\mathbb{E}\left[e^{-t X} X\right]$. [You may use that $\left|e^{-a}-e^{-b}\right| \leq|a-b|$ for $a, b \geq 0$ and $\frac{1}{h}\left(1-e^{-h u}\right) \rightarrow u$ for $h \rightarrow 0$.]
(d) Assume that $\mathbb{E} X^{2}<\infty$. Knowing what $\phi^{\prime}(t)$ is, you show that $\phi^{\prime \prime}(t)=\mathbb{E}\left[e^{-t X} X^{2}\right]$.
(e) Look at $\phi(0), \phi^{\prime}(0)$ and $\phi^{\prime \prime}(0)$. Guess what $\phi^{(k)}(0)$ should be $(k \in$ \mathbb{N}), and what the needed assumption should be.
20. Let f, f_{1}, f_{2}, \ldots be density functions of probability distributions on $(\mathbb{R}, \mathcal{B})$, they are nonnegative, measurable and their integrals w.r.t. the Lebesgue measure λ equal 1 .
(a) Show that $\left(f_{n}-f\right)^{-} \leq f$ and $\left|f_{n}-f\right|=\left(f_{n}-f\right)+2\left(f_{n}-f\right)^{-}$.
(b) Assume that $f_{n} \rightarrow f$ a.e. Show that $\int\left|f_{n}-f\right| \mathrm{d} \lambda \rightarrow 0$.
(c) Assume that $f_{n} \rightarrow f$ a.e. Show that $F_{n}(x) \rightarrow F(x)$ for all $x \in \mathbb{R}$.
21. Assume that X, X_{1}, X_{2}, \ldots are \mathbb{R}^{1}-valued random variables. They have the property that $\lim _{n \rightarrow \infty} \mathbb{E} h\left(X_{n}\right)=\mathbb{E} h(X)$ for every bounded and continuous function h on \mathbb{R}. For every $x \in \mathbb{R}$ and $m \in \mathbb{N}$ we define $h_{x, m}: \mathbb{R} \rightarrow[0,1]$ by

$$
h_{x, m}(u)= \begin{cases}1 & \text { if } u<x, \\ 1+m(x-u) & \text { if } x \leq u \leq x+\frac{1}{m}, \\ 0 & \text { if } u>x+\frac{1}{m} .\end{cases}
$$

Note that $\mathbf{1}_{(-\infty, x]}(u) \leq h_{x, m}(u) \leq \mathbf{1}_{\left(-\infty, x+\frac{1}{m}\right]}(u)$ (draw a picture, if you like).
(a) Show that $\mathbb{P}\left(X_{n} \leq x\right) \leq \mathbb{E} h_{x, m}\left(X_{n}\right), \mathbb{E} h_{x, m}(X) \leq \mathbb{P}\left(X \leq x+\frac{1}{m}\right)$, and conclude that $\lim \sup _{n \rightarrow \infty} \mathbb{P}\left(X_{n} \leq x\right) \leq \mathbb{P}\left(X \leq x+\frac{1}{m}\right)$.
(b) Show that $\liminf _{n \rightarrow \infty} \mathbb{P}\left(X_{n} \leq x\right) \geq \mathbb{P}\left(X \leq x-\frac{1}{m}\right)$.
(c) Show that $X_{n} \rightsquigarrow X$.
22. Let ψ be the usual Huber function (depending on some $k>0$),

$$
\psi(u)=\left\{\begin{aligned}
-k & \text { if } u<-k \\
u & \text { if }-k \leq u \leq k \\
k & \text { if } u>k
\end{aligned}\right.
$$

We also have a sample X_{1}, \ldots, X_{n} of IID random variables with a common density function $p_{\theta_{0}}$ that is everywhere strictly positive. The parameter θ_{0} is to be estimated. We consider for $\theta \in \mathbb{R}$ the random variables $\Psi_{n}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \psi\left(X_{i}-\theta\right)$ for $\theta \in \mathbb{R}$, and, with $\psi_{\theta}(x)=$ $\psi(x-\theta), \Psi(\theta)=\mathbb{E} \Psi_{n}(\theta)=\mathbb{E} \psi_{\theta}\left(X_{1}\right)=P \psi_{\theta}$.
(a) The equation $\Psi_{n}(\theta)=0$ has a solution, $\hat{\theta}_{n}$ say. Why?
(b) Show by a direct computation of the expectation $\mathbb{E} \psi_{\theta}\left(X_{1}\right)$ (you have to compute an integral) that $\Psi(\theta)=k-\int_{\theta-k}^{\theta+k} F_{\theta_{0}}(x) \mathrm{d} x$, where $F_{\theta_{0}}$ is the distribution function of $p_{\theta_{0}}$. [The integral you can compute as the sum of three integrals, one of them you further compute using integration by parts. Or, you do integration by parts on a single integral.]

It is now also given that $p_{\theta_{0}}(x)=p\left(x-\theta_{0}\right)$, where p is a density function that is symmetric around zero.
(c) Show that $\dot{\Psi}(\theta)<0$ for every θ and that $\Psi(\theta)=0$ iff $\theta=\theta_{0}$. [In your answer you may first show that $\Psi\left(\theta_{0}\right)$ is the integral of an odd function; recall that f is odd if $f(-x)=-f(x)$.]
(d) Argue that $\hat{\theta}_{n}$ is a consistent estimator of θ_{0}.
(e) Show that $\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)$ is asymptotically normal with variance σ^{2} equal to

$$
\sigma^{2}=\frac{\int_{-k}^{k} x^{2} p(x) \mathrm{d} x+k^{2} \int_{|x| \geq k} p(x) \mathrm{d} x}{\left(\int_{-k}^{k} p(x) \mathrm{d} x\right)^{2}} .
$$

23. Let X_{1}, \ldots, X_{n} be a sample from a distribution with a positive and finite variance σ^{2}. Independently from this sample there is another sample $Y_{1}, \ldots, Y_{2 n}$ from a distribution with positive and finite variance τ^{2}. Note that in the second case the sample size is twice as big as in the first case. X_{i} and Y_{i} are one dimensional. The parameter σ^{2} is estimated by $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ and τ^{2} is estimated by $\hat{\tau}^{2}=$ $\frac{1}{2 n} \sum_{i=1}^{2 n}\left(Y_{i}-\bar{Y}\right)^{2}$. It is known that $\sqrt{n}\left(\hat{\sigma}^{2}-\sigma^{2}\right)$ has a limit law which is normal with variance equal to $\kappa_{X}-\sigma^{4}$, where $\kappa_{X}=\mathbb{E}\left(X_{1}-\mathbb{E} X_{1}\right)^{4}$, which is assumed to be finite (in what follows only the constant κ_{X} itself matters). Of course there is a parallel result for $\hat{\tau}^{2}$ (but note again the different sample size there).
(a) What is the limit law of the random vector $\sqrt{n}\binom{\hat{\sigma}^{2}-\sigma^{2}}{\hat{\tau}^{2}-\tau^{2}}$?
(b) We are interested in estimating the ratio $r=\sigma^{2} / \tau^{2}$ which we do by $\hat{r}=\hat{\sigma}^{2} / \hat{\tau}^{2}$. What is the limit law of $\sqrt{n}(\hat{r}-r)$? [There is a certain method to apply here.]
(c) If the distribution of the X_{i} is normal, then it is known that $\kappa_{X}=$ $3 \sigma^{4}$ and a similar result holds for normal Y_{i}. Show that in this case the limit variance of $\sqrt{n}(\hat{r}-r)$ is equal to $3 \sigma^{4} / \tau^{4}$.
(d) Give a $(1-\alpha)$-confidence interval for r under the normality assumptions of the previous item.
24. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let E_{1}, E_{2}, \ldots be an arbitrary sequence of events, put $U_{n}=\bigcup_{m \geq n} E_{m}, n \geq 1$.
(a) Write the limit U of the U_{n} in terms of the E_{n}.
(b) Show the following. If $\sum_{n \geq 1} \mathbb{P}\left(E_{n}\right)<\infty$, then $\mathbb{P}\left(\lim \sup E_{n}\right)=0$. [Hint: Find upper and lower bounds of $\mathbb{P}\left(U_{n}\right)$.]

It is further assumed that the E_{n} are independent events (then also their complements E_{n}^{c} are independent) and $\sum_{n \geq 1} \mathbb{P}\left(E_{n}\right)=\infty$. Put $D_{n}^{N}=\bigcap_{m=n}^{N} E_{m}^{c}$ for $N \geq n \geq 1$.
(c) Show that $\mathbb{P}\left(D_{n}^{N}\right) \leq \exp \left(-\sum_{m=n}^{N} \mathbb{P}\left(E_{m}\right)\right)$. [Hint: it holds that $1-x \leq e^{-x}$.]
(d) Let $D_{n}^{\infty}:=\bigcap_{m=n}^{\infty} E_{m}^{c}$. Show that $\mathbb{P}\left(D_{n}^{\infty}\right)=0$.
(e) Show that $\mathbb{P}\left(\lim \inf E_{n}^{c}\right)=0$.
(f) Show that $\mathbb{P}\left(\lim \sup E_{n}\right)=1$.
25. Let X_{1}, X_{2}, \ldots be a sequence of nonnegative random variables, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and put $S_{\infty}=\sum_{i=1}^{\infty} X_{i}$. We also have the measurable space $(\mathbb{N}, \mathcal{N}, \tau)$, where \mathbb{N} is the set of positive integers, \mathcal{N} is the power set of \mathbb{N} and τ the counting measure.

We consider the product set $\mathbb{N} \times \Omega$ with the product σ-algebra $\mathcal{N} \times \mathcal{F}$ and the product measure $\tau \times \mathbb{P}$. On the product set we define the mapping $\mathbf{X}: \mathbb{N} \times \Omega \rightarrow \mathbb{R}$ by $\mathbf{X}(k, \omega)=X_{k}(\omega)$. Let, for a given Borel set B in $\mathbb{R}, A:=\mathbf{X}^{-1}[B]=\{(k, \omega): \mathbf{X}(k, \omega) \in B\}$ and $A_{k}:=$ $X_{k}^{-1}[B]=\left\{\omega: X_{k}(\omega) \in B\right\}$, for $k \in \mathbb{N}$. Note that $A=\cup_{k \in \mathbb{N}}\left(\{k\} \times A_{k}\right)$, i.e. $(k, \omega) \in A$ iff $\omega \in A_{k}$.
(a) Why are the sets $\{k\} \times A_{k}$ above elements of $\mathcal{N} \times \mathcal{F}$?
(b) Show that \mathbf{X} is a measurable mapping on $\mathbb{N} \times \Omega$ with the product σ-algebra $\mathcal{N} \times \mathcal{F}$, i.e. the set A above belongs to $\mathcal{N} \times \mathcal{F}$ (for any Borel set B).
(c) Show by an application of Fubini's theorem (recall that summation is an example of Lebesgue integration) that $\mathbb{E} S_{\infty}=\sum_{i=1}^{\infty} \mathbb{E} X_{i}$.
(d) If the X_{i} are not necessarily nonnegative, give then an integrability condition on the X_{i} such that the equality $\mathbb{E} S_{\infty}=\sum_{i=1}^{\infty} \mathbb{E} X_{i}$ is still true.
26. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which are defined nonnegative random variables $X, X_{n}(n \geq 1)$ that have the property that $X_{n} \xrightarrow{\mathbb{P}} X$ (so $\mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$ for every $\varepsilon>0$). Let $Y_{n}=\frac{X_{n}}{1+X_{n}}$ and $Y=\frac{X}{1+X}$ and note that $Y_{n} \leq 1$.
(a) Do we have $Y_{n} \xrightarrow{\mathbb{P}} Y$?
(b) Show the two inequalities $\left|Y_{n}-Y\right| \leq 2$ and $\left|Y_{n}-Y\right| \leq\left|X_{n}-X\right|$.
(c) Show that $\mathbb{E}\left|Y_{n}-Y\right| \leq 2 \mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right)+\varepsilon$ for every $\varepsilon>0$.
(d) Show that $Y_{n} \xrightarrow{\mathcal{L}^{1}} Y$, i.e. $\mathbb{E}\left|Y_{n}-Y\right| \rightarrow 0$.
27. Consider a sample from exponential distribution, i.e. one has an IID sequence X_{1}, \ldots, X_{n} where all X_{i} have a density $p_{\lambda}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$ and a parameter $\lambda>0$. Along with the X_{i} one also observes $Y_{i}=\cos X_{i}, i=1, \ldots, n$. Probabilities, expectations, etc. depending on λ, when necessary, are denoted $\mathbb{P}_{\lambda}, \mathbb{E}_{\lambda}$, etc. and \bar{Y}_{n} is the average of the Y_{i}.
(a) Show that $\mathbb{E}_{\lambda} Y_{i}=\frac{\lambda^{2}}{1+\lambda^{2}}$ [Hint: use two times integration by parts, for which you may want to use that $\frac{\mathrm{d} \sin x}{\mathrm{~d} x}=\cos x$ and $\frac{\mathrm{d} \cos x}{\mathrm{~d} x}=$ $-\sin x$.]
(b) Show that the moment estimator using the Y_{i} as (transformed) observations is $\hat{\lambda}_{n}=\sqrt{\frac{\bar{Y}_{n}}{1-\bar{Y}_{n}}}$, provided that $\bar{Y}_{n} \in[0,1)$.
(c) Show that $\bar{Y}_{n}<1$ a.s. and show by invoking the Law of Large Numbers (LLN) for \bar{Y}_{n} that $\bar{Y}_{n}>0$ with probability tending to 1.
(d) Show by using the above LLN that $\hat{\lambda}_{n} \xrightarrow{\mathbb{P}_{\lambda}} \lambda$ (so, the $\hat{\lambda}_{n}$ are consistent estimators of λ).

The standardized moment estimator $\sqrt{n}\left(\hat{\lambda}_{n}-\lambda\right)$ has a limit law, which is normal with variance $\frac{\left(1+\lambda^{2}\right)^{4}}{4 \lambda^{2}} \sigma^{2}(\lambda)$, where $\sigma^{2}(\lambda)$ is $\operatorname{Var}_{\lambda}\left(Y_{1}\right)$. [In fact $\sigma^{2}(\lambda)=\frac{5 \lambda^{2}+2}{\left(\lambda^{2}+4\right)\left(\lambda^{2}+1\right)^{2}}$, which we take for granted.] Below you are asked to provide two justifications of this result.
(e) Show by application of the theory of moment estimators that the postulated limit law is correct. [If it is convenient for you, you rename the above λ as λ_{0}, the 'true' parameter.]
(f) Show by application of the theory for M-estimators that the postulated limit law is correct. [You don't have to verify the conditions of the theorem you'd like to use; just blindly apply the assertions.]
28. Let $\Omega=[0,1]$ and define a collection of subsets of Ω, call it \mathcal{F}, by $F \in \mathcal{F}$ if either F is at most countable or its complement F^{c} is at most countable. Furthermore, let the map $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ be defined by

$$
\mathbb{P}(F)=\left\{\begin{array}{l}
0 \text { if } F \text { is at most countable } \\
1 \text { if } F^{c} \text { is at most countable, }
\end{array}\right.
$$

and note that we don't a priori impose that \mathbb{P} is a measure.
(a) Show that \mathcal{F} is a σ-algebra.
(b) Let A_{1}, A_{2}, \ldots be a disjoint sequence in \mathcal{F}. Show that $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=$ $\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)$ if all A_{i} are at most countable, or if there is exactly one A_{i} whose complement is at most countable.
(c) Suppose that $A_{1}, A_{2} \in \mathcal{F}$ such that A_{1}^{c} and A_{2}^{c} are at most countable. Are A_{1} and A_{2} disjoint?
(d) Is $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)$ for all disjoint sequences A_{1}, A_{2}, \ldots in \mathcal{F} ?
(e) Is \mathbb{P} a probability measure on \mathcal{F} ?
29. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and X_{1}, X_{2}, \ldots be an IID sequence of random variables defined on it with $\mathbb{E} X_{1}^{2}<\infty, \mathbb{E} X_{1}=\mu$ and $\operatorname{Var} X_{1}=\sigma^{2}$. Furthermore $N: \Omega \rightarrow\{1,2, \ldots\}$ is a random variable on this space that is independent of the X_{i}, with $\mathbb{E} N^{2}<\infty, \mathbb{E} N=m$ and $\operatorname{Var} N=v^{2}$. Put $S_{n}=\sum_{i=1}^{n} X_{i}, S=\sum_{i=1}^{N} X_{i}$ and note that the number of terms in the latter sum is random. Observe that $S=$ $\sum_{n=1}^{\infty} \mathbf{1}_{\{N=n\}} S_{n}=\sum_{n=1}^{\infty} \sum_{i=1}^{n} \mathbf{1}_{\{N=n\}} X_{i},|S| \leq \sum_{n=1}^{\infty} \sum_{i=1}^{n} \mathbf{1}_{\{N=n\}}\left|X_{i}\right|$. Moreover $S^{2} \leq N \sum_{i=1}^{N} X_{i}^{2}$.
(a) Show that $\mathbb{E}|S|<\infty$ and $\mathbb{E} S^{2} \leq \mathbb{E} N^{2} \times \mathbb{E} X_{1}^{2}<\infty$.
(b) Show that $\mathbb{E} S=m \mu$.
(c) Show that $\operatorname{Var} S=m \sigma^{2}+\mu^{2} v^{2}$.
30. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ together with a sequence $\left(\mathcal{F}_{n}\right)_{n=1}^{\infty}$ of sub- σ-algebras of \mathcal{F} satisfying $\mathcal{F}_{n} \subset \mathcal{F}_{n+1}$ for all $n \geq 0$. Such a sequence is called a filtration. Furthermore, there is sequence of independent random variables $\left(X_{i}\right)_{i=1}^{\infty}$ such that $\mathbb{E}\left|X_{i}\right|<\infty$ for all i, and every X_{i} is \mathcal{F}_{i}-measurable. Put $S_{n}=\sum_{i=1}^{n} X_{i}$ for $n \geq 1, S_{0}=0$, and $P_{n}=\prod_{i=1}^{n} X_{i}$ for $n \geq 1, P_{0}=1$.
(a) Show that S_{n} and P_{n} are \mathcal{F}_{n}-measurable for all n.
(b) Show that $\mathbb{E}\left|S_{n}\right|<\infty$ for all n.
(c) Show that $\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}$ for all $n \geq 0$ if all X_{n} have zero expectation.
(d) Show that $\mathbb{E}\left|P_{n}\right|<\infty$ for all n. [You may want to use induction here.]
(e) Show that $\mathbb{E}\left[P_{n+1} \mid \mathcal{F}_{n}\right]=P_{n}$ for all $n \geq 0$ if all X_{n} have expectation equal to 1 .

NB: The sequences $\left(S_{n}\right)$ are $\left(P_{n}\right)$ are known as examples of martingales.
31. Let X, X_{1}, X_{2}, \ldots be random variables and suppose $X_{n} \rightsquigarrow X$. Let F denote the distribution function of X.
(a) Show that $\lim \sup _{n \rightarrow \infty} \mathbb{P}\left(X_{n}<x\right) \leq F(x)$ for all x at which F is continuous.
(b) Show that $\liminf _{n \rightarrow \infty} \mathbb{P}\left(X_{n}<x\right) \geq F(x)$ for all x at which F is continuous. [Here $\mathbb{P}\left(X_{n}<x\right) \geq \mathbb{P}\left(X_{n} \leq x-\varepsilon\right)$ for any $\varepsilon>0$ comes in handy.
(c) Conclude that $\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}<x\right)=F(x)$ for all x at which F is continuous.
32. Consider a sample from an exponential distribution, i.e. one has an IID sequence X_{1}, \ldots, X_{n} where all X_{i} have a density $p_{\lambda}(x)=\lambda e^{-\lambda x}$ for $x \geq 0$ and a parameter $\lambda>0$. Along with the X_{i} one also observes $Y_{i}=\sin X_{i}, i=1, \ldots, n$. Probabilities, expectations, etc. depending on λ, when necessary, are denoted $\mathbb{P}_{\lambda}, \mathbb{E}_{\lambda}$, etc., and \bar{Y}_{n} is the average of the Y_{i}.
(a) Show that $h(\lambda):=\mathbb{E}_{\lambda} Y_{i}=\frac{\lambda}{1+\lambda^{2}}$ [Hint: use two times integration by parts, for which you may want to use that $\frac{\mathrm{d} \sin x}{\mathrm{~d} x}=\cos x$ and $\frac{\mathrm{d} \cos x}{\mathrm{~d} x}=-\sin x$.]
(b) Show that $h(\lambda) \leq \frac{1}{2}$ with equality iff $\lambda=1$, and $h\left(\frac{1}{\lambda}\right)=h(\lambda)$. [Note that therefore λ cannot be identified from $\mathbb{E}_{\lambda} Y_{i}$.]
(c) Show, use the law of large numbers, that $\mathbb{P}_{\lambda}\left(\bar{Y}_{n} \leq \frac{1}{2}\right) \rightarrow 1$ for $\lambda \neq 1$.
(d) Show that a possible moment estimator using the Y_{i} as (transformed) observations is $\hat{\lambda}_{n}=\frac{1}{2 \bar{Y}_{n}}\left(1 \pm \sqrt{1-4\left(\bar{Y}_{n}\right)^{2}}\right)=: g_{ \pm}\left(\bar{Y}_{n}\right)$.
(e) Choose $\hat{\lambda}_{n}=\frac{1}{2 \bar{Y}_{n}}\left(1+\sqrt{1-4\left(\bar{Y}_{n}\right)^{2}}\right)=: g_{+}\left(\bar{Y}_{n}\right)$ as the estimator of λ. Show that $\hat{\lambda}_{n} \xrightarrow{\mathbb{P}_{\lambda}} g(\lambda)$, where $g(\lambda)=\lambda \mathbf{1}_{\lambda>1}+\frac{1}{\lambda} \mathbf{1}_{\lambda \leq 1}=$ $\max \left\{\lambda, \frac{1}{\lambda}\right\}$. [The $\hat{\lambda}_{n}$ are consistent estimators of $g(\lambda)$.]

To avoid identification and other technical problems, we assume that it is known that $\lambda>1$. As a result $\hat{\lambda}_{n} \xrightarrow{\mathbb{P}_{>}} \lambda$. The standardized moment estimator $\sqrt{n}\left(\hat{\lambda}_{n}-\lambda\right)$ has a limit law, which is normal with variance $\frac{\left(1+\lambda^{2}\right)^{4}}{\left(1-\lambda^{2}\right)^{2}} \sigma^{2}(\lambda)$, where $\sigma^{2}(\lambda)$ is $\operatorname{Var}_{\lambda}\left(Y_{1}\right)$, which we don't compute. Below you are asked to provide two justifications of this result.
(f) Show by application of the theory of moment estimators, and check that the relevant conditions are satisfied, that the postulated limit law is correct. [If it is convenient for you, you can rename the above λ as λ_{0}, the 'true' parameter.]
(g) Show by application of the theory for M-estimators that the postulated limit law is correct. [You don't have to verify the conditions of the theorem you'd like to use; just blindly apply the assertions.]
33. We consider a sample from an inverse Gamma distribution. We have nonnegative IID observations X_{i} with a common density, given by $p_{\beta}(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} \exp (-\beta / x)$ where $\alpha>0$ is known and $\beta>0$ a parameter to be estimated. In order to do that we consider a moment estimator with the function $f(x)=\frac{1}{x}$, that is we solve the equation $\mathbb{E}_{\beta} f\left(X_{1}\right)=\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)$, in alternative notation $P_{\beta} f=\mathbb{P}_{n} f$. Some additional information is $\operatorname{Var}_{\beta} \frac{1}{X_{1}}=\frac{\alpha}{\beta^{2}}$, and $\operatorname{Var}_{\beta} X_{1}=\frac{\beta^{2}}{(\alpha-1)^{2}(\alpha-2)}$ if $\alpha>2$.
(a) Show that $\mathbb{E}_{\beta} \frac{1}{X_{1}}=\frac{\alpha}{\beta}$, and $\mathbb{E}_{\beta} X_{1}=\frac{\beta}{\alpha-1}$ if $\alpha>1$. [Recall that $\Gamma(\alpha+1)=\alpha \Gamma(\alpha)$.
(b) Show that the moment estimator of β with the given f as above is $\hat{\beta}_{n}=\frac{n \alpha}{\sum_{i=1}^{n} \frac{1}{X_{i}}}$.
(c) Find the limit law of $\sqrt{n}\left(\hat{\beta}_{n}-\beta\right)$. [You may want to use the ordinary Central Limit Theorem as a first step.]
(d) An alternative moment estimator, call it $\hat{\beta}_{n}^{\prime}$, is obtained by solving the equation $\frac{1}{n} \sum_{i=1}^{n} X_{i}=\mathbb{E}_{\beta} X_{1}$. What is the asymptotic distribution of this estimator?
(e) Which of the two estimators $\hat{\beta}_{n}, \hat{\beta}_{n}^{\prime}$ is preferred, both from a 'quality' point of view -think of some desirable properties as consistency, efficiency, (asymptotic) mean squared error- and from the point of view of weaker or stronger underlying assumptions?
(f) Is there an estimator that performs (strictly) better than the most preferred one in (e) from the 'quality' point of view?
34. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space on which random variables X, Y are defined. It is assumed that the vector (X, Y) has a joint density w.r.t. Lebesgue measure, a nonnegative Borel-measurable function f : $\mathbb{R}^{2} \rightarrow \mathbb{R}$, integrating to 1 . Moreover, f is such that the marginal density f_{Y} of Y is strictly positive. One can now define the conditional density of X given $Y=y, f_{X \mid Y=y}(x):=\frac{f(x, y)}{f_{Y}(y)}$ for all x, y, where f_{Y} is the marginal density of Y. It is assumed that $\mathbb{E}|X|<\infty$. Integrals with the densities can also be viewed as Riemann integrals.
(a) Show that $f_{X \mid Y=y}$ is a density for all y.
(b) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(y):=\int_{\mathbb{R}} x f_{X \mid Y=y}(x) \mathrm{d} x$. The theory for product measures says that g is a Borel function. Show that $g(Y)$ is a proper random variable, i.e. a function on Ω that is \mathcal{F}-measurable.
(c) Let $G=\{Y \in B\}$, where B is a Borel set in \mathbb{R}. Show by representing the expectations as (double) integrals that $\mathbb{E}\left[\mathbf{1}_{G} g(Y)\right]=$ $\mathbb{E}\left[\mathbf{1}_{G} X\right]$.
(d) What is $\mathbb{E}[X \mid Y]$ in terms of g ?
35. Let $f, f_{n}(n \geq 1)$ be densities of probability measures on $(\mathbb{R}, \mathcal{B})$, nonnegative Borel-measurable function such that their integrals w.r.t Lebesgue measure (denoted λ) equal 1 . By F, F_{n} we denote the corresponding distribution functions. It is assumed that $f_{n} \rightarrow f$ a.e. (w.r.t Lebesgue measure), as $n \rightarrow \infty$.
(a) Show that F is everywhere left continuous, i.e. $\lim _{n \rightarrow \infty} F\left(x-\frac{1}{n}\right)=$ $F(x)$ for all $x \in \mathbb{R}$. [Consider $\int \mathbf{1}_{\left(x-\frac{1}{n}, x\right]} f \mathrm{~d} \lambda$.]
(b) Show that $\int\left|f-f_{n}\right| \mathrm{d} \lambda=2 \int \mathbf{1}_{\left\{f>f_{n}\right\}}\left(f-f_{n}\right) \mathrm{d} \lambda$
(c) Show that $0 \leq \mathbf{1}_{\left\{f>f_{n}\right\}}\left(f-f_{n}\right) \leq f$ and deduce that $\int\left|f-f_{n}\right| \mathrm{d} \lambda \rightarrow$ 0.
(d) Show that $F_{n} \rightsquigarrow F$, i.e. $F_{n}(x) \rightarrow F(x)$ for all $x \in \mathbb{R}$. [Use the previous question and work on $\left|F_{n}(x)-F(x)\right|$.] Why do we have convergence for all x ?
36. Let X have a Binomial distribution with parameters n and p, p is unknown. Independent of X, there is a random variable Y having a Binomial distribution with parameters m and q, where $q>0$ is also unknown. Assume $m=2 n$. We are interested to estimate $r:=\frac{p}{q}$ and in asymptotic behavior of estimators for $n \rightarrow \infty$.
(a) Give a consistent estimator \hat{r}_{n} of r, and show its consistency.
(b) Give the limit distribution of $\sqrt{n}\left(\hat{r}_{n}-r\right)$.
(c) It may happen that although p and q are unknown, it is known that they are equal. Give a better estimator of r than the \hat{r}_{n} above.
37. Let X_{1}, \ldots, X_{n} be independent random variables with a common $N\left(\theta_{0}, 1\right)$ distribution with $\theta_{0} \in \mathbb{R}$. As an estimator $\hat{\theta}_{n}$ we use the minimizer of the function $\theta \mapsto \sum_{i=1}^{n}\left(X_{i}-\theta\right)^{6}$. This minimizer also solves an equation of the type $\Psi_{n}(\theta)=0$.
(a) Show that a well chosen $\Psi_{n}(\theta)$ converges in probability to a limit $\Psi(\theta)$ and determine this limit. Show, compute a derivative, that $\Psi(\theta)$, is a strictly monotone function of θ.
(b) Show that $\hat{\theta}_{n}$ is a consistent estimator of θ_{0}.
(c) Show that $\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)$ has a limiting normal distribution and determine its expectation and variance. [Skip the verification of all conditions of a theorem you want to use.]

You may want to use that for a standard normal random variable Z it holds that $\mathbb{E} Z^{p}=0$ for an odd integer p and for an even integer $p=2 m$ one has $\mathbb{E} Z^{2 m}=1 \cdot 3 \cdots(2 m-1)$, a product of odd integers.
38. A density of a 1-dimensional exponential family is of the form

$$
p_{\theta}(x)=c(\theta) h(x) e^{\theta t(x)},
$$

where h and t are known measurable functions on \mathbb{R}, and h is nonnegative. It is also assumed that c is a known function of $\theta \in \Theta$. Many well known distributions are of this type. Let $\Theta=\{\theta \in \mathbb{R}$: $\left.\int_{\mathbb{R}} h(x) e^{\theta t(x)} \mathrm{d} x<\infty\right\}$. Then for $\theta \in \Theta$ one has

$$
\begin{equation*}
c(\theta)=\frac{1}{\int_{\mathbb{R}} h(x) e^{\theta t(x)} \mathrm{d} x} . \tag{1}
\end{equation*}
$$

Moreover, we can define, for $\theta \in \Theta$,

$$
b(\theta)=\log \int_{\mathbb{R}} h(x) e^{\theta t(x)} \mathrm{d} x,
$$

as the integral is positive. In what follows we denote differentiation w.r.t. θ by a dot. Integration and differentiation can be swapped at will.
(a) Why does Equation (??) hold?
(b) Show that Θ is an interval, i.e. if $\theta_{1}, \theta_{2} \in \Theta$, then also $\frac{1}{2}\left(\theta_{1}+\theta_{2}\right) \in$ Θ.
(c) Show that $\dot{b}(\theta)=\mathbb{E}_{\theta} t(X)$ (assuming that both expressions exist as finite quantities).
(d) Show that $\ddot{b}(\theta)=\operatorname{Var}_{\theta} t(X)$ (assuming that both expressions exist as finite quantities).

Let now X_{1}, \ldots, X_{n} be an IID sample from such an exponential family.
(e) Use $\bar{t}_{n}:=\frac{1}{n} \sum_{i=1}^{n} t\left(X_{i}\right)$ as a statistic to derive a moment estimator of θ and write explicitly the equation (in terms of the function c and its derivative) θ has to solve to get this moment estimator, call it $\hat{\theta}_{n}^{\text {mom }}$.
(f) Find, informally, the asymptotic distribution of $\hat{\theta}_{n}^{\text {mom }}$ for $n \rightarrow \infty$.
(g) Also write down the equation that the Maximum likelihood estimator, call it $\hat{\theta}_{n}^{\mathrm{ml}}$, has to satisfy.
(h) Compute the Fisher information I_{θ} in one observation.
(i) Find, informally, the asymptotic distribution of $\hat{\theta}_{n}^{\mathrm{ml}}$ for $n \rightarrow \infty$.

[^0]: ${ }^{1}$ Recall that the standard machine is a method of proving along steps: (1) for indicator functions; (2) for nonnegative simple functions; (3) for nonnegative functions by approximation with simple functions (the approximating sequence always exists); (4) general case.

