
Tinbergen Institute Statistics
Exam questions

1. Let U be a random variable that has a uniform distribution on [0, 1]. It is
known that EU = 1

2
and that VarU = 1

12
. Define other random variables

X and Y by X = a+ (b− a)U for a < b and Y = −θ logU for some θ > 0.

(a) Use the transformation rule for densities to show that X has a uniform
distribution on [a, b].

(b) Compute EX and VarX from the definition of X.

(c) Compute for each y > 0 the probability P(Y > y). What is the density
of Y ?

(d) If g(x) = x log x − x (for x > 0), then g′(x) = log x. Use this to
compute EY .

2. Let X1, . . . , Xn be a sample from a Poisson(λ) distribution (so they are
independent Poisson(λ) distributed random variables).

(a) Give the formula for P(X1 = x1, . . . , Xn = xn) (with xi nonnegative
integers).

(b) Show that X = 1
n

∑n
i=1Xi is the maximum likelihood estimator of λ.

(c) Show that the Fisher information I(λ) is equal to 1/λ.

(d) Use the Cramér-Rao bound to show that X has minimum variance
among all unbiased estimators of λ.

(e) Give a consistent estimator of I(λ).

3. Let U have a χ2
m distribution and V a χ2

n distribution and assume that
the random variables U and V are independent. The random variables
X1, . . . , Xn form a sample from the N(0, σ2) distribution, where σ2 is un-
known.

(a) Use the definition of the χ2 distributions to show that U + V has a
χ2
m+n distribution.

(b) Show that the maximum likelihood estimator of σ2 (call it s2) is given
by 1

n

∑n
i=1X

2
i .

(c) Give a (1− α)-confidence interval for σ2 based on
∑n

i=1 X
2
i .
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(d) Suppose that one is interested in testing the null-hypothesis that the
Xi form a sample from the standard normal distribution against the
alternative that the sample is from another normal distribution with
zero expectation. Formulate this problem as a parameter testing prob-
lem.

(e) Suppose that one wants to perform a test based on s2 for the above
problem with significance level α = 0.01. If s2 = 1.24 is observed for
n = 40 observations, will the null-hypothesis be rejected?

4. Consider the multivariate regression model Y = Xβ + e, where the design
matrix X is of size n×p, and where the elements ei of the vector e are inde-
pendent random variables with E ei = 0 and Var ei = σ2. The least squares
estimator of β is given by β̂ = (X>X)−1X>Y. Let P = X(X>X)−1X> and
Q = In −X(X>X)−1X> (In is the n-dimensional identity matrix).

(a) Let Ŷ = Xβ̂ and the residual vector ê = Y − Ŷ. Show that Ŷ = Pe + Xβ,
that ê = Qe and that PQ is the zero matrix.

(b) Show that Cov(Ŷ, ê) = E Ŷê> = 0.

(c) Suppose that one has an additional (row) vector of design variables
xn+1. The corresponding response variable Yn+1 is then predicted by
Ŷn+1 = xn+1β̂. What is the expectation E Ŷn+1 of Ŷn+1 and what the
variance?

(d) Suppose that we also know that the ei are N(0, σ2) distributed random
variables with known σ2. Construct a (1 − α)-confidence interval for
xn+1β.

5. Let Z be a random variable that has the standard normal distribution. By
Φ we denote the distribution function of Z. Define another random variable
X by X = Z2.

(a) Show that the distribution function of X, F say, is given by F (x) =
2Φ(
√
x)− 1, for x > 0. What is F (x) for x ≤ 0?

(b) Show that the density f of X is given by f(x) = 1√
2πx

e−
1
2
x, for x >

0. Can we use the transformation rule to compute the density of X
directly from that of Z?

(c) Let Y = aX + b, where a and b are constants. For which values of
a and b do we have EY = 0 and VarY = 1? (You may use that
VarX = 2.)
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6. Let X1, . . . , Xn be a sample from an exponential distribution with parame-
ter λ (so they are independent random variables with the same exponential
distribution).

(a) Give the formula for f(x1, . . . , xn) (with the xi nonnegative real num-
bers), where f is the joint probability density function of (X1, . . . , Xn).

(b) Show that with X = 1
n

∑n
i=1Xi the maximum likelihood estimator of

λ is given by 1/X.

(c) Show that the Fisher information I(λ) is equal to 1/λ2.

(d) Characterize the limit distribution of the maximum likelihood estima-
tor of λ.

7. The random variablesX1, . . . , X2n form a sample of size 2n from theN(0, σ2)
distribution, where σ2 is unknown. Let U be a random variable that is inde-
pendent of the Xi and that has a χ2

n distribution. Moreover, we observe the
2n random variables Yi that are defined by Yi = Xi + µ, for some unknown
number µ.

(a) What is the distribution of 1
σ
√

2
(X1 +X2)?

(b) Show that X1+X2

σ
√

2U/n
has a tn distribution.

(c) What is the distribution of each of the Yi? Are the Yi independent?

(d) Show that the maximum likelihood estimator (based on the observed
random variables) of µ (call it µ̂) is given by 1

2n

∑2n
i=1 Yi.

(e) Give a (1 − α)-confidence interval for µ based on µ̂ and on estimator
of σ2.

8. Consider the multivariate regression model Y = Xβ + e, where the design
matrix X is of size n × p, and where the elements ei of the vector e are
independent random variables with E ei = 0 and Var ei = σ2. The least
squares estimator of β is given by β̂ = LY, where L = (X>X)

−1
X>. Let β̃

be another linear estimator β, that is an estimator of the form β̃ = MY,
where M is another non-random matrix of appropriate dimensions. We also
assume that MX = Ip, where Ip is the p-dimensional unit matrix.

(a) Show that β̃ is an unbiased estimator of β.

(b) Show that Cov(β̃ − β̂) = σ2(MM> − (X>X)
−1

).

(c) Suppose that one is interested in estimating the sum of the elements
of β only. Call this sum θ and notice that we can write θ = 1>β,
where 1 is a column vector whose elements are all equal to one. Show
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that 1>β̂ and 1>β̃ are both unbiased estimators of θ with variances
σ21>(X>X)

−1
1 and σ21>MM>1 respectively.

(d) Which of the two estimators in (c) is more accurate? (Hint: Compute
Var (β̃ − β̂) = 1>Cov(β̃ − β̂)1.)

9. Let Y1, . . . , Yn be independent random variables such that each Yi has a
N(β0 + β1xi, σ

2) distribution. Here the xi are known real numbers (design
variables) and β0, β1 and σ2 are unknown parameters.

(a) Give the formula for the joint density function of (Y1, . . . , Yn).

(b) Assume for a while that σ2 is known to us. Show that the maximum
likelhood estimators β̂0 and β̂1 of β0 and β1 coincide with the least
squares estimators in the context of linear regression.

(c) If we also consider σ2 as unknown as well, show that the maximum

likelihood estimator σ̂2 of σ2 is given by

σ̂2 =
1

n

n∑
k=1

(Yk − Ŷk)2,

where Ŷk = β̂0 + β̂1xi.

(d) What is the distribution of
∑n

k=1(Yk − Ŷk)2? Determine c such that

c σ̂2 is an unbiased estimator of σ2.

10. Let X1, . . . , Xn be independent random variables with a common Gamma
distribution and n ≥ 25. This Gamma has density function (for x > 0)

fθ(x) = C(α)θ−αxα−1e−x/θ,

for some positive constants α, θ and C(α).

(a) Show that 1
C(α)

=
∫∞

0
θ−αxα−1e−x/θ dx and that C(α) doesn’t depend

on θ.

(b) The constants C(α) have the property that C(α+1) = C(α)/α. Show
that EX24 = αθ, EX2

24 = α(α + 1)θ2 and that VarX24 = αθ2.

(c) Suppose that α is known and that θ is an unknown parameter. Find
the moment estimator of θ.

(d) Show that the Fisher information I(θ) is equal to α/θ2.
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11. Let X be a random variable for which E|X|3 < ∞. Then EX3, EX2 and
EX are all well-defined and we can compute the coefficient of skewness

c(X) =
E(X − µ)3

σ3
,

where µ = EX and σ =
√

VarX.

(a) Show that c is scale and location invariant, i.e. if Y = aX + b (a and
b are constants), then c(Y ) = c(X).

(b) Show that E(X − µ)3 = EX3 − 3µσ2 − µ3.

(c) Let X have a density f , that is symmetric around µ, so f(µ + x) =
f(µ − x) for all x. Show that c(X) = 0. (You may want to use
Y = X − µ).

(d) Let X be a χ2
n-distributed random variable. It is known that EX3 =

n(n + 2)(n + 4). Compute c(X). How would you interpret the result
for big values of n.

12. Let X1, . . . , Xn be a sample from a N(µ, σ2) distribution. Assume that σ2 is
known. We consider the testing problem H0 : µ = µ0 against HA : µ = µA
for some µA < µ0 at significance level α.

(a) Show that the Neyman-Pearson test rejects the null hypothesis for
small values of X = 1

n

∑n
i=1Xi, say for X < x(µ0). Give an expression

for x(µ0).

(b) What is the uniformly most powerful test for the testing problem H0 :
µ = µ0 against HA : µ < µ0 at significance level α?

(c) Compute for the test of part (a) the power in µ = µA for µA < µ0, i.e.
the probability that the test rejects the null hypothesis, when the mean
of the normal distribution is equal to µA. This probability depends on
n. Compute the limit for n→∞.

(d) Give an explicit expression for the confidence region (interval) C =
{µ : X > x(µ)}.

(e) Suppose that n = 100, α = 0.10, σ2 = 1 and X = 3.14 is found in a
particular sample. Would the null hypothesis H0 : µ = 0 be rejected
in favor of the alternative µ < 0?

13. An urn with N balls contains r red ones (numbered from 1 to r) and the
remaining N − r are white. A random sample without replacement of size
n is drawn. The random variable Xi (i = 1, . . . , r) is 1 if ball i is in the
sample and 0 otherwise. Let X = X1 + · · ·+Xr.
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(a) Show that for all i we have P(Xi = 1) = n
N

, using binomial coefficients,
and compute EXi and VarXi.

(b) Compute EX.

(c) Show that for all i 6= j one has P(Xi = 1, Xj = 1) = n(n−1)
N(N−1)

, again
using binomial coefficients.

(d) Let i 6= j. Show that Cov(Xi, Xj) = − n(N−n)
N2(N−1)

.

(e) Show that VarX = r n
N
N−n
N

N−r
N−1

.

(f) Suppose that r,N →∞ such that r
N
→ p. Compute the limit of VarX

and give an intuitive explanation for this result.

14. Let X1, . . . , Xn be IID with common distribution function F determined
by F (x) = 1 − exp(−λ(x − µ)) for x > µ, where λ is known, but µ is an
unknown parameter. Let M = min{X1, . . . , Xn} and Y = nλ(M − µ).

(a) Show that P(M > x) = exp(−nλ(x− µ)) for x > µ.

(b) Show that Y has a standard exponential distribution (its density fY
is then fY (y) = exp(−y) for y > 0).

(c) Show that EM = µ+ 1
nλ

and that VarM = 1
n2λ2

.

(d) We use M as an estimator of µ. Compute its mean squared error.

(e) As an alternative for M we could use the moment estimator of µ.
What is this estimator and what is its mean squared error? Is this
estimator a good alternative for M?

(f) Since we know that µ < M , we compute a 1 − α confidence interval
for µ of the form (M − c,M) for some c > 0. Show that c = − logα

nλ
.

(g) Consider the one-sided hypothesis testing problem H0 : µ ≤ µ0 against
H1 : µ > µ0 at significance level α. Use M as the test statistic. Show
that H0 is not rejected if and only if µ0 belongs to the confidence
interval of part (f).

15. Let X1, . . . , Xn be a random sample from a distribution which has density
fθ given by

fθ(x) =
2√
πθ
e−x

2/θ1(0,∞)(x),

where θ > 0 is an unknown parameter.

(a) Show that fθ is a density (on (0,∞)).

(b) What is the density of (X1, . . . , Xn)?
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(c) Show that the maximum likelihood estimator of θ is given by θ̂ =
2
∑n

i=1 X
2
i /n.

(d) Let Y have a normal N(0, σ2) distribution. Determine σ2 such that
|Y | has density fθ.

(e) Show that EX2
1 = θ/2. Is θ̂ an unbiased estimator of θ?

(f) Show that the Fisher information I(θ) is equal to 1/2θ2.

(g) Characterize the asymptotic distribution of θ̂ (for n→∞).

16. Let Y be a random variable that has an exponential distribution with pa-
rameter λ > 0. Put X = Y 2. We observe the independent random variables
X1, . . . , Xn, all of them having the same distribution as X.

(a) Compute P(X > x) for x > 0 and deduce that

f(x) =
1

2
λx−1/2e−λx

1/2

, x > 0

is a density of X.

(b) Show that the moment estimator of λ is given by
√

2
X

.

(c) Use that EX = 2/λ2 and the law of large numbers to show consistency
of the moment estimator.

(d) Show that the maximum likelihood estimator of λ is given by λ̂ =
n∑n

i=1X
1/2
i

.

(e) Show that the Fisher information I(λ) = 1/λ2.

(f) Characterize the asymptotic distribution of λ̂.

(g) Show that ( λ̂

1+
z(α/2)√

n

, λ̂

1− z(α/2)√
n

) is a (1−α)-confidence interval for λ, where

z(α/2) is the upper α/2-quantile of the standard normal distribution:
P(N(0, 1) > z(α/2)) = α/2.

17. We observe X1, . . . , Xn, independent random variables with a common Pois-
son distribution with parameter θ.

(a) What is the probability mass function or frequency function of the
random vector (X1, . . . , Xn)?

(b) Consider the hypotheses H0 : θ = θ0 and HA : θ = θ1, where θ1 > θ0.
Show that the Neyman-Pearson test rejects the null hypothesis for
”large values” of S =

∑n
i=1Xi.
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(c) Let n = 100, θ0 = 1 and θ1 = 3. Use the normal approximation to
show that the critical value of the test is approximately 117 (we reject
H0 if S ≥ 117), for significance level α = 0.05.

(d) What is the power of this test in θ1 = 3? (Approximate again with a
normal distribution.)

(e) Would the test of the previous part change if we take instead θ1 = 5
and keeping θ0 = 1, α = 0.05?

(f) Is the test uniformly most powerful for testing H0 against the alterna-
tive θ > 1?

18. Consider the multivariate linear regression model Y = Xβ + ε, where Y is
a random n-vector, X a (n × p)-matrix (non-random), β a p-dimensional
parameter vector, ε a random n-vector with E ε = 0 and Cov(ε) = σ2In (In
is the n×n identity matrix. We study the least squares estimator β̂ of β. By
definition it is the minimizer over β of SS(β) = ε>ε. We need the matrices
L = (X>X)−1X> and P = XL (we assume that X>X is invertible).

(a) Show that X>(I − P ) = 0. Write Y −Xβ = (I − P )Y +X(LY − β)
to show that

SS(β) = Y >(I − P )>(I − P )Y + (β − LY )>X>X(β − LY ).

(b) Deduce that β̂ = LY . What is EY ? Is β̂ an unbiased estimator of β?

(c) Let e = Y −Xβ̂. Show that e = (I − P )ε.

(d) Show that (I − P )>(I − P ) = I − P and conclude that Cov(e) =
σ2(In − P )

(e) Show that SS(β̂) = e>e. Show then that the expected value of SS(β̂)
is equal to σ2(n − p). (Hint: write SS(β̂) = tr (ee>) and use also
somewhere else the rule tr(AB) = tr(BA).)

19. Let X = (X1, X2)> be a vector of independent random variables that both
have a normal N(0, σ2) distribution (σ2 > 0). Let Y = (Y1, Y2)> with
Y = AX, where A is the matrix

A =

(
a −1
b ab

)
,

for real numbers a and b (b 6= 0).

(a) Compute the covariance matrix of Y .
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(b) What is the distribution of Y ?

(c) Show that Y1 and Y2 are independent random variables.

(d) Show that Y 2
1 and Y 2

2 are independent random variables.

(e) For certain real constants λ1 and λ2 put U = λ1Y
2

1 + λ2Y
2

2 . How do
we have to choose λ1 and λ2 such that U has a χ2

2-distribution?

(f) How to choose the constants λ1 and λ2 in the previous part such that
U has an exponential distribution with parameter 1?

20. We observe X1, . . . , Xn, independent random variables with a common ex-
ponential distribution depending on a parameter θ > 0 with density

f(x|θ) =
1

θ
e−x/θ, x > 0.

(a) What is the probability density function of the random vector (X1, . . . , Xn)?

(b) Suppose that we already know that U =
∑n−1

k=1 Xk has a Gamma dis-
tribution with density

fn−1(u|θ) =
un−2

θn−1(n− 2)!
e−u/θ, u > 0.

Show by computing the convolution integral that S =
∑n

k=1Xk =
U +Xn has density

fn(s|θ) =
sn−1

θn(n− 1)!
e−s/θ, s > 0.

N.B.: Also S thus has a gamma distribution.

(c) Show that S/θ has density

fn(s|1) =
sn−1

(n− 1)!
e−s.

(d) Consider the hypotheses H0 : θ = θ0 and HA : θ = θ1, where θ1 > θ0.
Show that the Neyman-Pearson test rejects the null hypothesis for
”large values” of S, S > c say.

(e) If α is the significance level of the test, show that c = θ0γα, where γα
satisfies

∫∞
γα
fn(s|1) ds = α.

(f) The power of this test in θA is π(θA) = P(S > θ0γα|θA). Compute
limn→∞ π(θA).
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(g) Is the Neyman-Pearson test uniformly most powerful for testing H0

against the alternative θ > θ0?

21. Consider the multivariate regression model Y = Xβ + e, where the design
matrix X is of size n × p, and where the elements ei of the vector e are
independent random variables with E ei = 0 and Var ei = σ2. The least
squares estimator of β is given by β̂n = (X>X)

−1
X>Y.

(a) Suppose that one has an additional (row) vector of design variables
xn+1. The corresponding response variable Yn+1 is then predicted by
Ŷn+1|n = xn+1β̂n. Let εn+1|n = Ŷn+1|n − Yn+1 be the prediction error.

Why are Ŷn+1|n and Yn+1 independent?

(b) Compute the expectation E εn+1|n and the variance Var εn+1|n.

(c) If we also observe Yn+1 we can compute a new least squares estimator
β̂n+1 following the usual least squares procedure, but now based on
n+1 observations. It turns out that the following recursive relationship
holds

β̂n+1 = β̂n +
1

1 + d
(X>X)

−1
x>n+1(Yn+1 − xn+1β̂n),

where d = xn+1(X>X)
−1
x>n+1. Using the estimator β̂n+1, we predict

Yn+1 by Ŷn+1 = xn+1β̂n+1. Show that

Ŷn+1 =
1

1 + d
Ŷn+1|n +

d

1 + d
Yn+1.

(d) Let εn+1 be the associated prediction error, εn+1 = Ŷn+1−Yn+1. Com-
pute E εn+1 and Var εn+1.

(e) Which of the two predictors Ŷn+1|n and Ŷn+1 would you prefer?

(f) Suppose that we also know that the ei are N(0, σ2) distributed random
variables with unknown σ2. Show that xn+1β̂n+1 has a N(xn+1β,

dσ2

1+d
)

distribution.

(g) Let R =
∑n+1

i=1 (Yi − xiβ̂n+1)2. It is known that R
σ2 has a χ2

n+1−p distri-
bution. Show that

T :=
xn+1(β̂n+1 − β)√

R
n+1−p

d
1+d

has a tn+1−p-distribution.

(h) Construct a (1− α)-confidence interval for xn+1β based on β̂n+1.
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22. (a) Let X1 and X2 be independent random variables, both with a geomet-
ric distribution. Let Y = X1 + X2. Give an expression for P(Y = k)
and deduce that Y has a negative binomial distribution with r = 2.

(b) Let X1, . . . , Xr be independent random variables, all with a common
geometric distribution with parameter p. It can be shown that Y =
X1 + · · · + Xr has a negative binomial distribution with parameters
r and p. It can also be shown that VarX1 = (1 − p)/p2. Compute
expectation and variance of Y .

(c) Let f(k|p) be the probability mass function, f(k|p) = P(Y = k|p),
and l̇(p) = ∂

∂p
log f(Y |p). Show that E l̇(p) = 0. Let I(p) = E l̇(p)2.

Compute I(p).

Let Y1, . . . , Yn be a sample from a negative binomial distribution with pa-
rameters p (unknown) and r.

(d) Compute the maximum likelihood estimator p̂n of p and show that it
is equal to the moment estimator.

(e) What is the asymptotic distribution of
√
n(p̂n − p)?

(f) Suppose that n = 100, r = 4, and that the sample is such that p̂100 =
0.75. Give an approximate 95% confidence interval for p.

23. Let X1, . . . , Xn be sample from a Poisson distribution with parameter λ
(unknown). Let T = X1 + · · ·+Xn.

(a) Consider the simple hypothesis testing problem H0 : λ = λ0 against
HA : λ = λ1, where λ0 > λ1. Show that the Neyman-Pearson test
rejects H0 for ‘small values’ of T , T ≤ cn say, for some integer cn.

(b) Show that the function λ 7→ P(T ≤ cn|λ) is decreasing. Hint: Let
λ1 < λ2, and let U have a Poisson distribution with parameter λ1

and V , independent of U , have a Poisson distribution with parameter
λ2 − λ1. Use the trivial inequality U + V ≥ U .

(c) Let α = P(T ≤ cn|λ0). Consider the composite testing problem H0 :
λ ≥ λ0 against HA : λ < λ0. We use (again) the test that rejects H0 if
T ≤ cn. Compute supλ≥λ0 P(Tn ≤ cn|λ), and deduce that this test has
significance level α.

(d) Is the above test uniformly most powerful for the testing problem under
consideration?

(e) Replace cn with ξn := nλ0 + ξ
√
nλ0 for some (negative) real number

ξ. Compute, by using the Central Limit Theorem (CLT) and in terms
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of the cdf Φ, P(T ≤ ξn|λ0). How should one choose ξ to have the last
probability (approximately) equal to α?

(f) Suppose that n = 100, λ0 = 1. Give a numerical value for ξn, if
α = 0.0202. If T = 90 is observed, should one reject H0?

(g) Fix some λ1 < λ0. Use the CLT again to show that the (asymp-
totic) power of the test, P(T ≤ ξn|λ1) is equal to Φ(ξ

√
λ0/λ1 + (λ0 −

λ1)
√
n/λ1). What happens with this probability as n→∞?

24. In this exercise we consider quadratic regression, we assume a model of the
form yi = β0 + β1xi + β2x

2
i + ei, i = 1, . . . , n. The ei are assumed to be

iid with a common normal N(0, σ2) distribution. In matrix notation, we
summarize the model by writing

Y = Xβ + e,

following the usual conventions.

(a) How would you cast this model as an ordinary linear regression model
by choosing the right independent variables?

(b) We know that it is important that X has rank 3. Show that this is
the case if at least three of the xi (x1, x2, x3 for instance) are different.
Hint: compute the determinant∣∣∣∣∣∣

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

∣∣∣∣∣∣ .
(c) Show that the rank of X is at most 2, if all the xi assume at most two

different values.

(d) Let β̂ be the least squares estimator of β and Ŷ = Xβ̂. Show that
Y−Ŷ = Qe, where Q = I−X(X>X)−1X>. Show also that Q2 = Q.

(e) Determine a matrix M such that

U :=

(
Y − Ŷ

β̂ − β

)
= Me.

(f) Show that U has covariance matrix equal to σ2

(
Q 0
0 (X>X)−1

)
. Are

Y − Ŷ and β̂ independent?

12



(g) Let S2 = (Y− Ŷ)>(Y− Ŷ). It is known that S2

σ2 has a χ2-distribution
with n− 3 degrees of freedom. Use this to deduce that

β̂i − βi
sβ̂i

has a t-distribution with n−3 degrees of freedom, where sβ̂i = S
√

(X>X)−1
ii .

(h) Suppose that n = 20 and that computations with the data result in
β̂2 = sβ̂2 = 0.42. Give a 95% confidence interval for β2.

(i) Suppose that one wants to test the hypothesis that the regression is
linear in one variable. Formulate this as a testing problem on the
coefficients βi. Should one reject this hypothesis in the situation of
the previous part?

25. Consider a two-dimensional random vector (X, Y ) which has a density f on
the square (0, 1)× (0, 1) given by

f(x, y) =

{
4y
x

if y < x
0 else .

(a) Show that the marginal densities of X and Y are given by fX(x) = 2x
and fY (y) = −4y log y, for x, y ∈ (0, 1).

(b) Compute EX and VarX.

(c) Show that y 7→ yk log y has y 7→ 1
k+1

yk+1 log y − 1
(k+1)2

yk+1 as a primi-

tive function (k ≥ 0).

(d) Compute EY and VarY .

(e) Compute EXY , Cov(X, Y ) and the correlation coefficient.

26. Consider the simple regression model Yi = β0 + β1xi + ei (i = 1, . . . , n).
Assume that the ei are independent with a common N(0, σ2) distribution.
Let Y = Xβ + e be the model in matrix form. Assume that in a certain
experiment n = 42 and that the matrix

(X>X)−1 =

(
0.03 −0.015
−0.015 0.04

)
.

Other relevant statistics are ||Y− Ŷ||2 = 160 and the least squares estima-
tors become β̂0 = 1.90 and β̂1 = 0.65.

(a) Compute 95% confidence intervals for β0 and β1.
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(b) Consider the testing problem H0 : β0 = 2 versus HA : β0 6= 2. Will the
null hypothesis be rejected at a significance level of α = 5%? And if
α = 1%?

(c) Under the previous null hypothesis it holds that P(β̂0 > 1.90) = 0.61
and that P(β̂0 < 1.90) = 0.39. For which values of α would one reject
this null hypothesis with the given data?

27. Consider an iid sequenceX1, X2, . . . with a common density fθ(x) = θx exp(−1
2
θx2),

for x > 0 and θ > 0.

(a) Let µk = EXk. Use integration by parts to show that µk = k
θ
µk−2 for

k ≥ 2. Compute µ2, µ4 and Var (X2
1 ).

(b) What is the joint density of (X1, . . . , Xn)?

(c) Compute the maximum likelihood estimator θ̂n of θ based on the ob-
servations X1, . . . , Xn.

(d) What is the Fisher information I(θ) in one observation?

(e) What is the asymptotic distribution of
√
n( θ̂n

θ
− 1)?

(f) Show that ( θ̂n
1+zα/2/

√
n
, θ̂n

1−zα/2/
√
n
) is an approximate 1 − α confidence

interval for θ. (zα/2 is such that Φ(zα/2) = 1− α/2)

(g) Consider the following testing problem: H0 : θ = θ0 versus HA : θ = θA
at significance level α, with θA > θ0. Show that the most powerful test
rejects the nulhypothesis for small values of

∑n
k=1 X

2
k .

(h) One can show that θ0
2

∑n
k=1 X

2
k has a Gamma distribution with pa-

rameters n and 1 under the null hypothesis. Use this to describe the
critical region for the most powerful test of the previous part.

(i) Is this most powerful test uniformly most powerful for the testing
problem H0 : θ = θ0 versus HA : θ > θ0? Is it also uniformly most
powerful for the testing problem H0 : θ = θ0 versus HA : θ < θ0?

28. Consider two independent random variables U and Y . Assume that U has
a Bernoulli distribution with parameter p and that Y has an exponential
distribution with parameter λ. Let X = UY and let F be the distribution
function of X.

(a) Compute F (x) for all x ∈ R.

(b) Show that EX = p
λ

and EX2 = 2p
λ2

.
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Consider a sample X1, . . . , Xn, all having distribution function F . The
parameters p and λ are not known and are to be estimated. Let p̂n and λ̂n
be their moment estimators.

(c) Write down the two equations for the moment estimators of p and λ.

(d) Show that

p̂n =
2(Xn)2

X2
n

λ̂n =
2Xn

X2
n

.

(e) What are the limits in probability of Xn and X2
n as n→∞?

(f) Are the two moment estimators consistent?

(g) LetN be the number of zero observations. Show thatN has a Binomial
distribution with parameters n and 1− p.

(h) Give an approximate 100(1 − α)%-confidence interval for p based on
N .

29. Consider a regression model Yi = xiβ + ei, where the design (row) vec-
tor xi has a very special form. This form is motivated by the following
(thought) experiment. A subject i is classified according to some criterion
in a situation where p disjoint categories are available. One sets xij = 1
if i falls into category j and zero otherwise. The row vector xi that repre-
sents the classification has exactly one 1 (it is on place j iff i falls into the
j-th category) and all the remaining elements are 0. In other words, it is
a unit vector. The theoretical response of an individual i depends on the
category to which it belongs and is βj if xij = 1. Responses are measured
with normally distributed errors ei having expectation zero and variance σ2.
Assume that there n subjects considered, so that the vector Y of responses
is n-dimensional. The design matrix X is built by stacking the row vectors
xi one underneath the other. The usual assumptions on the regression are
assumed to be in force.

(a) Let nj be the number of subjects that fall into category j. Show that
X>X is a diagonal matrix with jj-element equal to nj.

(b) Let β̂ be the ordinary least squares estimator. Show that the elements
of β̂ are independent random variables.

15



(c) In this case there is a simple explicit expression for each of the β̂j.
Give it and interpret the result.

(d) Suppose that one is interested in the testing of the null hypothesis
H0 : β1 + β2 = 0 against the alternative HA : β1 + β2 6= 0. Let s2 be
the usual estimator of σ2. Show that

T :=
β̂1 + β̂2

s
√

1
n1

+ 1
n2

has a t-distribution under the null hypothesis. What is the numbers
of degrees of freedom?

(e) Construct a 100(1− α)%-confidence interval for β1 + β2 based on T .

(f) Suppose that for a particular set of observations the numerical values
of the two limits of the confidence interval turn out to be −0.13 and
+0.87 with α = 0.10. Would you reject the null hypothesis at the
significance level α?

(g) Using the same confidence interval, would you reject the null hypoth-
esis at a smaller significance level?

30. In a sequence of Bernoulli experiments one writes down the number of trials
needed to obtain the first success, call it X, and the number of additional
trials needed to obtain the second success, call it Y .

(a) Show that the joint distribution of (X, Y ) is given by

P(X = k, Y = m) = p2(1− p)k+m−2, for k,m = 1, 2, . . .

Are X and Y independent?

(b) Show that the Fisher information is given by I(p) = 2
p2(1−p) . (You may

use that VarX = 1−p
p2

.)

(c) Suppose one independently repeats n times the above procedure, re-
sulting in observations X1, Y1, . . . , Xn, Yn. Show that the maximum
likelihood p̂ based on these observations is equal to 1

1
2

(X+Y )
.

(d) Characterize the asymptotic distribution of p̂.

31. Let X1, . . . , Xn be iid random variables with a common distribution having
expectation µ, variance σ2 and continuous distribution function F . Let
A1, . . . , An be iid random variables having a Bernoulli distribution with
parameter p. Assume that the Ai are independent from the Xi. Put Yi =
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AiXi and denote by G the (common) distribution function of the Yi. We
assume that we observe only the Yi. Let Ui = I{Yi 6=0}, the indicator of the
event {Yi 6= 0} and Sn =

∑n
i=1 Ui.

(a) What is P(Yi = 0)? Express G(y) in terms of F and p. Distinguish in
your calculations between y < 0, y = 0 and y > 0.

(b) Show that EYi = pµ and EY 2
i = p(σ2 + µ2). What is VarYi?

(c) What is E (Yi − µUi)? Compute Var (Yi − µUi).
(d) Suppose that p is known. Find an estimator of µ based on the method

of moments. Is it an unbiased estimator?

(e) Characterize the limit distribution of this estimator for n→∞.

(f) In the rest of this exercise we suppose that p is unknown. Give a con-
sistent estimator of p (you may omit an explanation of your answer).

(g) The estimator of part (d) is now useless for estimating µ and instead
we will estimate µ by µ̂ :=

∑n
i=1 Yi/Sn, provided Sn > 0, and by zero

otherwise. Show that P(Sn = 0)→ 0 for n→∞.

(h) Show that, assuming Sn > 0,

√
n(µ̂− µ) =

n

Sn

1√
n

n∑
i=1

(Yi − µUi).

(i) What is the limit distribution of 1√
n

∑n
i=1(Yi−µUi) for n→∞. Show

that the limit distribution of
√
n(µ̂n − µ) is normal with mean zero

and variance σ2/p.

(j) Suppose that one also wants to use µ̂ as an estimator of µ, when p
is known. Is this to be preferred over using the moment estimator of
part (d)?

32. Consider a sequence of iid random variables X1, X2, . . . whose distribution
is given by P(X1 = 0) = p, P(X1 = −1) = P(X1 = 1) = 1

2
(1− p). Let p̂n be

the maximum likelihood estimator of p based on n observations.

(a) Show that P(X1 = x) = p1−|x|(1
2
(1 − p))|x| for x ∈ {−1, 0, 1}. Give a

formula for P(X1 = x1, . . . , Xn = xn).

(b) Compute p̂n.

(c) To compute a moment estimator, you have the choice between work-
ing with EX and with EX2. Make your choice and compute the
corresponding estimator.
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(d) Let `(p) be the log-likelihood based on the single observation X1. Show

that ∂
∂p
`(p) = 1

p
− |X1|

p(1−p) and that this has expectation zero.

(e) Compute the Fisher information I(p) in one observation.

(f) Characterize the asymptotic distribution of p̂n for n→∞.

(g) Give a 95% (approximate) confidence interval for p. Give the numerical
value when n = 100 with p̂100 = 0.2.

(h) Suppose you have to test the hypothesis H0 : p = 0.25 against the
alternative HA : p 6= 0.25 at the 5% significance level. If you take p̂n
as a test statistic, do you reject H0?

33. Consider the following two regression models in vector form.

Y1 = Xβ + e1

Y2 = Xβ + e2.

In both models the matrix X of independent variables is the same, it is of
size n × p and has rank p. Also the parameter vector β ∈ Rp is the same
for both models. The random noise vector e1 has independent normally
distributed elements with mean zero and variance σ2

1, whereas the random
noise vector e2 has independent normally distributed elements with mean
zero and variance σ2

2. The vectors e1 and e2 are independent too. For the
two models we estimate β separately by the least squares method, resulting
in two estimators β̂1 and β̂2. The covariance matrices of these estimators
are given by the usual formulas. Let a be some real number and consider
the ‘mixed’ estimator of β given by the convex combination β̂(a) = aβ̂1 +
(1− a)β̂2.

(a) Show that β̂(a) is an unbiased estimator of β.

(b) Let f(a) = a2σ2
1 + (1 − a)2σ2

2. Let a0 be the value of a where f is
minimal. Compute a0 (it will depend on σ2

1 and σ2
2) and show that

f(a0) =
σ2
1σ

2
2

σ2
1+σ2

2
.

(c) A second order Taylor expansion of f is exact since f is quadratic and
it holds that f(a) = f(a0)+(σ2

1 +σ2
2)(a−a0)2. Let Σa be the covariance

matrix of β̂(a). Show that

Σa = Σa0 + (σ2
1 + σ2

2)(a− a0)2(X>X)−1.

(d) Suppose that λ ∈ Rp is a known vector and that one wants to estimate
the parameter θ defined as λ>β. Show that λ>β̂(a) is an unbiased
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estimator of θ. What is it’s variance? Which of the estimators λ>β̂(a)
(for a ∈ R) would you prefer to estimate θ? Which among the β̂(a)
would you prefer to estimate β?

(e) The problem with this best ‘estimator’ is that it involves a0 which
depends on unknown parameters. Propose an estimator of a0.

(f) One wants to test the hypothesis H0 : σ2
1 = σ2

2 against the alternative
HA : σ2

1 6= σ2
2. Let S2

1 be the usual unbiased estimator of σ2
1 based on

the observations Y1 and S2
2 the companion estimator of σ2

2 based on
the observations Y2. Under the null hypothesis the ratio R := S2

1/S
2
2

has a so-called Fn−p,n−p distribution, see Table 5, as well as S2
2/S

2
1 .

The test rejects H0 with significance level α if R < c1 or R > c2 with
PH0(R < c1) = PH0(R > c2) = α/2. Show that c1 = 1

c2
.

(g) Assume that n = 50, p = 10, α = 0.10 and that from the two samples
one computes the value R = 1.61. Does the test reject H0?

34. Let f be the density of some random variable Z and assume that p :=
P(Z > 0) ∈ (0, 1). Let g be the joint density of a random vector (X, Y )
defined by

g(x, y) =


1
p
f(x)f(y) if x, y > 0
1

1−pf(x)f(y) if x, y < 0

0 elsewhere.

(a) Show that the marginal density gX of X is equal to f . (In your com-
putation of gX(x) you distinguish between x > 0 and x < 0. The case
x = 0 can be ignored.) What is the marginal density of Y ?

(b) In what follows, we let Z+ = max{Z, 0} and Z− = max{−Z, 0}. Note
that Z = Z+ − Z−. (For example, if Z = −3, we find Z+ = 0 and
Z− = 3.) Show that EX = EZ and that

E (XY ) =
(EZ+)2

p
+

(EZ−)2

1− p
.

(c) Show that Cov(X, Y ) = (
√

1−p
p

EZ+ +
√

p
1−p EZ

−)2.

(d) According to the previous item Cov(X, Y ) > 0. Argue why this is
intuitively obvious.

(e) Suppose that Z is standard normal. What are the marginal distribu-
tions of X and Y ? Are X and Y independent? Is (X, Y ) bivariate
normal?
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35. Let X1, . . . , Xn be an iid sequence of Bernoulli random variables with prob-
ability p on ‘success’. If p ∈ [0, 1] is unknown, the Maximum Likelihood
Estimator (MLE) of p is the average Xn. In this exercise it is known that
p > 1

2
, but unknown otherwise and we try again to estimate p by Maximum

Likelihood, taking the information p > 1
2

into account. As in the usual
situation the log-likelihood is

`(p) = n
(
Xn log p+ (1−Xn) log(1− p)

)
.

To obtain the MLE, we will maximize `(p) over p in the closed interval
[1
2
, 1]. We investigate the properties of the resulting MLE in this unusual

situation. We will see that it is important to distinguish between the cases
Xn ≤ 1

2
and Xn >

1
2
.

(a) Compute ˙̀(p) = ∂
∂p
`(p) and show that `(p) is a decreasing function of

p on the interval [1
2
, 1] if X ≤ 1

2
. For which value of p is `(p) maximal

in this case?

(b) If Xn >
1
2
, compute the value of p where `(p) is maximal.

(c) Let p̂n be the MLE of p. Conclude that p̂n = max{Xn,
1
2
}.

(d) Show that p̂n is a consistent estimator of p.

(e) Show that P(Xn ≤ 1
2
) ≤ P(|X−p| ≥ p− 1

2
) for p > 1

2
. Use Chebychev’s

inequality to show that P(Xn ≤ 1
2
)→ 0 as n→∞ for p > 1

2
.

The Fisher information I(p) is as usual equal to 1
p(1−p) . We want to inves-

tigate whether the property

P(
√
nI(p)(p̂n − p) ≤ x)→ Φ(x) (1)

continues to hold for our estimation problem.

(f) Show that one has

P(
√
nI(p)(p̂n − p) ≤ x) = P(

√
nI(p)(

1

2
− p) ≤ x,Xn ≤

1

2
)

+ P(
√
nI(p)(Xn − p) ≤ x)

− P(
√
nI(p)(Xn − p) ≤ x,Xn ≤

1

2
).

(g) Compute, taking into account that p > 1
2

and use the Central limit
theorem where needed, the limits of each of the three probabilities on
the right in the above display. Does the convergence in Equation (1)
hold true?
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36. Consider the model for multiple regression, Y = X̃β̃ + e. Assume that Y
and e are n-dimensional random vectors, β̃ ∈ Rp and X̃ ∈ Rn×p. Accept
the odd notation with the tildes for a while. As usual, we assume that the
elements of e are independent random variables with a common N(0, σ2)
distribution. Suppose that p = 3, n ≥ 3 and that

X̃ =

1 x1 2
...

...
...

1 xn 2

 ,

with x1 6= x2 and β̃ = (β̃0, β̃1, β̃2)>.

(a) What is the rank of X̃. Can we compute the ordinary least squares
estimator of β̃?

(b) Show that we can write X̃β̃ = Xβ, where β = (β0, β1)> with β0 =
β̃0 + 2β̃2 and β1 = β̃1. What is X?

(c) According to the previous item we have Y = Xβ + e. Why can we
compute the ordinary least squares estimator β̂ of β?

(d) Suppose that θ = β0 − β1. An obvious estimator of θ is θ̂ = β̂0 − β̂1.
Is it an unbiased estimator of θ?

(e) Show that σ2
θ̂

:= Var θ̂ = σ2(1,−1)(X>X)−1

(
1
−1

)
= σ2

n

∑
i(xi+1)2∑
i(xi−x̄)2

.

(f) What is the distribution of θ̂?

(g) We use σ̂2 = ê>ê
n−2

to estimate σ2, where ê is the vector of residuals.
Let τ be the statistic

τ =
θ̂ − θ
sθ̂

,

with sθ̂ =
√

σ̂2

n

∑
i(xi+1)2∑
i(xi−x̄)2

. What is the distribution of τ? Give a very

brief (rough) explanation of your answer, but no detailed computa-
tions.

(h) Use the distribution of τ to construct a (1−α)-confidence interval for
θ.

(i) After performing an experiment with n = 62 data points, one obtains
the values θ̂ = 0.60, sθ̂ = 0.40. Choose α = 0.05 and give a numerical
confidence interval for θ based on τ .

(j) One is interested in testing the null hypothesis H0 : β0 = β1 against
the alternative β0 6= β1. Should the null hypothesis be rejected for the
experiment of the previous item?
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37. Let X1, . . . , Xn be independent random variables with a common exponen-
tial distribution having parameter λ > 0. Let X =

∑n
i=1Xi. We know that

X has a Gamma distribution.

(a) Let n > k ≥ 0. Show that E 1
Xk = λk

(n−1)···(n−k)
.

(b) Write down the joint density of (X1, . . . , Xn) and show that the max-
imum likelihood estimator of λ is given by λ̂ = n

X
.

(c) Compute E λ̂, E λ̂2 and show that Var λ̂ = n2λ2

(n−1)2(n−2)
.

(d) Show by using the previous item or by a direct computation that the

mean squared error of λ̂ equals λ2(n+2)
(n−1)(n−2)

.

(e) Verify that with X̄ = X/n

√
n(
λ̂

λ
− 1) = − 1

λX̄
λ
√
n(X̄ − 1

λ
)

and deduce from the Central Limit Theorem for the sample mean that√
n( λ̂

λ
− 1) has N(0, 1) as limit distribution.

(f) Compute the Fisher information I(λ) = 1
λ2

and verify that the correct
answer to the previous question is in agreement with a general result.

(g) Compute a (1 − α)-confidence interval of the type (`1(X̄), r1(X̄)) for
λ based on the asymptotic distribution of the maximum likelihood
estimator.

(h) Compute a (1 − α)-confidence interval of the type (`2(X̄), r2(X̄)) for
λ based on the asymptotic distribution of the sample mean and show
that `1(X̄)− `2(X̄) tends to zero for n→∞.

38. Let X1, X2, . . . be a sequence of independent random variables, all having
a Poisson distribution with parameter λ > 0. Put S0 = 0, Sn =

∑n
j=1Xj

for n ≥ 1 and define T = min{n ≥ 1 : Sn > 0}, the first moment Sn
gets positive. Note that T = k is equivalent to Sk > 0 and Sk−1 = 0.
Furthermore we have independent random variables T1, . . . , Tn, all having
the same distribution as T . To express the dependence on the parameter
λ, we write Pλ etc.

(a) Show that Pλ(T = k) = (1− e−λ)e−λ(k−1) for k ≥ 1.

(b) We observe that T has a familiar distribution. What are ET and
VarT?

Assume that the T1, . . . , Tn are observed. Let pλ(t1, . . . , tn) = Pλ(T1 =
t1, . . . , Tn = tn) and L(λ|T1, . . . , Tn) = pλ(T1, . . . , Tn). Let λ1 > λ0 > 0.
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(c) Compute the likelihood ratio Λ := L(λ0|T1,...,Tn)
L(λ1|T1,...,Tn)

. It is convenient to

express Λ in terms of p0 = 1− e−λ0 and p1 = 1− e−λ1 .
(d) The Neyman-Pearson test for testing H0 : λ = λ0 against HA : λ = λ1

at significance level α rejects for small values of Λ. Show that this test
is equivalent to rejecting for small values of

∑n
j=1 Tj, say

∑n
j=1 Tj <

c(α).

(e) Show by invoking the Central Limit Theorem that approximately c(α) =
n−z(α)

√
n(1−p0)

p0
, where as usual z(α) is such that Φ(−z(α)) = α.

(f) Is the Neyman-Pearson test uniformly most powerful for testing H0 =
λ0 against the alternative HA : λ > λ0?

(g) Compute the (asymptotic) power of the test at λ1 in terms of an ex-
pression involving the cumulative distribution of the standard normal
distribution and show that it converges to 1 as n→∞.

39. Consider the model for multiple regression, Y = Xβ + e. Assume that Y
and e are n-dimensional random vectors, β = (β0, β1)> ∈ R2 and X ∈ Rn×2.
We split the observations Y in a vector Y 1 of length k ≤ n and a vector
Y 2 of length m = n − k, Y 1 = (Y1, . . . , Yk)

> and Y 2 = (Yk+1, . . . , Yn)>.
Correspondingly, we split the design matrix X, which has the following
special form

X =

(
X11 X12

X21 X22

)
=

(
1k 1k
1m 0m

)
.

Here 1k (1m) is a k-dimensional (m-dimensional) vector whose elements are
all equal to 1, 0m is an m-dimensional vector whose elements are all equal
to 0. The experiment thus uses the dummy variables 1 and 0 to indicate
whether a population item possesses a certain property or not. Think of
people, where females get the value 1, whereas males are ‘worthless’.

(a) Show that X>X =

(
k +m k
k k

)
, and compute its inverse.

(b) Show that the Least Squares estimator β̂ of β is given by

β̂ =

(
β̂0

β̂1

)
=

(
Y 2

Y 1 − Y 2

)
,

where Y 1 = 1
k

∑k
i=1 Yi and Y 2 = 1

m

∑n
j=k+1 Yj.

(c) Compute expectation and variance of β̂1.
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(d) The designer of the experiment is able to control the sizes k and m of
the sub-populations. How should she choose k and m such that the
mean squared error of β1 is minimal? For convenience you may assume
that n is even.

Assume that the error term e has a multivariate normal distribution with
zero expectation and covariance matrix equal to σ2I, with σ ∈ (0,∞).

(e) Determine the distribution of

β̂1 − β1

σ
√

1
k

+ 1
m

.

(f) Let S2 be the ‘usual’ estimator of σ2 and its positive root S. Show that
S2 = (

∑k
i=1(Yi − Y 1)2 +

∑n
j=k+1(Yj − Y 2)2)/(n− 2) and characterize

the distribution of S2.

(g) Derive from general results the distribution of

β̂1 − β1

S
√

1
k

+ 1
m

.

(h) We test at significance level α the hypothesis H0 : β1 = 0 against the
alternative HA : β1 6= 0. The total sample size is 100, k = 50, α =
0.01. Numerical results yield the values β̂1 = −5.00 and S = 12.50.
Construct a confidence interval for β1.

(i) Think of the responses Yi as income and a population of women and
men as at the beginning of the exercise. Do women significantly earn
(1) more or (2) less then men, or is there (3) no significant difference?

40. Let Let X1, . . . , Xn be independent random variables with a common uni-
form distribution on an interval [0, θ], where θ > 0 is an unknown param-
eter. It is known that the maximum likelihood estimator of θ is given by
X(n) := max{X1, . . . , Xn}. Obviously, we have X(n) ≤ θ.

(a) Show that X(n) has distribution function given by FX(n)
(x) = (x

θ
)n for

x ∈ [0, θ].

(b) Show that X(n) is a consistent estimator of θ: since X(n) ≤ θ, it is
sufficient to show that P(X(n) < θ − δ)→ 0 as n→∞ for all δ > 0.

(c) Compute the density of X(n) and show that EX(n) = n
n+1

θ.
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(d) For which constant cn is θ̂n := cnX(n) an unbiased estimator?

(e) One can show that EX2
(n) = n

n+2
θ2. Show that the variance of X(n)

equals n
(n+1)2(n+2)

θ2 and from this that the mean squared error of X(n)

equals 2
(n+2)(n+1)

θ2.

(f) Deduce from the previous item that the variance of θ̂n is equal to
θ2

n(n+2)
.

(g) Which of the estimators X(n) and θ̂n is preferred and why?

(h) Let Yn = n(θ−X(n)) ≥ 0. Show that the distribution function FYn of Yn
is given by FYn(y) = 1−(1− y

nθ
)n for y > 0. Show that Yn converges in

distribution to Y , where Y has an exponential distribution with mean
θ.

(i) Let Wn = n(θ− θ̂n). Show that Wn = Yn−X(n) and that Wn converges
in distribution to W := Y − θ (give a precise argument).

(j) Compute EY 2 and EW 2. Are the results in agreement with those of
items (e) and (f).

(k) All mean squared errors and variances above tend to zero by a factor
roughly proportional to 1

n2 . This is in contrast with the usual behavior
of maximum likelihood estimators and the Cramér-Rao bound. Part
of the explanation is that the the Fisher information I(θ) (in a single
observation) is not well defined. Why is this the case? It may help to
sketch the density of X1 as a function of θ for θ > 0 (the likelihood) .

41. Here we consider two independent samples, one from aN(ν, σ2) distribution,
one from a N(µ, σ2) distribution. Note that the variances of the two distri-
butions are the same. Specifically, we have iid random variables X1, . . . , Xn

with a common N(µ, σ2) distribution, and iid random variables Y1, . . . , Ym
with a common N(ν, σ2) distribution. All Xi are also independent of all Yj.
It is of interest whether or not µ = ν. Let δ = µ − ν and X = 1

n

∑n
i=1 Xi,

Y = 1
m

∑m
j=1 Yj. Assume that σ2 is known.

(a) Show that X − Y has a N(δ, ( 1
n

+ 1
m

)σ2) distribution.

(b) Give a (1− α)-confidence interval for δ.

(c) Write the joint density of (X1, . . . , Xn, Y1, . . . , Ym). Note that the un-
known parameters are µ and ν.

(d) Show that the maximum likelihood estimators of µ and ν are given by
µ̂ = X and ν̂ = Y .
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(e) Suppose that it is known that ν = µ. In this case the likelihood only
depends on the unknown parameter µ. Show that in this situation the
maximum likelihood estimator is given by µ̃ = nX+mY

n+m
.

(f) Let S2
X =

∑n
i=1(Xi −X)2 and S2

Y =
∑m

j=1(Yj − Y )2. Use

µ̃ = X +
m

m+ n
(Y −X) = Y +

n

m+ n
(X − Y )

to write

n∑
i=1

(Xi − µ̃)2 +
m∑
j=1

(Yj − µ̃)2 = S2
X + S2

Y +
nm

n+m
(X − Y )2.

(g) Let H0 : µ = ν and HA : µ 6= ν. Show that the (generalized) likelihood
ratio test statistic is equal to

Λ = exp
(
− 1

2σ2

nm

n+m
(X − Y )2

)
.

(h) Suppose that H0 is tested against HA at significance level α using Λ
as the test statistic. Describe precisely the critical region of the test
(then H0 is rejected) in terms of X − Y .

(i) Give a connection between the answers to (a) and (h).

42. Consider the linear regression model Y = Xβ + e, where Y and e are 2n-
dimensional random vectors, X ∈ R2n×2 and β = (β0, β1)>. Moreover, the
design matrix X is of the special form

X =

(
X11 X12

X21 X22

)
=

(
1n 1n
1n −1n

)
,

where 1n is an n-dimensional vector whose elements are all equal to 1.
We furthermore assume that the elements of the vector e are iid random
variables with zero mean and variance σ2. Let Y 1 = 1

n

∑n
i=1 Yi and Y 2 =

1
n

∑2n
j=n+1 Yj.

(a) Show that the least squares estimator of β is given by

β̂ =

(
β̂0

β̂1

)
=

(
1
2
(Y 1 + Y 2)

1
2
(Y 1 − Y 2)

)
.

What is the variance of β̂1?
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(b) Let ê be the vector of residuals, ê = Y − Xβ̂. Show that ê>ê =∑n
i=1(Yi − Y 1)2 +

∑2n
j=n+1(Yj − Y 2)2.

(c) What is E (ê>ê)? Give an unbiased estimator σ̂2 of σ2.

A group of 2n people is selected for a screen test to find out whether they are
suitable as a candidate to present a new television programme. The first n
persons are female and the last n persons are male. Since beauty is thought
of as a potential criterion for selection, the second column of the design
matrix is chosen to reflect this phenomenon. If somebody passes the test,
the corresponding Y -value is 1 and 0 otherwise. Somebody is interested to
see whether gender is of influence in the selection of candidates in the sense
that women have a better chance to pass the test.

(d) Explain that the error term e cannot have a (multivariate) normal
distribution.

(e) Formulate a hypothesis testing problem in terms of the parameter
β that reflects the research issue. Give a suitable test statistic and
describe the rejection region.

Although the usual normality assumptions are not valid, we will ignore this
and assume that, as usual, relevant test statistics have a t-distribution with
the appropriate number of degrees of freedom (this can be justified as an
approximation if n is not too small). Suppose that n = 10 and that 6
women and 4 men pass the test.

(f) What is the result of the test at significance level α = 0.05? Can we
conclude from the observations that women have an advantage to pass
the test? And what is the conclusion if α = 0.01?

43. Let X1, . . . , Xn be independent random variables with a distribution having
a (continuous) density f(x;λ) such that f(x;λ) = 2λx exp(−λx2) for x ≥ 0.

(a) Show that f(x;λ) = 0 for x < 0. Hint: computing an integral helps.

(b) Show that EX1 = 1
2

√
π
λ
. Hint: write the expectation as an integral∫

. . . dx, make the change of variable y =
√

2λx and recognize, up to
a constant, a known variance.

(c) Show that EX2
1 = 1

λ
. Hint: use integration by parts.

(d) Show that EX4
1 = 2

λ
EX2

1 .

(e) Let `(λ;X1) be the log-likelihood, when X1 is observed. Show that
˙̀(λ;X1) = 1

λ
−X2

1 . Compute Var ˙̀(λ;X1).
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(f) Compute, using the results of the previous items, the Fisher informa-
tion I(λ|X1) = I(λ), if only X1 is observed.

(g) Compute the same Fisher information I(λ) above by a different method.

(h) Compute the maximum likelihood estimator λ̂n of λ for the case where
the full sample X1, . . . , Xn is observed.

(i) Characterize the asymptotic distribution of λ̂n for n→∞?

(j) What is the maximum likelihood estimator θ̂n of θ, for θ = 1
λ

if
X1, . . . , Xn is observed?

(k) Is θ̂n an unbiased estimator of θ?

(l) Compute the mean squared error of θ̂n.

(m) Show that θ̂n is a consistent estimator of θ.

(n) Use the Central Limit Theorem to find the asymptotic distribution
(n→∞) of θ̂.

44. Here are two statements. (1) The popularity of political parties is measured
in terms of their number of members. (2) The popularity of political parties
is measured in terms of their number of votes at the last held elections. Both
statements contain some truth, and one may wonder whether the number
of members of parties can be used to predict the number of votes in the first
coming elections. We will test this hypothesis in the framework of linear
regression. In technical terms, the xi will be the membership sizes and Yi
the number of votes, both measured for The Netherlands at the election
date September 12, 2012. In the table below we have the figures for the 11
parties that ended up with representatives (there are 150 seats in total in
the parliament) in the parliament after September 12, 2012.

party members seats
CDA 61294 13
CU 24701 5
D66 21985 12
GL 26505 4
PvdA 54279 38
PvdD 12250 3
PVV 1 15
SGP 28048 3
SP 44186 15
VVD 38412 41
50+ 1321 2

28



There is one strange party in the sense that it has one member only, the
membership is not open to anybody else than the party leader.

(a) One of the assumptions used to apply the usual regression model is
that the Yi are independent. Is this assumption satisfied for the 11
parties in the sample?

(b) Because of this one less democratic party (in the sense of absence of
internal democracy), we omit this party from this and the remaining
questions. How would you answer the previous question for the 10
remaining parties.

(c) In the standard regression model (whose validity we assume in what
follows) there are the parameters β0 and β1. How would you describe
in terms of these parameters the null hypothesis that the number of
members has no predictive power. How would you describe the al-
ternative? (I see two possibilities from which you can choose, and
your choice should be consistent with your answers to the remaining
questions.)

(d) Compute the least squares estimators of β0, β1 from the data. You
may use the rounded numbers

∑
xi = 313000,

∑
x2
i = 129000000,∑

xiyi = 5714000, the sum of squared residuals is 1184 (simplify fur-
ther in your calculations if you don’t have a calculator).

(e) Give an estimate of σ2, the assumed common variance of the Yi.

(f) Test the null hypothesis against the alternative as you have formu-
lated it when answering question 44c by using a rejection region and
a suitable test statistic T .

(g) Compute the p-value for the chosen test statistic T .

(h) Give a one- or two-sided confidence interval for β1, depending on you
choise of the alternative hypothesis.

(i) Check whether the estimate of β1 is in the confidence interval. Is this
in agreement with the result of the test?

45. Let X be a random variable whose distribution function is determined by
the formula F (x) = 1− x−λ, where λ is a positive parameter.

(a) The given formula cannot be correct for all x ∈ R. What are the values
of x for which the formula makes sense? Make a sketch of the graph
of F for your favourite value of λ and compute the density of X.

(b) Let k be a positive integer and assume that λ > k. Show that EXk =
λ

λ−k .

29



(c) What is the variance of X, if it is finite?

In the remainder of this exercise we are dealing with a sample X1, . . . , Xn

of independent, identically distributed random variables with common dis-
tribution function F . By X we denote the sample average.

(d) Show that the moment estimator λ̂mom of λ is given by X
X−1

(e) Show that λ̂mom is a consistent estimator of λ (Note that λ̂mom is of the
type g(X) and use the law of large numbers).

(f) Show that

√
n(λ̂mom − λ) = − λ− 1

X − 1

√
n(X − λ

λ− 1
).

(g) Assume λ > 2. Show, use the central limit theorem and additional
arguments, that

√
n(λ̂mom − λ) converges in distribution to a random

variable having a normal distribution with variance λ(λ−1)2

λ−2
.

(h) Compute the maximum likelihood estimator λ̂MLE of λ.

(i) Compute the Fisher information I(λ) (for n = 1).

(j) What is the limit distribution of
√
n(λ̂MLE − λ)?

(k) Which of the two estimators λ̂mom and λ̂MLE should be preferred?

46. A random variable X is said to have a log-normal distribution with param-
eters µ and σ2 if X = exp(Y ), where Y has a N(µ, σ2) distribution and
σ > 0. An alternative representation of such an X is X = exp(µ + σZ),
where Z has a standard normal distribution. Below we will consider a
sample X1, . . . , Xn of independent Xi, all having the same log-normal dis-
tribution. The parameter σ is considered to be known.

(a) Show that the density of the log-normal distribution is

f(x) =
1

xσ
√

2π
exp

(
− 1

2σ2
(log x− µ)2

)
.

(b) Let µ̂ be the maximum likelihood estimator of µ. Show that µ̂ =
1
n

∑n
i=1 logXi.

We consider the testing problem H0 : µ = µ0 against HA : µ = µA, where
µA > µ0, at significance level α.

(c) Show that the most powerful test rejects the null-hypothesis for ‘large
values’ of µ̂ by manipulating the likelihood ratio.
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(d) To make the previous item more precise, show that H0 is rejected when
µ̂ > µ0 + σ√

n
zα, where zα is such that Φ(zα) = 1 − α. Hint: use that

Xi = exp(µ0 + σZi) with Zi standard normal under H0.

(e) Is the test also uniformly most powerful for the testing problem H0 :
µ = µ0 against HA : µ > µ0? Same question for the testing problem
H0 : µ = µ0 against HA : µ < µ0.

(f) Show that the power of the test of item (d) in µ = µA is equal to

1 − Φ
(
(µ0 − µA)

√
n
σ

+ zα
)
. What happens to the power if the sample

increasing to infinity? Is this desirable?

47. Consider the standard regression model Y = Xβ + e, where Y is an n-
dimensional random vector, X a n × p matrix, β = (β0, . . . , βp−1)>, the
parameter vector, p-dimensional and e n-dimensional. Also the usual inde-
pendence and normality assumptions are satisfied. Assume X has rank p,
write P = X(X>X)−1X> and let β̂ be the usual least squares estimator.

We introduce an additional regressor ξ ∈ Rn, which is such that g :=
ξ>(I−P )ξ = ξ>(I−X(X>X)−1X>)ξ > 0. Here is some additional notation
and results.

X̃ :=
(
X ξ

)
∈ Rn×(p+1)

(X̃>X̃)−1 =

(
(X>X)−1 + 1

g
(X>X)−1X>ξξ>X(X>X)−1 −1

g
(X>X)−1X>ξ

−1
g
ξ>X(X>X)−1 1

g

)
P̃ := X̃(X̃>X̃)−1X̃> = P +

1

g
(I − P )ξξ>(I − P ).

As an alternative to the given standard model, one may also consider the
extended model Y = X̃β′ + e, where β′ now becomes (p + 1)-dimensional,
β′ = (β0, . . . , βp)

>, and the rows of X̃ now consist of p+ 1 regressors. This
extended model should give a better fit than the original one. To measure
the fit of the original model we look at ê = Y − Ŷ , where Ŷ = Xβ̂ and
for the extended model one considers ẽ = Y − Ỹ with Ỹ = X̃β̃ and β̃ the
(p + 1)-dimensional least squares estimator. By ||v|| we denote the usual

norm of a vector v, ||v|| =
√
v>v.

(a) Show that the extended model gives a better fit, ||ẽ|| ≤ ||ê||, by com-
puting

||ẽ||2 = ||ê||2 − 1

g

(
Y >(I − P )ξ

)2
.

Show also that E 1
g

(
Y >(I − P )ξ

)2
= σ2 and hence that E ||ẽ||2 =

(n− p− 1)σ2.
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(b) Show for the extended model that

β̃ =

(
β̂ − (X>X)−1X>ξ β̃p

1
g
ξ>(Y −Xβ̂)

)
, (2)

where β̃p is the last element of the vector β̃.

(c) Show directly from (2) that β̃p is an unbiased estimator of βp. (Note
that β̃p = 1

g
ξ>(I − P )Y and use the extended model.)

(d) Show directly from (2) that Var (β̃p) = σ2

g
. How could you have already

known this from the theory?

Here are some figures. Suppose in an experiment with n = 23 and p = 2,
one finds g = 0.81, ξ>(I − P )Y = 0.324, ê>ê = 1.1421, ẽ>ẽ = 1.0125; these
figures should allow for ‘easy’ calculations.

(e) Construct a numerical 95%-confidence interval for βp on the basis of
β̃p with the given data.

(f) Consider the hypotheses H0 : βp = 0 and HA : βp 6= 0. Will the null
hypothesis be rejected at the significance level α = 0.05 using β̃p as a
test statistic? Same question for α = 0.01.

48. Let X have an exponential distribution with parameter λ > 0, so X has
density f(x) = λ exp(−λx) for x ≥ 0. Let U be independent of X such that
P(U = +1) = P(U = −1) = 1

2
, and put Z = U

√
X.

(a) We are interested in the distribution function FZ of Z. Show, split the
event {Z ≤ z} into two sub-events according to U = ±1, that

FZ(z) =

{
1
2
(1− exp(−λz2)) + 1

2
if z ≥ 0

1
2

exp(−λz2) if z < 0.

(b) Show that the density fZ of Z is given by fZ(z) = λ|z| exp(−λz2).

(c) Give a rough (but not too rough) sketch of the graph of fZ . Thereby
you pay attention to the values of fZ for z near zero and for z → ±∞.

(d) From the previous item you can immediately deduce what EZ is.
How? Verify your answer by using the definition of Z.

(e) Show that Var (Z2) = 1
λ2

. Hint: use the definition of Z.

In the remainder of this exercise we assume to have an IID sample Z1, . . . , Zn,
each of the Zi having the density as in (b), which constitute our observa-
tions.
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(f) Give the expression for the joint density of the vector (Z1, . . . , Zn)
and show that the maximum likelihood estimator λ̂ of λ is given by
λ̂ = n/

∑n
i=1 Z

2
i .

(g) Compute the Fisher information I(λ) in a single observation Z1.

(h) Give an approximate (1−α)-confidence interval for λ based on λ̂. (Note
that the limits of this interval should not depend on the unknown λ.)

(i) Suppose the distribution of Z is reparametrized by using τ = 1/λ.
What is the maximum likelihood estimator of τ? Show that it is
unbiased.

(j) Many of the answers should be familiar to you. The explanation is as
follows. Although Z 6= X, knowing Z also tells you what X is (and
something similar holds for the Zi). Why?

49. Consider a random variable X with density function f given by f(x) =
1
2
λ2 exp(−λ

√
x) for x ≥ 0 (and zero otherwise), where λ is a positive pa-

rameter. You may safely assume that f is indeed a density.

(a) Show that EX = 6
λ2

. Hint: write down the integral, make the substi-
tution x = u2 and be clever from that point on.

In the remainder of this exercise you will also need E
√
X = 2

λ
. We will be

interested in the hypothesis testing problem H0 : λ = λ0 versus HA : λ = λ1

at some significance level α. The observations are X1, . . . , Xn, IID under
each of the hypotheses. Our test statistic will be the Likelihood Ratio, we
call it LR.

(b) Write down in terms of the observations the formula for LR.

(c) The Likelihood Ratio test rejects H0 for small values of LR. Show that
this test is equivalent to rejecting H0

i. for small values of Tn :=
∑n

i=1

√
Xi if λ0 < λ1, and

ii. for big values of Tn if λ0 > λ1.

Henceforth we will be interested in the case λ0 > λ1. Although it is possible
to determine the distribution of Tn under H0, we use the Central Limit
Theorem to approximate this distribution. Let Qn = λ0√

2n
(Tn − 2n

λ0
).

(d) Show that, under the null hypothesis, Qn converges in distribution to
a random variable having the standard normal distribution.

(e) Show that the Likelihood Ratio test rejects H0 if (approximately) Tn >
2n
λ0

+ zα
√

2n
λ0

.
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(f) Suppose that in a practical experiment n = 200, λ0 = 1 and that
Tn = 750 is observed. Compute the p-value. If α = 0.05, should one
reject H0?

(g) Is the Likelihood Ratio uniformly most powerful for the testing prob-
lem H0 : λ = λ0 versus HA : λ < λ0 at the same significance level
α?

(h) Suppose we change the testing problem in the previous item into H0 :
λ ≥ λ0 versus HA : λ < λ0 and that one decides to reject H0 if (again)

Tn >
2n
λ0

+ zα
√

2n
λ0

. Show that the significance level of this test is again
equal to α. Hint: Recall that according to the significance level with a
composite hypothesis one has to compute supλ≥λ0 Pλ(Reject H0). You
use again a normal approximation, which now depends on λ, to first
compute Pλ(Reject H0) and show that this probability is decreasing in
λ.

50. In this exercise we relate popularity, or audience ratings to market shares of
television programmes. Popularity ratings of television programmes are the
numbers of viewers reported as percentages of the total population, whereas
market shares of programmes are reported as percentages of that part of the
population that is watching TV at the same time. The underlying figures
in Table 1 list the results of ten popular programmes of the public nets in
The Netherlands on December 5, 2014. The time slots refer to different
periods over the day, which explains that the sum of the first row largely
exceeds 100%. In the table ‘ms’ denotes market share and ‘pr’ popularity
rating.

ms 31.9 28.8 27.6 30.9 20.2 26.5 20.3 23.1 14.0 23.1
pr 12.0 12.0 10.7 8.8 8.4 8.2 6.7 5.8 5.6 5.6

Table 1: the data

In a regression model we take ‘pr’ as the explanatory variable (the xi)
and ‘ms’ as the response (the yi). The usual independence and normality
assumptions are assumed to be satisfied. To facilitate the computations,
we give in Table 2 some summary statistics.
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∑
xi = 83.80∑
yi = 246.40∑

xiyi = 2160.37∑
x2
i = 758.98∑
y2
i = 6349.22∑

(xi − x̄)2 = 56.74∑
(yi − ȳ)2 = 277.92√∑
(xi − x̄)2 = 7.53√∑
(yi − ȳ)2 = 16.67∑
(yi − ŷi)2 = 117.05

Table 2: summary statistics

(a) Compute from the data the least squares estimates β̂1 and β̂0.1

(b) Test the null hypothesisH0 : β1 = 0 against the alternativeHA : β1 > 0
at the significance level α = 0.01.

(c) Consider the testing problem with null hypothesis H0 : β1 = β0
1 and

alternative HA : β1 > β0
1 at a significance level α. A one sided confi-

dence interval for β1 are those β0
1 that are not rejected by a test for the

this testing problem. Give a theoretical one sided (1 − α)-confidence
interval for β1.

(d) Using the above data, give also a numerical one sided confidence inter-
val for β1 with α = 0.01. Is your result in agreement with your answer
under (b)?

51. Consider the experiment of throwing two dice (numbered 1 and 2). Let Xi

be the number of dots showing on dice i. The underlying probability model
has the joint probability mass function (pmf) P(X1 = i,X2 = j) = 1

36
for

all relevant values of i and j. We consider X := X1 +X2. The pmf of X is

1If you don’t have a pocket calculator, here and in the other questions you are allowed to
simplify the figures a bit for easier computations.
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as given in the incomplete table below.

k 2 3 4 5 6 7 8 9 10 11 12
pk := P(X = k) 1

36
2
36

3
36

5
36

6
36

5
36

4
36

2
36

1
36

We introduce a new random variable Y , which is defined as the remainder
of X after dividing by 4. As an example, if X = 7, then X = 1× 4 + 3, so
in this case Y = 3. The values of Y are in the set VY = {0, 1, 2, 3}.

(a) Compute the missing pk from the underlying model.

(b) Compute the pmf of Y , so the probabilities P(Y = l), l ∈ VY .

(c) Make a sketch of the distribution function FY (y) of Y (y ∈ R) and
compute the jumps of FY at the points y = 2 and y = 5. (Recall that
these jumps are defined as ∆FY (y) = FY (y)− FY (y−).)

52. In this exercise we investigate the number of homicides in a country in
relation to the density of fire arms present. In the table below (figures taken
from The Guardian), the first column of number represents the number
of homicides per 100000 inhabitants (denoted yi), the second column of
numbers the number of fire arms in a country per 100 inhabitants (denoted
xi). The figures for the United States (2.97 and 88.8) play a special role.

homocides (yi) fire arms (xi)
Australia 0.14 15.0
Austria 0.22 30.4
Belgium 0.68 17.2
Canada 0.51 30.8
Denmark 0.27 12.0
Finland 0.45 45.3
Germany 0.19 30.3
Ireland 0.48 8.60
Luxembourg 0.62 15.3
Netherlands 0.33 3.90
New Zealand 0.16 22.6
Sweden 0.41 31.6
Switzerland 0.77 45.7

For the investigation we use regression with the US data ignored and you
may assume that all usual assumptions are in force, Yi = β0 + β1xi + ei
with ei ∼ N(0, σ2), etc. For actual computations you can use Table 3 with
summary statistics at the end of this exercise.
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(a) Show that the (estimated) regression line ŷ = β̂0 + β̂1x is given by
ŷ = 0.31 + 0.0038x (the coefficients are rounded).

(b) What is the exact theoretical value of
∑

i(ŷi−yi), where ŷi = β̂0+β̂1xi?

(c) Compute the value of the usual unbiased estimator of σ2.

(d) Compute an exact two-sided 90% confidence interval for β1. Should
the null hypothesis H0 : β1 = 0 against the one sided alternative
HA : β1 > 0 be rejected at significance level 5%?

We now consider prediction of the response variable for a new value of
the independent variable, for which the general setting is as follows. One
uses observations (x1, Y1), . . . , (xn, Yn) (again the usual assumptions Yi =
β0 + β1xi + ei, ei ∼ N(0, σ2), etc. are in force) and resulting quantities like
the least squares estimators β̂0, β̂1. Let x be a new value of the independent
variable. Then the prediction of the response variable is denoted Ŷ (x) :=
β̂0 + β̂1x, a random variable, whereas its true value is Y (x) = β0 + β1x+ e
with e ∼ N(0, σ2) and e independent of the ei.

(e) Show that E Ŷ (x) is an unbiased estimator of EY (x).

(f) Use the expression for the covariance matrix of β̂ (here β̂ = (β̂0, β̂1)>)

to show that Var Ŷ (x) = σ2
∑
i(xi−x)2

n
∑
i(xi−x̄)2

. (In all sums, i runs from 1 to

n).

(g) The prediction error is Y (x) − Ŷ (x). Show that its variance is equal

to σ2(1 +
∑
i(xi−x)2

n
∑
i(xi−x̄)2

).

(h) If σ2 would be known, an exact (1−α) prediction interval (much like a

confidence interval) for Y (x) has limits Ŷ (x)± σ
√

1 +
∑
i(xi−x)2

n
∑
i(xi−x̄)2

zα/2.

How would you adjust this for the case where σ2 has to be estimated
to again have an exact (1− α) prediction interval?

(i) Compute the by the regression line predicted value number Ŷ (x) of
homicides per 100000 inhabitants for the US, with x representing the
number of fire arms in the US. Give also a numerical 90% prediction
interval.

(j) Do you think that the estimated regression line is also valid for pre-
diction of the US data?

53. Consider a random variable X with density function fθ given by fθ(x) =
1
12
θ−4x exp(−

√
x/θ) for x ≥ 0 (and zero otherwise), where θ is a positive

parameter. You may safely assume that f is indeed a density.
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∑
xi

∑
yi

∑
x2
i

∑
xiyi

∑
i(ŷi − yi)2

∑
i(xi − 88.8)2

∑
i(xi − x̄)2

308.7 5.23 9428.89 132.24 0.4774 57114.49 2098.45

Table 3: summary statistics

(a) Show that EX = 20θ2. Hint: write down the integral, make the
substitution x = u2θ2.

(b) Show that E
√
X = 4θ and Var

√
X = 4θ2.

(c) Show that the Fisher information (in one observation) I(θ) is given by
I(θ) = 4/θ2.

In the remainder of this exercise we have observations X = (X1, . . . , Xn),
IID with common density fθ as above. The parameter θ is unknown and
has to be estimated.

(d) Write down in terms of the observations the likelihood L(θ|X) and the
log-likelihood `(θ|X).

(e) Show that the maximum likelihood estimator of θ is θ̂n = 1
4n

∑n
i=1

√
Xi

and that θ̂n is an unbiased estimator of θ.

(f) Show that, given the observations X1, . . . , Xn, θ̂n is the best (in the
sense of smallest mean squared error) unbiased estimator of θ.

(g) Deduce from the previous item that θ̂n is consistent.

(h) What is the asymptotic distribution of
√
n(θ̂n − θ)?

Suppose that n = 100 and that the observations are such that θ̂n = 3.14.

(i) Give a numerical approximate two-sided 95% confidence interval for θ.

(j) Consider the testing problem H0 : θ = 3 against HA : θ 6= 3 at
significance level 5%. Will H0 be rejected?

54. Consider an IID sample X1, . . . , Xn from a distribution with mean µ and
finite variance σ2, along with another IID sample Y1, . . . , Ym from another
distribution with same mean µ, but with variance 2σ2. The two samples
are independent as well. Using the samples separately, one can estimate µ
by the averages X and Y . But we can also mix the estimates and look at
µ̂ = tX + sY , where t and s are some real numbers.

(a) Show that µ̂ is an unbiased estimator of µ iff t+s = 1. In what follows
we assume that µ̂ is unbiased!

(b) Show that the mean squared error of µ̂ is equal to t2σ2

n
+ 2(1−t)2σ2

m
.
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(c) The aim is to find the ‘best’ estimator µ, using an obvious criterion.
Show that this best estimator is obtained for t = 2n

2n+m
and that its

mean squared error is equal to 2σ2

2n+m
.

55. Let X be a random variable with a distribution whose probability mass
function, depending on an unknown parameter θ > 0, is given by

Pθ(X = k) = c(θ)

(
θ

θ + 1

)k
, k = 0, 1, 2, . . .

Here c(θ) is an appropriate constant. We consider an IID sample X1, . . . , Xn

from this distribution.

(a) Show that one must have c(θ) = 1
θ+1

. (Recall the sum of a geometric
series!)

(b) Use the rule
∑∞

k=0 kα
k−1 = 1

(1−α)2
for 0 < α < 1 to show that EX = θ.

N.B. It can also be shown that VarX = θ(θ + 1), useful later on.

(c) Show that the log-likelihood given the sample is `(θ) =
∑n

i=1 Xi log θ−
(
∑n

i=1Xi + n) log(θ + 1), and show that the sample average X is the
maximum likelihood estimator of θ. Check that it is indeed a maximum
of the likelihood.

(d) Show that the Fisher information I(θ) in one observation satisfies
I(θ) = 1

θ(θ+1)
.

(e) Is the MLE efficient in the Cramér-Rao sense?

56. In this exercise we look at the Weibull distribution. It is a distribution on
(0,∞) with density (for x > 0)

fλ(x) =
1

λk
kxk−1 exp

(
−x

k

λk

)
,

where λ > 0 is the unknown parameter and k > 0 a fixed, known, constant.
One can show that

EXp = λpΓ
(p
k

+ 1
)
,

if X has the Weibull distribution. Recall that Γ(m) = (m − 1)!, if m is a
positive integer.

We have an IID sample X1, . . . , Xn from this distribution, want to estimate

λ and also consider hypothesis testing. It is a fact that
∑n
i=1X

k
i

λk
has the

Gamma(n, 1) distribution.
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(a) Let θ = λk. Show that the MLE of θ is θ̂ = 1
n

∑n
i=1X

k
i .

(b) Compute the MLE λ̂ of λ.

(c) Show that Var θ̂ = λ2k

n
. Why is θ̂ a consistent estimator of θ?

(d) Deduce from the previous item that λ̂ is a consistent estimator of λ.

(e) Compute the log of the likelihood ratio for samples X1, . . . , Xn from
two Weibull distributions given by parameters λ0 and λ1. Conclude
that for the testing problem H0 : λ = λ0 against HA : λ = λ1 with
λ1 > λ0 the likelihood ratio tests rejects H0 for large values of S :=∑n

i=1X
k
i . [So, H0 is rejected if S > sα, with Pλ0(S > sα) = α, the

significance level.]

(f) Show that sα = λk0γα, where γα is such that P(G > γα) = α, if G has
a Gamma(n, 1) distribution.

(g) Explain why the likelihood ratio test is uniformly most powerful for
the testing problem H0 : λ = λ0 against HA : λ > λ0, at significance
level α.

(h) Let λ < λ0 and assume that the Xi have a Weibull distribution with
parameter λ. Show that Pλ(S > sα) ≤ α.

(i) Show that the significance level of the above likelihood ratio test for
the testing problem H0 : λ ≤ λ0 against HA : λ > λ0 is again equal to
α.

57. Consider a regression model in vector form Y1 = Xβ + ε1. Here we have
that the column vector Y1 has n elements and the parameter vector β has
length p. Obviously the design matrix X is of dimensions n×p. The vector
ε1 consists of n independent normal N(0, σ2) random variables.
Next to the above model we also have Y2 = 2Xβ + ε2. Here we have that
the column vector Y2 again has n elements and the parameter vector β
and the matrix X are the same as above. The vector ε2 consists again of
independent normal N(0, σ2) random variables, and the vectors ε1 and ε2

are also independent.

It is assumed that both vectors Y1 and Y2, as well as the matrix X are
observed.

(a) Show that the two above models can be jointly summarized as Ỹ =
X̃β + ε (vectors and matrices of appropriate dimensions), where you
express all quantities occurring in this equation in those given above.
Show also that X̃>X̃ = 5X>X.
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(b) Show that the least squares estimator β̂ of β is now given by β̂ =
1
5
(X>X)−1X>(Y1 + 2Y2). Is it unbiased?

(c) Show that the covariance matrix of β̂ is σ2

5
(X>X)−1. The ordinary

least squares estimator of β when only the vector Y1 is observed is
(X>X)−1X>Y1. Is β̂ as in (b) a better estimator than (X>X)−1X>Y1?

(d) Let ε̂ = Ỹ − X̃β̂, σ̂ =
√

ε̂>ε̂
2n−p . Some more notation follows. By β̂i and

βi we denote the i-th elements of β̂ and βi respectively, and (X>X)−1
ii

is the ii-element of the matrix (X>X)−1. Put

Ti =
β̂i − βi

σ̂
√

(X>X)−1
ii /5

,

and argue (rely on known results) that Ti has a t-distribution. With
how many degrees of freedom?

(e) Assume n = 16, p = 2. Suppose one has computed β̂1 = 1.5, σ̂ = 0.6
and that (X>X)−1

11 = 9.8. Give a 98%-confidence interval for β1.
Is the null hypotheses H0 : β1 = 1 to be rejected in favour of the
alternative HA : β 6= 1 at significance level α = 0.02?

58. Consider an IID sample X1, . . . , Xn from a distribution with mean µ and
finite variance σ2, along with another IID sample Y1, . . . , Ym from another
distribution with same mean µ, but with variance τ 2. The two samples
are independent as well. The parameter µ is unknown. Using the samples
separately, one can estimate µ by the averages X and Y . But we can also
mix the estimates and look at µ̂ =

∑n
i=1 aiXi +

∑m
j=1 bjYj for certain real

numbers ai and bj.

(a) Show that µ̂ is an unbiased estimator of µ iff
∑n

i=1 ai +
∑m

j=1 bj = 1.

In what follows we assume that µ̂ is unbiased!

(b) Show that the mean squared error (MSE) of µ̂ is equal to σ2
∑n

i=1 a
2
i +

τ 2
∑m

j=1 b
2
j .

(c) Find the values of ai and bj that makes µ̂ the ‘best’ estimator in
an obvious sense: minimize the MSE under the constraint

∑n
i=1 ai +∑m

j=1 bj = 1 and use ‘Lagrange’. Show that this best estimator is

obtained for ai = τ2

τ2n+σ2m
and bj = σ2

τ2n+σ2m
.

(d) If σ2 < τ 2 then ai > bj. Give an intuitive argument why this is not an
unreasonable result.
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(e) Show that the resulting mean squared error is equal to σ2τ2

τ2n+σ2m
.

(f) The above estimator hardly deserve this name when σ2 and τ 2 are
unknown (the ai and bj depend on them). But if it would be known
that σ2 = τ 2 the problem disappears. Explain why, and show that
in this case the mean squared error equals σ2

n+m
. Why can’t this be a

surprising result?

59. Consider an IID sample X1, . . . , Xn from a distribution with density fθ(x) =
1
2

exp(−|x− θ|) (x ∈ R), where θ is an unknown parameter. Note that fθ is

symmetric around θ. Let Xn be the sample average of the Xi, and Mn the
sample median. We assume that n is odd, then there are exactly 1

2
(n − 1)

observations smaller than Mn and 1
2
(n − 1) observations greater than Mn;

this explains the name median. It is known that in the present situation√
n(Mn − θ) has an asymptotic standard normal distribution.

(a) What is EθX1?

(b) Show that 1
2

∫∞
−∞(x−θ)2 exp(−|x−θ|) dx =

∫∞
0
y2 exp(−y) dy. Deduce

that Varθ(X1) = 2.

(c) What is the limit distribution of
√
n(Xn − θ)?

(d) Write Mn − θ = 1√
n

√
n(Mn − θ) and deduce that Mn is a consistent

estimator of θ.

We consider a testing problem H0 : θ = θ0 against HA : θ = θ1, where
θ1 > θ0. We consider two test statistics, T 1

n =
√
n(Xn − θ0) and T 2

n =√
n(Mn − θ0). Consequently, we have two one-sided tests, both carried out

with the same (asymptotic) confidence level α. Using T 1
n , we reject H0 if

T 1
n > zα

√
2, and with T 2

n we reject H0 if T 2
n > zα. [Here zα is the upper

α-quantile of the standard normal distribution.]

(e) Show that the test with T 2
n has indeed asymptotic confidence level α.

(f) Show that the powers of the two tests in the alternative θ1 are 1 −
Φ(zα − (θ1 − θ0)

√
n) and 1− Φ(zα − (θ1 − θ0)

√
n/2).

(g) Which of the two tests is most powerful? Is it also uniformly the more
powerful one for the testing problem H0 : θ = θ0 against HA : θ > θ0?

We now consider the testing problem H0 : θ = θ0 against HA : θ 6= θ0, with
the same test statistics and the same common significance level α as above.

(h) Give two (1 − α)-confidence intervals for θ0, based on T 1
n and T 2

n re-
spectively.
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(i) Suppose it happened that both Xn and Mn are equal to 0.6 and that
α and n are such that zα/2/

√
n = 0.1. Which of the test rejects

H0 : θ0 = 0.48?

60. Consider the standard linear regression model, in unusual vector notation,
Y = Zγ + ε. Here, as usual, ε is a n-dimensional vector whose components
are IID with a common N(0, σ2) distribution. Recall that the covariance
matrix of ε is σ2In, with In the n-dimensional identity matrix. The vector
γ is the q-dimensional parameter, q ≤ n and Z, of size n× q, is the matrix
of regressors. The idea is to perform the usual least squares estimation
procedure to estimate γ, but the problem is that Z doesn’t have full rank,
its rank is p < q. Consequently, the matrix V := Z>Z is not invertible.
One says that the model is overparametrized and as a result, as we shall
see, there is no good estimator of γ.
Linear algebra tells us that we can write Z = XA, where X ∈ Rn×p and
A ∈ Rp×q, where both X and A have rank p. Then X>X is invertible
and there exists a matrix B ∈ Rq×p such that AB = Ip, the p-dimensional
identity matrix. Note that BA is not equal to Iq and that X,A,B all depend
on the elements of Z, so there are in principle computable. Furthermore we
define β := Aγ ∈ Rp (then Zγ = Xβ) and V + := B(X>X)−1B>.
We estimate γ, in analogy to the usual case, by γ̂ := V +Z>Y .

(a) Show that V +V = BA, V V + = (BA)> and V +V V + = V + [useful for
further computations].

(b) Show that γ̂ = BAγ + V +Z>ε. Is γ̂ an unbiased estimator of γ?

(c) Show that the covariance matrix of γ̂ is equal to σ2V +.

(d) In this context, an obvious estimator of β is β̂ = Aγ̂. Show that β̂ is an
unbiased estimator of β and that its covariance matrix is σ2(X>X)−1,
as in the usual case.

(e) Let Ŷ be the prediction of Y using γ̂, Ŷ = Zγ̂. Show that ZV +Z> =
X(X>X)−1X> and that Ŷ = Xβ +X(X>X)−1X>ε, as usual.

(f) The residual vector is ε̂ = Y − Ŷ . Show that E Ŷ = Zγ and that
ε̂ = (I−X(X>X)−1X>)ε. [We can thus use S2 = ||ε̂||2/(n− p) as the
usual unbiased estimator of σ2, useful below.]

(g) Although there is no sensible way to give a confidence interval for
elements of γ, we can still construct a confidence interval for elements
of the vector EY = Zγ. We concentrate on the first element of EY ,
call it µ0 and note that µ0 = e>Zγ, where e> = (1, 0, . . . , 0). Show
that the random variable µ̂0 := e>Ŷ has a normal distribution with
mean µ0 and variance σ2

0 := σ2e>ZV +Z>e.
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(h) Show that µ̂0 ± tn−p,α/2S
√
e>ZV +Z>e are the bounds of a (1 − α)-

confidence interval for µ0. [Here tn−p,α/2 is the usual α/2 upper quantile
of the tn−p-distribution.]

61. Here we consider IID random variables X,X1, . . . , Xn that have a common
Poisson(λ) distribution. We will estimate θ = λ2 based on the sample
X1, . . . , Xn.

(a) Show that E (X(X − 1) · · · (X − k + 1)) = λk for an integer k ≥ 1.
Hint: write the expectation as a sum of values n(n− 1) · · · (n− k+ 1)
times the probabilities P(X = n) = λne−λ/n! and see how this impacts
on n!

(b) Show that θ̂n = 1
n

∑n
i=1Xi(Xi − 1) is an unbiased estimator of θ.

(c) Let i 6= j. Show that E (XiXj(Xi − 1)(Xj − 1)) = λ4. What is the
covariance Cov(Xi(Xi − 1), Xj(Xj − 1))?

(d) Verify that X2(X − 1)2 = X(X − 1)(X − 2)(X − 3) + 4X(X − 1)(X −
2) + 2X(X − 1), and show that E (X2(X − 1)2) = λ4 + 4λ3 + 2λ2.

(e) Show that Var (X(X − 1)) = 4λ3 + 2λ2 and that Var (θ̂n) = 4θ3/2+2θ
n

.

(f) Is θ̂n a consistent estimator of θ?

(g) Show that the Fisher information I(θ) = 1
4θ3/2

(to do this, first you
rewrite the probability P(X = n) in terms of θ). Give an explicit

formula for an estimator θ̃n of θ that asymptotically has variance 4θ3/2

n
.

[Recall that the MLE of λ is the sample mean.]

(h) Which of the estimators θ̃n and θ̂n would you prefer, and why?

62. Consider the standard multivariate regression model Y = Xβ + ε (Y is

n-dimensional, X ∈ Rn×p, β =
(
β0, β1, . . . , βp−1

)> ∈ Rp, Cov(ε) = σ2 I and
all other common assumptions). Let η = Aβ where A is a known invertible
matrix. Then we also have the alternative model Y = Uη+ε for U = XA−1.

(a) Compute for both models the least squares estimators β̂ and η̂ (in
terms of X, U and Y ) and show that that η̂ = Aβ̂.

(b) Consider the usual estimators of σ2 for each of the two models. Show
that they are the same.

We are interested in testing the null hypothesis β0 = β1 against the alter-
native β0 6= β1 at a significance level α. We let A be the p×p matrix which
is the identity matrix except for its first row, which is

(
1 −1 0 · · · 0

)
.
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(c) Give a test statistic for the above testing problem, call it T , and give
its distribution under the null hypothesis.

Suppose n = 12, p = 2. The least squares estimators are β̂ =

(
2.97
3.49

)
. You

may also want to use (X>X)−1 =

(
0.0098 −0.0070
−0.0070 0.0067

)
and σ̂ = 1.592.

(d) Compute
(
1 −1

)
(X>X)−1

(
1
−1

)
. Give the rejection region of the

test statistic T and perform the test with the above data and α = 0.05.

(e) Give a theoretical and numerical 95% confidence region for the param-
eter β0 − β1. Is this result in agreement with the answer to previous
question?

63. In this question you have to compute most answers by performing calcula-
tions with (double) integrals. Let (X, Y ) be a random vector whose density
(depending on a parameter θ > 0) is given by

fθ(x, y) = c(θ) exp(−|x|
θ
− |y|

θ
)1xy>0,

where c(θ) is the positive normalization constant. Note that fθ(x, y) = 0
for all x, y with xy ≤ 0 and so P(XY > 0) = 1.

(a) Show that c(θ) = 1
2θ2

. [You can write the double integral as a sum of
two integrals, one for x, y > 0 and one for x, y < 0.]

(b) Show that X has marginale density fθ(x) = 1
2θ

exp(− |x|
θ

). You have to
do this for one of the two cases x ≥ 0 and x < 0 only.

(c) Argue without computation that EX = 0. Give also the marginal
density of Y .

(d) Show that E |X| = θ.

(e) Show that EX2 = 2θ2. What are VarX and Var |X|?
(f) Show that E (XY ) can be computed as E (XY ) = 1

θ2
(
∫∞

0
x exp(−x

θ
) dx)2

with E (XY ) = θ2 as a result.

(g) Are X and Y independent random variables?

(h) Show that E |XY | = θ2. What is Cov(|X|, |Y |)?

64. We consider random variables X having a Weibull distribution, a distribu-
tion on (0,∞) with density (for x > 0)

fθ(x) = c(θ, k)xk−1 exp

(
−x

k

θ

)
,
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where θ > 0 is an unknown parameter, k > 0 a fixed, known, positive
constant and c(θ, k) a normalization constant.

We also have an IID sample X1, . . . , Xn from this distribution, want to
estimate θ and consider hypothesis testing. For future use we mention that
1
θ

∑n
i=1 X

k
i has the Gamma(n, 1) distribution.

(a) Show that EXp = c(θ,k)
k
θ
p
k

+1Γ
(
p
k

+ 1
)

for p > 0.

(b) Show by a direct computation that for fθ to be a probability density
function, one needs c(θ, k) = k

θ
.

(c) Show that the maximum likelihood estimator of θ is θ̂ = 1
n

∑n
i=1X

k
i .

(d) Show that Var θ̂ = θ2

n
. Why is θ̂ a consistent estimator of θ?

(e) Compute the log of the likelihood ratio for samples X1, . . . , Xn from
two Weibull distributions given by parameters θ0 and θ1. Conclude
that for the testing problem H0 : θ = θ0 against HA : θ = θ1 with
θ1 > θ0 the likelihood ratio tests rejects H0 for large values of S :=∑n

i=1X
k
i . [So, H0 is rejected if S > sα, with Pθ0(S > sα) = α, the

significance level.]

(f) Show that sα = θ0γn,α, where γn,α is such that P(Gn > γn,α) = α, if
Gn has a Gamma(n, 1) distribution.

(g) Explain why the likelihood ratio test is uniformly most powerful for
the testing problem H0 : θ = θ0 against HA : θ > θ0, at significance
level α.

(h) Let θ < θ0 and assume that the Xi have a Weibull distribution with pa-
rameter θ. Show that Pθ(S > sα) < α, and conclude that supθ≤θ0 Pθ(S >
sα) = α. [This means that also the significance level of the above like-
lihood ratio test for the testing problem H0 : θ ≤ θ0 (now a composite
hypothesis) against HA : θ > θ0 is equal to α.]

(i) Is this likelihood ratio test also uniformly most powerful for the testing
problem H0 : θ ≤ θ0 against HA : θ > θ0, at significance level α.

65. Here we consider the standard multivariate regression model, but in two
versions. The first one is given by the familiar equation

Y = Xβ + ε, (3)

with all usual assumptions are satisfied, like β ∈ Rp, β> = (β0, . . . , βp−1),
X ∈ Rn×p, ε a vector of n IID random variables with a N(0, σ2) distribution.
The second model is given by

Y = Zβe + ε, (4)
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where βe ∈ Rp+1 is the extended vector

(
β
βp

)
, in which βp ∈ R is an

additional parameter, and Z =
(
X Xp

)
∈ Rn×(p+1), where Xp ∈ Rn is

an additional vector, X>p = (x1,p, . . . , xn,p). The second model can then
also be represented as Y = Xβ + Xpβp + ε. For both models we consider

the corresponding least squares estimators, β̂ = (X>X)−1X>Y and β̂e =
(Z>Z)−1Z>Y . All inverses are assumed to exist, which happens if Z has
full rank. We investigate some consequence of using two different models.

(a) If βp is known in the second model (6), there is no need to estimate
it. Suppose β is still unknown and to be estimated. A least squares
type of estimator of β in this case, different from the one that can be
obtained from β̂e as mentioned above, is β̃ := (X>X)−1X>(Y −Xpβp).
Show that this estimator is unbiased and give its covariance matrix.
Would this be a sensible estimator of β if βp is unknown?

Obviously both models can’t be true at the same time (unless βp is known
to be zero). We are therefore interested in properties of the estimators
under misspecification. We consider two cases, the first one is to assume
the second model to be true so all computations have to be done according
to Equation (6), but we use the ordinary least squares estimator β̂ as an
estimator of β.

(b) Assume model (6) and estimate β by β̂. Show that the bias E β̂− β is
equal to (X>X)−1X>Xpβp and that the covariance matrix of β̂ equals
σ2(X>X)−1.

(c) Show that the mean squared error of a β̂i for i = 0, . . . , p − 1 can be

computed as σ2e>i (X>X)−1ei+
(
e>i (X>X)−1X>Xp

)2
β2
p , where ei ∈ Rp

is an appropriate vector having one entry equal to one, the others zero.

To be on the safe side when it is not clear which of the two models is true,
one can always assume the extended model (6) and estimate β by taking the
first p elements of the vector β̂e. Call the resulting estimator β̃ (although
the notation is the same, it is not the estimator of item (a)). One has
β̃ =

(
Ip 0

)
β̂e, where the zero in the matrix is to be understood as a zero

vector of length p. Even when the first model, Equation (5), is the true one
we use β̃ as an estimator of β (instead of β̂).

(d) Show that β̃ is an unbiased estimator of β and that the covariance
matrix of β̃ is the upper left p× p block of σ2(Z>Z)−1.
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(e) The upper left block in the previous item is difficult to compute, but
it turns out that

Cov(β̃) = σ2(X>X − 1

X>p Xp

X>XpX
>
p X)−1.

It is then possible to show (which you don’t have to do, unless you
really want) that for the diagonal elements of the matrices one has
Cov(β̃)ii ≥ Cov(β̂)ii. Is it wise to be on the safe side if you know that
Equation (5) is the true model?

(f) The two models coincide if βp = 0. It is therefore useful to consider
the testing problem H0 : βp = 0 against the alternative HA : βp 6= 0 at
a significance level α. Give a test statistic for this testing problem, its
distribution and use this to give a (1− α)-confidence interval for βp.

66. We have observations in the form of n IID stochastic vectors (X1, Y1), . . . , (Xn, Yn),
all having the same (joint) density (depending on a parameter θ > 0) as
the stochastic vector (X, Y ). This density is given by

fθ(x, y) =
1

2θ2
exp

(
−|x|
θ
− |y|

θ

)
1xy>0.

The marginal density of X (and by symmetry also of Y !) turns out to be

pθ(x) =
1

2θ
exp(−|x|

θ
).

Furthermore it is known that the absolute values |X| and |Y | are indepen-
dent.

We will estimate θ by the maximum likelihood method, and write θ̂n for the
maximum likelihood estimator based on the observations (X1, Y1), . . . , (Xn, Yn).

(a) Are X and Y independent?

(b) Show that |X| has density gθ(x) = 1
θ

exp(−x
θ
) for x ≥ 0, which should

look familiar. [Hint: compute first as an integral the probability
Pθ(|X| ≤ x) = Pθ(−x ≤ X ≤ x) for x ≥ 0. You may want to ex-
ploit a certain symmetry too.]

(c) Show that Eθ(|X|) = θ and Varθ(|X|) = θ2, preferably without cum-
bersome computations.

(d) Show that the likelihood is given by

L(θ) = 2−nθ−2n exp

(
−
∑n

i=1 |Xi|+
∑n

i=1 |Yi|
θ

) n∏
i=1

1XiYi>0.
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(e) Show that θ̂n = 1
2n

(
∑n

i=1 |Xi|+
∑n

i=1 |Yi|). Is θ̂n an unbiased estimator
of θ?

(f) Argue by the Central limit theorem that
√

2n( θ̂n
θ
− 1) has an approxi-

mate standard normal distribution for large n. [Hint: Note that θ̂n is
the average of the 1

2
(|Xi|+ |Yi|). ]

(g) Show that the Fisher information in one observation (X, Y ) about θ
is 2

θ2
.

(h) Use the Fisher information and a result for maximum likelihood es-

timators to establish that
√

2n( θ̂n
θ
− 1) has an approximate standard

normal distribution for large n.

(i) Consider the testing problem H0 : θ = θ0 (null hypothesis) against
the alternative HA : θ = θ1 at the significance level α, where θ1 > θ0.
Show that the likelihood ratio test rejects the null hypothesis for large
values of θ̂n, i.e. if θ̂n > c for some c > 0.

(j) Show that the critical value c in the preceding question can be approxi-
mated (for large n) by θ0(1+ zα√

2n
), where zα is such that P(Z > zα) = α

when Z has a standard normal distribution.

(k) Is the likelihood ratio test of item (i) uniformly most powerful for
the testing problem H0 : θ = θ0 against the alternative HA : θ < θ0

(carefully note the inequality here!) at the same significance level α?

(l) Let z = zα/2 be such that P(Z > zα/2) = α/2 when Z has a standard

normal distribution. Show that ( θ̂n
1+ z√

2n

, θ̂n
1− z√

2n

) is an approximate (1−
α)-confidence interval for θ.

(m) Suppose that in practical situation with n = 50 one finds θ̂n = 3.25
and that α = 0.10. Should the null hypothesis θ = π (the famous
number π) be rejected in favour of the alternative θ 6= π when using a
test based on θ̂n?

67. LetX1, . . . , Xn be IID having a U [θ, 2θ] distribution (uniform on the interval
[θ, 2θ]) with θ > 0. Note that for such random variables it holds that
Xi ≥ θ and Xi ≤ 2θ, more precisely Pθ(Xi ≥ θ, Xi ≤ 2θ) = 1, where we
use the notation Pθ to emphasize that we compute probabilities under the
parameter θ. Let Mn = max{X1, . . . , Xn}, mn = min{X1, . . . , Xn} and
Xn = 1

n

∑n
i=1Xi.

(a) Show that Pθ(1
2
Mn ≤ mn) = 1 for all θ > 0.

(b) Show that the likelihood can be written as

L(θ) :=
1

θn
1θ≤mn1θ≥ 1

2
Mn
.
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(c) Sketch the graph of L as a function of θ (taking n = 1 already gives
a good impression) and argue that the maximum likelihood estimator
(MLE) of θ is θ̂n := 1

2
Mn.

(d) For consistency of the MLE one has to show two things for all small
ε > 0: Pθ(θ̂n < θ − ε)→ 0 and Pθ(θ̂n > θ + ε)→ 0 for n→∞. Show
one of these.

(e) Give a consistent estimator of θ based on mn; motivation is not re-
quired.

(f) Another estimator of θ is cXn for some c. How to choose c to get
an unbiased estimator? Give a brief argument (no extensive compu-
tations, refer to a theorem) for consistency of this estimator.

68. Here we consider the standard multivariate regression analysis, but in two
versions. In the first situation for the first analysis one has the familiar
equation

Y = Xβ + ε, (5)

with all usual assumptions are satisfied, like β ∈ Rp, β> = (β0, . . . , βp−1),
X ∈ Rn×p, ε a vector of n IID random variables with a N(0, σ2) distribution.
The second analysis, carried out independently of the first one, uses the
same model setup but with different data (even their number n′ may be
different), and is given by

Y ′ = X ′β + ε′, (6)

again with all usual assumptions are satisfied, like β ∈ Rp, β> = (β0, . . . , βp−1),
X ′ ∈ Rn′×p, ε′ a vector of n′ IID random variables with a N(0, σ2) distribu-
tion. Note that in both models one has the same β and the same σ2 and
that the prime in e.g. X ′ is only used to distinguishing notation, nothing
do with derivatives or transposition.
The random variables used in the different versions are assumed to be in-
dependent, so Y and Y ′ are independent random vectors, as wel as ε and
ε′.

For both models we consider the corresponding least squares estimators of
the common parameter β, β̂ = (X>X)−1X>Y and β̂′ = (X ′>X ′)−1X ′>Y ′.
Both are unbiased estimators of β; their covariance matrices are denoted C
and C ′ respectively and are known from the theory, e.g. C = σ2(X>X)−1.
All inverses are assumed to exist. We investigate some consequence of using
two different models and how to combine them.
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(a) A combined estimator is Aβ̂ + Bβ̂′, where A and B are p × p matri-
ces. Show that the combined estimator is unbiased for B = I − A.
This choice will be made from now on, and we write β̂A for the
resulting estimator. Show also that the covariance matrix of β̂A is
CA := ACA> + (I − A)C ′(I − A)>.

(b) We make a special choice for A, we take A∗ = C ′(C + C ′)−1. With
this choice one has for any A the identity CA = CA∗ + (A − A∗)(C +
C ′)(A−A∗)> (this is given information that you don’t have to prove).
Suppose that one wants to estimate a linear combination u>β, with
some know vector u. Show that ûA = u>β̂A is an unbiased of u>β and
that its variance is u>CAu. According to what criterion would one call
A∗ an optimal choice of the estimator uA?

(c) Suppose that in the second experiment the same matrix X is used
as in the first one (one can think of an independent repetition of the
experiment, but with the same values of the predictor variables), so
X = X ′ (and n = n′). Show that A∗ = 1

2
I. Give also an explicit

expression for CA∗ in terms of X and σ2 this case.

A supervisor who has access to both experiments and their data sets draws
up a simultaneous model using X ′ = X,(

Y
Y ′

)
=

(
X
X

)
β +

(
ε
ε′

)
.

(d) Show that it follows from general least squares theory applied to this
model that the least squares estimator of β is β̂s := 1

2
(X>X)−1X>(Y +

Y ′).

(e) Compute the covariance matrix of Y + Y ′ and the covariance matrix
Cov(β̂s) of β̂s and show that the latter one coincides with CA∗ above.

(f) The supervisor wants to test the null hypothesis H0 that the last el-
ement βp−1 of the vector β is zero against the alternative that it is
unequal to zero, using the data from both experiments and the si-
multaneous model above. Write down a test statistic and specify it’s
distribution under H0.

(g) In a concrete situation one has n = 70, p = 20, computes β̂p−1 =
−0.72, the bottom right element of (X>X)−1 equals 1.28 and σ2 is
estimated by 0.36. Will the null hypothesis be rejected at the level
α = 0.05?
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69. A positive random variable X is said to have an inverse gamma distribution,
denoted IG(α, β), if it has a density

f(x;α, β) =
βα

Γ(α)
(
1

x
)α+1 exp

(
−β
x

)
,

for x > 0 and where α, β are positive parameters.

(a) Show that f(x;α, β) is indeed a density for every α, β > 0 by comput-
ing its integral. [The substitution y = β/x is helpful.]

(b) Show that EX = β
α−1

for α > 1. [You may want to use that f(x;α′, β)
is a density for α′ = α− 1, and the property Γ(α′ + 1) = α′Γ(α′).]

(c) If X has an IG(α, β) distribution then X/β has an IG(α, 1) distribu-
tion. Show this by deriving the density of X/β from that of X.

In the remainder of this exercise α is supposed to be a known constant and
β an unknown parameter, which is to be estimated from a sample of IID
random variables X1, . . . , Xn from the IG(α, β) distribution. It is given that

EXk
1 = βk Γ(α−k)

Γ(α)
for every k < α.

(d) Show that, for α > 1, the moment estimator (using the first moment
only) of β is β̂1 := (α − 1)Xn, where Xn is the sample average. Is β̂1

an unbiased estimator of β?

(e) Show that Var β̂1 := 1
n
β2

α−2
for α > 2. Is β̂1 consistent?

(f) Show that E 1
n

∑n
i=1

1
Xi

= α
β
.

(g) Show that the likelihood of the sample is

βnα

Γ(α)n

n∏
i=1

X
−(α+1)
i exp

(
−β

n∑
i=1

1

Xi

)
.

and that the maximum likelihood estimator of β is

β̂n =
α

1
n

∑n
i=1

1
Xi

.

(h) Apply the law of large numbers to show consistency of the MLE.

(i) Show that E β̂n = nβ
nα−1

.

(j) Show that the Fisher information about β (for n = 1) equals α
β2 .

In the remaining part of this exercise we assume that the parameter α
of the IG(α, β) equals 1, and the symbol α will be reserved to denote
significance level.
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(k) Use the Likelihood Ratio (LR) test to test the null hypothesis H0 :
β = β0 against the alternative HA : β = β′0, where β′0 > β0, at some
significance level α. Let T := 1

n

∑n
i=1

1
Xi

. Show that the LR test rejects
the null hypothesis for small values of T , say T ≤ cl for some cl, where
cl depends on α and β0. We keep on calling the latter test LR test in
everything that follows.

(l) Is the LR test also UMP for the testing problem H0 : β = β0 against
the alternative HA : β > β0?

(m) Argue that for all β and Xi having an IG(1, β) distribution it holds
that βT has a distribution that doesn’t depend on β, i.e. Pβ(βT ≤ y)
doesn’t depend on β for every y > 0, where the notation Pβ is used to
emphasize that the Xi (and hence T ) have a distribution depending
on β. [Look at question (c).]

(n) Show that, in similar notation, Pβ(T ≤ cl) ≤ α for all β ≤ β0. [Show
first that Pβ(T ≤ cl) = Pβ0(Tβ0 ≤ βcl).] What is the significance
level of the LR test for the testing problem H0 : β ≤ β0 against the
alternative HA : β > β0?

The significance level of the LR test for a testing problem with H0 :
β ≤ β0 is supβ≤β0 Pβ(T ≤ cl). Compute this significance level.

70. Let X be a nonnegative random variable with a density f(x) = 1
θ
(x +

1)−1/θ−1 = λ(x + 1)−λ−1, where x ≥ 0 and θ, λ > 0 are parameters related
by λ = 1

θ
.

(a) Show that E (X + 1)a = λ
λ−a when a < λ.

(b) Show that E log(X + 1) = 1
λ

for any value of λ. Hint: use the substi-
tution u = log(x+ 1) when you compute a relevant integral.

Let X1, . . . , Xn be IID with common density f , where λ and θ are the
unknown parameters to be estimated.

(c) Compute the moment estimator of λ based on the sample average.
What is the corresponding moment estimator of θ?

(d) Show that the maximum likelihood estimator of λ is n∑n
i=1 log(Xi+1)

.

What is the maximum likelihood estimator of θ?

(e) Which of the two maximum likelihood estimators is unbiased?

(f) Show that the Fisher information about λ in one observation is equal
to 1

λ2
. [A second derivative might be helpful here.]

(g) Deduce from the previous item that Var (log(1 +X1)) = 1
λ2

= θ2.
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(h) Compute also the Fisher information about θ in one observation.

(i) Use the central limit theorem for the mean to compute the bounds of
a (1− α)-confidence interval for θ.

(j) Use the central limit theorem for the mean to establish that the limit

distribution of
√
n( θ̂n

θ
− 1) is standard normal.

(k) Use the previous result to obtain a (1− α)-confidence interval for θ.

(l) Based on the asymptotic behavior of the maximum likelihood estima-
tors, it is possible to obtain (approximate) (1−α)-confidence intervals.
Give such an interval for θ or for λ (one interval suffices).

(m) Use one of the maximum likelihood estimators to test the null hypoth-
esis H0 : λ = 1 (or H0 : θ = 1) against the alternative HA : λ 6= 1 (or
H0 : θ 6= 1) at significance level α. Describe the critical region for the
chosen test statistic.

(n) Suppose n = 256 and the MLE θ̂n = 1.25 and that the significance
level is 0.10. Compute for θ or for λ a confidence interval. Should the
null hypothesis above be rejected?

71. In this exercise we will consider a variation on the least squares approach to
estimation for linear multivariate regression models. The model we consider
can be concisely represented by

Y = Xβ + ε,

where Y is random n-dimensional vector, X an (n× p)-dimensional deter-
ministic (design) matrix and ε a random n-dimensional vector that has a
multivariate normal distribution with mean zero (as a vector) and a covari-
ance matrix Σ that is invertible. The modified least squares estimator β̂ of
β that we will consider is the minimizer of LS(β) := (Y −Xβ)>P (Y −Xβ),
where P is a given symmetric strictly positive definite n × n matrix. In
particular its inverse P−1 exists. It turns out that β̂ = (X>PX)−1X>PY ,
where it is assumed that X has full rank equal to p. Note that Y −Xβ̂ =
QY , where Q = I −X(X>PX)−1X>P .

(a) What is the distribution of Y ?

(b) What are X>PQ, QX? Show that Q>PQ = P−PX(X>PX)−1X>P .

(c) Show that LS(β) = (β− β̂)>X>PX(β− β̂)+LS(β̂) (this requires some
nasty matrix computations). Deduce that β̂ is the minimizer of LS(β).

(d) Show that β̂ is an unbiased estimator of the vector β (for any choice of
P ) and that its covariance matrix is (X>PX)−1X>PΣPX(X>PX)−1.
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(e) What is the distribution of β̂?

(f) Clearly, β̂ depends on the choice of the matrix P . A best choice would
be such that the covariance matrix is ‘minimal’. This best choice is
obtained for P = Σ−1. What (rather obvious) additional assumption
would (in principle) be needed to effectively compute β̂? What is the
resulting distribution for β̂ in this case?

(g) In the classical set up, the elements of the vector ε are IID normal
random variables. Show that in the classical set up with the best
choice of P , the estimator β̂ doesn’t depend on P anymore. The
additional assumption under (e) is not needed anymore to compute
β̂. But for testing of the β parameters it could still be useful. What
is the consequence in this context of imposing or not the additional
assumption? What are the test statistics and their distributions that
should be used?

72. Consider an IID sample X1, . . . , Xn, where the Xk are nonnegative, having
a density fθ(x) = c(θ)x exp(−1

2
θx2) for x ≥ 0 (and zero for x < 0) and

θ > 0 an unknown parameter.

(a) Show that c(θ) = θ.

(b) Show that for p > −2 it holds that EθXp
1 = (2

θ
)p/2Γ(1 + 1

2
p). Hint: In

the integral that you need, you perform the substitution x =
√

2
θ

√
y

after which you use the definition of the Gamma function.

(c) Show that, for a fixed parameter θ, the random variable Y := X1

√
θ

has density equal to g(y) = y exp(−1
2
y2) for y > 0. Determine also

the cumulative distribution function G, i.e. give a formula for G(y)
for all(!) y ∈ R. [Note that both functions don’t depend on θ.]

(d) What is the distribution of θX2
1 ? And what is the distribution of

θ
∑n

i=1X
2
i ?

(e) Compute, based on X1, . . . , Xn, the maximum likelihood estimator of
θ, call it θ̂n.

(f) Compute the moment estimator using the average of the p-th powers,
Apn := 1

n

∑n
i=1X

p
i (p > −2). Show that this is a consistent estimator

of θ.

(g) For each p there is a corresponding moment estimator. Which one
among them should be preferred? (No complicated computations
please!)
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(h) Test the null hypothesis H0 : θ = θ0 against the alternative H1 = θ1,
where θ0 > θ1, at a certain significance level α. Use the Neyman-
Pearson test and show that the test is equivalent to rejecting H0 for
large values of

∑n
i=1X

2
i ,
∑n

i=1X
2
i > c(α)/θ0 say, where c(α) is an

appropriate constant depending on α. Describe c(α).

(i) Is the test of the previous question UMP for testing H0 : θ = θ0

against the alternative H1 : θ < θ0 (at the same significance level).
Same question for the alternative H1 : θ > θ0.

(j) Consider the testing problem H0 : θ ≥ θ0 and H1 : θ < θ0, using the
test as in (h). Show that supθ≥θ0 Pθ(RejectH0) = α, i.e. the signifi-
cance level of the test still equals α.

73. Let X have an exponential distribution with parameter λ > 0, so X has
density f(x) = λ exp(−λx) for x ≥ 0. Let U be independent of X such that
P(U = +1) = P(U = −1) = 1

2
, and put Z = UX.

(a) We are interested in the distribution function FZ of Z. Show, split the
event {Z ≤ z} into two sub-events according to U = ±1, that

FZ(z) =

{
1− 1

2
exp(−λz) if z ≥ 0

1
2

exp(λz) if z < 0.

(b) Show that the density fZ of Z is given by fZ(z) = 1
2
λ exp(−λ|z|) for

z ∈ R.

(c) Give a rough (but informative) sketch of the graph of fZ . Thereby
you pay attention to the values of fZ for z near zero and for z → ±∞.
You may choose a value of λ at will, should you find that convenient.

(d) From the previous item you can immediately deduce what EZ is.
How? Verify your answer by using the definition of Z.

(e) Show that Var (Z) = 2
λ2

. Hint: use the definition of Z.

In the remainder of this exercise we assume to have an IID sample Z1, . . . , Zn,
each of the Zi having the density as in (b), which constitute our observa-
tions.

(f) Give the expression for the joint density of the vector (Z1, . . . , Zn)
and show that the maximum likelihood estimator λ̂ of λ is given by
λ̂ = n/

∑n
i=1 |Zi|.

(g) Compute the Fisher information I(λ) in a single observation Z1.
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(h) Give an approximate (1 − α)-confidence interval for λ based on λ̂.
(Make sure that the limits of this interval don’t depend on the unknown
λ.)

74. Consider the linear regression model Y = Xβ + e, where Y and e are 2n-
dimensional random vectors, X ∈ R2n×2 and β = (β0, β1)>. Moreover, the
design matrix X is of the special form

X =

(
X11 X12

X21 X22

)
=

(
1n 1n
1n 0n

)
,

where 1n is an n-dimensional column vector whose elements are all equal
to 1 and 0n is an n-dimensional column vector whose elements are all equal
to 0. We furthermore assume that the elements of the vector e are iid
random variables with zero mean and variance σ2. Let Y 1 = 1

n

∑n
i=1 Yi and

Y 2 = 1
n

∑2n
j=n+1 Yj.

(a) Show that the least squares estimator of β is given by

β̂ =

(
β̂0

β̂1

)
=

(
Y 2

Y 1 − Y 2

)
.

It may be helpful (not necessary) to show first (X>X)−1 = 1
n

(
1 −1
−1 2

)
.

(b) Let ê be the vector of residuals, ê = Y − Xβ̂. Show that ê>ê =∑n
i=1(Yi − Y 1)2 +

∑2n
j=n+1(Yj − Y 2)2.

(c) What is E (ê>ê)? Give an unbiased estimator σ̂2 of σ2.

Suppose a group of students is split into two subgroups of equal size. In the
first subgroup students get additional training above the ordinary training,
the second group follows the ordinary training only. This situation is re-
flected by the second column of the matrix X. The question is whether the
extra training has a positive effect on the exam results of the students.

(d) Formulate a hypothesis testing problem in terms of the parameter
vector β that reflects the research issue. Give a suitable test statistic
and describe the rejection region.

Assume that the usual normality assumptions on the error terms of e and on
the Yi are valid. Suppose that n = 10 and that in the first group the average
exam result is 7.8 and 7.3 in the second group. Moreover,

∑n
i=1 Y

2
i = 610

and
∑2n

i=n+1 Y
2
i = 534.50.
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(e) What is the result of the test at significance level α = 0.05? Can we
conclude from the observations that the training results in an advan-
tageous effect on the performance of the students at the exam? Same
questions for the case α = 0.01.
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