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Organization of the course

Webpage of the course

The course has a website,

https://staff.fnwi.uva.nl/p.j.c.spreij/onderwijs/TI/

statistics.html

with all relevant information.

To find it, Google Peter Spreij, open his homepage, click there on
Courses and proceed.

https://staff.fnwi.uva.nl/p.j.c.spreij/onderwijs/TI/statistics.html
https://staff.fnwi.uva.nl/p.j.c.spreij/onderwijs/TI/statistics.html
https://staff.fnwi.uva.nl/p.j.c.spreij/onderwijs.html
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Organization of the course

Some organizational details

I Lectures on location on Wednesdays (except the first lecture)

I Tutorials (TA sessions), with Aisha Schmidt and Saeed Badri
on xxxdays

I Weekly homework, compulsory, starting from Lecture 2

I Literature. Main: book by Rice (2nd or 3rd edition),
secondary: small set of additional notes, copies of a few slides
and the slides of this presentation; see the webpage for links
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Some abstract probability

Probability space

A probability space is a triple (Ω,F ,P).

Here is

I Ω (having elements denoted ω) a (non-empty) set, the sample
space,

I F is a σ-algebra,

I P is a probability measure on F .

What do these concepts mean?
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Some abstract probability

Sample space

Ω is typically the set that lists all possible outcomes of an
experiment.

Depending on the experiment, Ω could be

I the 2020 new TI students,

I all UvA students,

I a nonnegative integer,

I a real number,

and there is a lot more!
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Some abstract probability

Events and σ-algebra

An event A is a subset of Ω, A ⊂ Ω, but in principle not any
subset. The collection of events is supposed to be a σ-algebra, F :

I ∅ ∈ F ,

I If A ∈ F , then also its complement Ac is an element of F ,

I If A1,A2, . . . is a sequence of sets in F , then also the union⋃∞
i=1 Ai belongs to F .
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Some abstract probability

Properties of events

I Finite unions like A1 ∪ A2 belong to F , whenever A1,A2 ∈ F .

I Finite and countable intersections A1 ∩A2 and
⋂∞

i=1 Ai belong
to F , if the Ai belong to it.

I In short all set theoretic operations applied to events yield
events again, as long as they are performed at most countably
often.

If the set Ω is finite or countable, one usually take the power set of
Ω (all its subsets) as the collection of events F .
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Some abstract probability

Uncountable Ω

Is Ω is countably infinite, like Ω = R or Ω = (0, 1), for technical
reasons one takes a smaller collection than all subsets.

In the latter two examples, one usually takes the Borel sets
(denoted B), these are the sets that can be generated by at most
countably often applied set theoretic operations to all open
intervals.

For example, if Ω = R, then by definition an interval (−∞, a) is an
element of B, but then also [a,∞). Also every singleton belongs to
B, since {a} = ∩∞n=1(a− 1/n, a + 1/n). Other examples are
(−∞, a], (a, b], [a, b), etc.

In fact any ‘normal’ subset of R will be in B, this is a tautology . . .
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Some abstract probability

Probability measure

Compare the notations P(A) and f (x).

Indeed, a probability P, also known as a probability measure, is a
function too, defined on the collection of events F , P : F → [0, 1].
More precisely, we require

I P(∅) = 0, P(Ω) = 1,

I for disjoint events Ai ∈ F it holds that
P(∪∞i=1Ai ) =

∑∞
i=1 P(Ai ).

Note that for disjoint A1 and A2, both in F , we have the familiar
rule P(A1 ∪ A2) = P(A1) + P(A2) (you check!). We also frequently
use P(Ac) = 1− P(A), P(A) = P(A ∩ B) + P(A ∩ Bc) and
P(A) =

∑∞
i=1 P(A ∩ Bi ) if ∪∞i=1Bi = Ω (cutting A up in slices Bi ).
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Some abstract probability

Random variables

Elements of Ω can be ‘anything’ and you may not be able to
perform computations with them. But, these you can do with

a random variable X , a function X : Ω→ R, that is measurable:
{X ∈ B} ∈ F for every Borel set B.

Here {X ∈ B} is shorthand notation for {ω ∈ Ω : X (ω) ∈ B}.

Then every set {X ≤ x} is an element of F (here you take
B = (−∞, x ]. In fact, it is possible to show that if all sets
{X ≤ x} (x ∈ R) are elements of F , then X is measurable, a
random variable.



Statistics 1, 14/59

Some abstract probability

More on random variables

I For random variables X the probabilities P(X ∈ B), short for
P({X ∈ B}) = P({ω ∈ Ω : X (ω) ∈ B}) are well defined.

I The rule P(X ∈ B1 ∪ B2) = P(X ∈ B1) + P(X ∈ B2) for
disjoint B1,B2 in B.

I The probabilities F (x) := P(X ≤ x) are the values of a
function F : R→ [0, 1], called the (cumulative) distribution
function of X . Exercise: show that F is non-decreasing and
right-continuous, and limx→∞ F (x) = 1.

I Random vectors X will be considered as vectors of random
variables Xi . A two-dimensional random vector is sometimes

denoted as a row (X1,X2) or as a column

(
X1

X2

)
.
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More concrete probability, random variables

Discrete random variables

Discrete random variables

Let x1, x2, . . . be a finite or infinite sequence. A (measurable)
function X : Ω→ {x1, x2, . . .} is called a discrete random variable.

Indeed, the sets {X = xi} are in F , and hence the probabilities
pi := P(X = xi ) are well defined. These form the distribution of X .
The formula pi := P(X = xi ) represents the probability mass
function, masses pi are put at the positions xi .

Recall that the distribution function F of X is defined as
F (x) := P(X ≤ x), and that F is right-continuous.

By F (x−) we denote limy↑x F (y). Then F (x−) = P(X < x) and
the jump of F at x is ∆F (x) := F (x)− F (x−) = P(X = x) ≥ 0.
In particular, we see that ∆F (xi ) = P(X = xi ) = pi .

Note that F (x) =
∑

xi≤x pi and F (b)− F (a) =
∑

a<xi≤b pi .
[Shortly we will see integrals instead of sums.]
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More concrete probability, random variables

Discrete random variables

Example

Let Ω = {hh, ht, th, tt} and let P({ω}) = 1
4 for all ω, and X (ω) is

the number of h’s in ω. Then the distribution of X is represented
by the following table.

xi 0 1 2

pi
1
4

1
2

1
4

Note that
∑

i pi = 1, and the graph of the distribution F is a
‘staircase’ that jumps at 0, 1, 2, in particular F is not everywhere
continuous. Make a picture of F !
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More concrete probability, random variables

Discrete random variables

Examples of distributions

Here are some classical examples of distributions of random
variables (more of them in Rice).

I Bernoulli distribution. P(X = 1) = p, P(X = 0) = 1− p,
p ∈ [0, 1].

I Generalization: Binomial distribution Bin(n, p).
P(X = k) =

(n
k

)
pk(1− p)n−k , k ∈ {0, . . . , n}.

I Poisson(λ) distribution: P(X = k) = e−λλk/k!,
k ∈ {0, 1, . . .}, λ > 0.

Relation between Binomial and Poisson: if n→∞, np → λ then(n
k

)
pk(1− p)n−k → e−λλk/k!
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More concrete probability, random variables

Discrete random variables

Binomial pmfs

 

 

 

More detailsProbability mass function for the binomial distribution

Binomial distribution probability mass function

Public Domain
File: Binomial distribution pmf.svg

Created: 2 March 2008

About this interface | Discussion | Help

Tayste - Own work
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More concrete probability, random variables

Discrete random variables

Binomial Cdfs

 

 

  

More detailsCumulative distribution function for the binomial distribution

Binomial distribution cumulative distribution function

Public Domain
File: Binomial distribution cdf.svg

Created: 2 March 2008

About this interface | Discussion | Help

Tayste - Own work
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More concrete probability, random variables

Continuous random variables

Definitions

A random variable X is called continuous if its distribution function
F is (everywhere) continuous. Note that in such a case one has
P(X = x) = 0 for all x ∈ R and hence P(X ≤ x) = P(X < x).

If there exists a nonnegative function f on R such that
F (x) =

∫ x
−∞ f (u)du for all x ∈ R, then f is called a (probability)

density of X . Note that
∫ +∞
−∞ f (u)du = 1.

Such an f cannot be unique, if you change f at one point u (with
u < x), then F (x) stays the same. Usually we take a ‘nice’ version
of f : if F is differentiable at x , we take f (x) = F ′(x).

The distribution of X is the collection of all probabilities
P(X ∈ B), for B ∈ B. Each of these is an integral,
P(X ∈ B) =

∫
B f (u)du. [In fact, PX defined by

PX (B) := P(X ∈ B), B ∈ B is a probability measure on B.]
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More concrete probability, random variables

Continuous random variables

Probabilities as an area under the pdf
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More concrete probability, random variables

Continuous random variables

Gamma function

Gamma integral. Γ(α) :=
∫∞

0 uα−1e−u du, for α > 0.
Properties: Γ(α + 1) = αΓ(α). If α is an integer, Γ(α) = (α− 1)!,
Γ( 1

2 ) =
√
π (see later).

Make a change of variable in the integral, u = λx . Then
Γ(α) = λα

∫∞
0 xα−1e−λx dx .

It follows that the function f with f (x) = λα

Γ(α)x
α−1e−λx for x ≥ 0

and f (x) = 0 for x < 0 is a density. The corresponding distribution
is the Γ(α, λ) distribution, also denoted Gamma(α, λ) distribution.

Special case 1: α = 1, exponential distribution, f (x) = λe−λx , for
x ≥ 0.
Special case 2: α = λ = 1

2 , also called χ2
1 distribution (see later).
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More concrete probability, random variables

Continuous random variables

Normal distribution

A random variable is said to have the N(µ, σ2) distribution if it has

density fµ,σ2(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 .

Special case. µ = 0, σ2 = 1: standard normal distribution,

f0,1(x) =: φ(x) = 1√
2π
e−

x2

2 .

Special notation for the distribution function:

Φ(x) =

∫ x

−∞
φ(u)du.

There exists no simple formule for Φ in terms of ‘well known
functions’.
Property (check!): Φ(−x) = 1− Φ(x), only need table for x > 0.
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More concrete probability, random variables

Continuous random variables

Normal pdfs

 

 

 

More detailsA selection of Normal Distribution Probability Density Functions (PDFs). Both the mean, μ, and variance, σ², are varied. The
key is given on the graph.

Public Domain view terms

File: Normal Distribution PDF.svg
Created: 2 April 2008

About this interface | Discussion | Help

Inductiveload - self-made, Mathematica, Inkscape

Permission details
I, the copyright holder of this work, release this work into the public domain. This applies worldwide. In some
countries this may not be legally possible; if so: I grant anyone the right to use this work for any purpose,
without any conditions, unless such conditions are required by law. View more
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More concrete probability, random variables

Continuous random variables

Normal Cdfs

 

 

  

More detailsA selection of Normal Distribution Cumulative Density Functions (CDFs). Both the mean, μ, and variance, σ², are varied. The
key is given on the graph.

Public Domain view terms

File: Normal Distribution CDF.svg
Created: 3 February 2008

About this interface | Discussion | Help

Inductiveload - self-made, Mathematica, Inkscape

Permission details
I, the copyright holder of this work, release this work into the public domain. This applies worldwide. In some
countries this may not be legally possible; if so: I grant anyone the right to use this work for any purpose,
without any conditions, unless such conditions are required by law. View more
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More concrete probability, random variables

Continuous random variables

Linear transformation

Let X have a continuous distribution with differentiable
distribution function FX and density fX = F ′X and put Y = aX + b
with a 6= 0.

Then Y also has a density, fY say, and fY (y) = fX ( y−ba ) 1
|a| .

Fundamental approach via the distribution function FY of Y , for
the case a < 0 (the case a > 0 is similar):

P(Y ≤ y) = P(aX+b ≤ y) = P(X ≥ y − b

a
) = 1−FX (

y − b

a
).

Differentiation (chain rule!) gives

fY (y) = F ′Y (y) = −fX (
y − b

a
)

1

a
= fX (

y − b

a
)

1

|a|
.
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More concrete probability, random variables

Continuous random variables

Monotone transformations

Let X have a density fX and Y = g(X ) where g is a strictly
monotone function. Let h be the inverse function of g . Compute
for decreasing g (then also h is decreasing)

FY (y) = P(g(X ) ≤ y) = P(X ≥ h(y)) = 1− FX (h(y)).

Differentiate to get

fY (y) = −fX (h(y))h′(y) = fX (h(y))|h′(y)|,

a formula which is also valid for increasing g (with similar proof).

Sometimes the calculus rule h′(y) = 1
g ′(h(y)) may come in handy.
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More concrete probability, random variables

Continuous random variables

Linear transformation in the normal case

Let Y = aX + b and X have the N(µ, σ2) distribution, so with

density fX (x) = 1√
2πσ2

e−
(x−µ)2

2σ2 . Then

fY (y) =
1√

2πσ2
e−

(
y−b
a −µ)2

2σ2
1

|a|

=
1√

2πσ2
e−

(y−b−µa)2

2a2σ2
1√
a2

=
1√

2πa2σ2
e−

(y−(b+µa))2

2a2σ2 .

It follows that also Y has a normal distribution, N(aµ+ b, a2σ2).
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More concrete probability, random variables

Continuous random variables

Standardization

Let σ > 0 and make the special choice a = 1
σ , b = −µ

σ . Then

Y =
X − µ
σ

and Y is N(0, 1).

Use (recall σ > 0):

P(X ≤ x) = P(
X − µ
σ

≤ x − µ
σ

) = P(Y ≤ x − µ
σ

) = Φ(
x − µ
σ

).

The distribution function of X that is N(µ, σ2) can be expressed in
terms of the single function Φ; only on ‘table’ (for the standard
normal distribution) is needed for all normal distributions.
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More concrete probability, random variables

Continuous random variables

A nonlinear nonmonotone transformation

Let X have a continuous distribution with density fX and Y = X 2.
We want the density fY of Y , compute this (again) via the
distribution function in y > 0.

FY (y) = P(Y ≤ y) = P(X 2 ≤ y)

= P(−√y ≤ X ≤ √y) = FX (
√
y)− FX (−√y).

By differentiation (chain rule!),

fY (y) = fX (
√
y)

1

2
√
y
−fX (−√y)

−1

2
√
y

=
1

2
√
y

(fX (
√
y)+fX (−√y)).
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More concrete probability, random variables

Continuous random variables

Square of N(0, 1) is χ2
1

Let X have the N(0, 1) and Y = X 2. We want the density fY of
Y . Previous result becomes

fY (y) =
1

2
√
y

(φ(
√
y) + φ(−√y))

=
1

2
√
y

(
1√
2π

e−
√

y2

2 + e−
(−√y)2

2 )

=
1√
2π

y−
1
2 e−

y
2 =

( 1
2 )

1
2

√
π

y
1
2−1e−

y
2 .

This is the Γ( 1
2 ,

1
2 ) density (the χ2

1 density) and we also see that
Γ( 1

2 ) =
√
π.
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Random vectors

Introduction and notation

A random vector is a vector X of random variables Xi . A
two-dimensional random vector is sometimes denoted as a row

X = (X1,X2) or as a column X =

(
X1

X2

)
. You can guess how this

would look in higher dimensions.

We also often write (X ,Y ) or

(
X
Y

)
in the two-dimensional case

for random variables X and Y (and note the ambiguous use of the
notation X . . . )
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Random vectors

Example

Let Ω = {hhh, hht, hth, thh, htt, tht, tth, ttt} and P({ω}) = 1
8 for

all ω. Let X (ω) denote the number of h’s in the first position of ω
and Y (ω) the total number of h’s in ω. The values of X and Y
can jointly be represented with corresponding ω’s.

x\y 0 1 2 3

0 ttt tht, tth thh
1 htt hht, hth hhh
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Random vectors

Example continued, with probabilities

Assigning the probabilities in the previous table gives the joint
distribution of (X ,Y ):

x\y 0 1 2 3

0 1
8

2
8

1
8 0 1

2

1 0 1
8

2
8

1
8

1
2

1
8

3
8

3
8

1
8 1

In the right and lower margins, containing the row and column
subtotals, one recognizes the marginal distributions of X and Y
respectively.
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Random vectors

General notation for discrete (X ,Y )

We assume that a discrete vector (X ,Y ) assume values (xi , yj)
(sometimes also shortly written as (x , y)), where the xi and yj may
come from a finite or a countably infinite set.

I The p(xi , yj) := P(X = xi ,Y = yj) (which is short for
P({X = xi} ∩ {Y = yj})) represents the joint probability mass
function and the joint distribution of the vector (X ,Y ).

I The marginal distribution of X is given by
P(X = xi ) =

∑
j p(xi , yj), similar expression for the marginal

of Y .

I In general one has P((X ,Y ) ∈ A) =
∑

(xi ,yj )∈A p(xi , yj).

I The joint (cumulative) distribution function F (sometimes
written as FX ,Y ) of the vector (X ,Y ) is given by
F (x , y) := P(X ≤ x ,Y ≤ y) =

∑
xi≤x ,yj≤y p(xi , yj).
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Random vectors

Continuous random vectors

A random vector (X ,Y ) is called continuous if the joint
distribution function F is continuous. We will always assume that
there exists a joint density f , a nonnegative function f : R2 → R
such that for all (Borel) sets A ∈ R2 one computes probabilities as
double integrals

P((X ,Y ) ∈ A) =

∫ ∫
A
f (u, v) dudv .

Note that
∫ ∫

R2 f (u, v)dudv = 1.



Statistics 1, 39/59

Random vectors

Joint distribution function

Special case, A = (−∞, x ]× (−∞, y ], leads to the double and
iterated integrals

P(X ≤ x ,Y ≤ y) = F (x , y)

=

∫ ∫
(−∞,x]×(−∞,y ]

f (u, v) dudv

=

∫
(−∞,y ]

( ∫
(−∞,x]

f (u, v)du
)
dv

=

∫
(−∞,x]

( ∫
(−∞,y ]

f (u, v)dv
)
du
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Random vectors

Differentiation

If F is twice continuously differentiable, then we obtain from

F (x , y) =

∫
(−∞,x]

( ∫
(−∞,y ]

f (u, v)dv
)
du

and ∂F
∂x =

∫
(−∞,y ] f (x , v)dv the relation

∂2F

∂y∂x
=

∂

∂y

∫
(−∞,y ]

f (x , v)dv = f (x , y).

Of course, also

∂2F

∂x∂y
= f (x , y).
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Random vectors

Marginal distribution functions

Special case, A = (−∞, x ]× R, leads to the iterated integral for
the marginal distribution of X ,

P(X ≤ x) = P(X ≤ x ,Y <∞)

=

∫
(−∞,x]

( ∫
R
f (u, v)dv

)
du.

Similarly,

P(Y ≤ y) = P(X <∞,Y ≤ y)

=

∫
(−∞,y ]

( ∫
R
f (u, v) du

)
dv .
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Random vectors

Marginal densities

Put (like computing marginal sums in the discrete case)

fX (u) =

∫
R
f (u, v)dv =

∫ +∞

−∞
f (u, v)dv .

Then

P(X ≤ x) =

∫
(−∞,x]

fX (u) du =

∫ x

−∞
fX (u) du.

It follows that fX is the marginal density of X . Similarly,

fY (v) =

∫
R
f (u, v) du =

∫ +∞

−∞
f (u, v)du

gives the marginal density of Y .
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Random vectors

Bivariate normal distribution

A random variable (X ,Y ) has a bivariate normal distribution if it
has density f (x , y) given by (σX , σY > 0)

1

2πσXσY
√

1− ρ2
exp

(
−

1

2(1− ρ2)

( (x − µX )2

σ2
X

+
(y − µY )2

σ2
Y

− 2ρ
(x − µX )(y − µY )

σXσY

))
.

Observe the parameters µX , µy , σ
2
x , σ

2
Y and ρ. The parameters will

get a meaning later.

Useful notation:

µ =

(
µx
µy

)
, Σ =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
.
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Random vectors

A bivariate normal pdf

 

 

  

More detailsGaussian curve with a two-dimensional domain

Isometric plot of a two dimensional Gaussian function. GNU Octave source code graphics_toolkit ("gnuplot");
% force use of gnuplot backend instead of FLTK for plot. Generates smaller SVG file [X, Y] = meshgrid( -3:.05:3,
-3:.05:3); % smaller step size increases resolution and smoothness but increases file size Z = exp( -X.^2 - Y.^2);
surf(X, Y, Z); view(-36, 56); shading flat; % remove edge lines on plot but keep color patches
print('Gaussian_2d.svg')

CC0
File: Gaussian 2d.svg

Created: 27 September 2014

About this interface | Discussion | Help

Krishnavedala - Own work



Statistics 1, 45/59

Random vectors

Normal marginals

The bivariate normal has (by tedious computations!) an attractive
consequence.

The marginal distributions of X and Y are N(µX , σ
2
X ) and

N(µY , σ
2
Y ). This statement has no converse, it may happen that

X and Y are N(µX , σ
2
X ) and N(µY , σ

2
Y ), but (X ,Y ) is not

bivariate normal. Later more about ρ.
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Independence

Definitions and characterization

I Two events E and F are called independent if the product
rule P(E ∩ F ) = P(E )P(F ) holds.

I Two random variables (vectors) X and Y are independent if
all events {X ∈ A} and {Y ∈ B} are independent,
P({X ∈ A} ∩ {Y ∈ B}) = P({X ∈ A})P({Y ∈ B}) for all
(Borel) sets A,B.

I Characterization: Random variables X and Y are independent
iff P({X ≤ x} ∩ {Y ≤ y}) = P({X ≤ x})P({Y ≤ y}) for all
(Borel) sets x , y . [Proof omitted]
Stated otherwise, the product rule for the distribution
functions holds, F (x , y) = FX (x)FY (y) for all x , y .
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Independence

Independence and densities

Suppose F (x , y) = FX (x)FY (y) for all x , y . Differentiate the
product w.r.t. x to get ∂F

∂x (x , y) = fX (x)FY (y). Differentiate once

more, ∂2F
∂y∂x (x , y) = fX (x)fY (y).

If the latter product rule holds for all x , y , then by integration
F (x , y) = FX (x)FY (y).

Assume the joint density f of (X ,Y ) exists. Then X and Y are
independent iff f (x , y) = fX (x)fY (y) for all x , y .

Discrete X and Y are independent iff
P(X = x ,Y = y) = P(X = x)P(Y = y) for all x , y .
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Independence and densities

Assume the joint density f of (X ,Y ) exists. Suppose
F (x , y) = FX (x)FY (y) for all x , y . Differentiate the product w.r.t.
x to get ∂F

∂x (x , y) = fX (x)FY (y). Differentiate once more,
∂2F
∂y∂x (x , y) = fX (x)fY (y), so f (x , y) = fX (x)fY (y).

If the latter product rule holds for all x , y , then by integration
F (x , y) = FX (x)FY (y).

It follows that X and Y are independent iff f (x , y) = fX (x)fY (y)
for all x , y .

Discrete X and Y are independent iff
P(X = x ,Y = y) = P(X = x)P(Y = y) for all x , y .
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Transformations and independence

Proposition

If X and Y are independent and U = g(X ), V = h(Y ) for
(measurable) functions g and h, then also U and V are
independent.

Proof.
Let u, v ∈ R, A = {g ≤ u} = {x : g(x) ≤ u} and B = {h ≤ v}.
Then {U ≤ u} ∩ {V ≤ v} = {g(X ) ≤ u} ∩ {h(Y ) ≤ v} =
{X ∈ A} ∩ {Y ∈ B}.

Hence P({U ≤ u} ∩ {V ≤ v}) = P({X ∈ A})P({Y ∈ B}) =
P({U ≤ u}P({V ≤ v}). The result follows.
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Independence and bivariate normality

The bivariate normal distribution has a simple characterization for
independence of its marginals. Here the parameter ρ comes in.

Proposition

Let (X ,Y ) be bivariate normal. Then X and Y are independent
random variables iff ρ = 0.

Proof.
We consider (in self-evident notation) f (x ,y)

fX (x)fY (y) which has to be
identically equal to one in case of independence. W.l.o.g. we
assume µX = µY = 0 and σX = σY = 1. The mentioned identity
then takes place iff ρ2x2 + ρ2y2 − 2ρxy is identically equal to zero
which happens iff ρ = 0,
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Sums of discrete independent random variables

Let X ,Y be independent and Z = X +Y . Then (‘cut up in slices’)

P(Z = z) = P(X + Y = z) =
∑
x

P(X + Y = z ,X = x)

=
∑
x

P(Y = z − x ,X = x)

=
∑
x

P(Y = z − x)P(X = x)

=
∑
x

pY (z − x)pX (x).

Formula known as convolution formula. The summation is taken
over those x for which the probabilities make sense (and do not
equal zero).
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Sums of continuous independent random variables

Let X ,Y be independent with densities fX and fY and
Z = X + Y . Then (again a convolution formula)

fZ (z) =

∫
R
fY (z − x)fX (x) dx

=

∫
R
fY (y)fX (z − y)dy .

As in the discrete case, this is an abstract formula, to be used for
computations in discrete situations.
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Binomial example
Let X ,Y be independent, X is Bin(n, p) and Y is Bin(m, p), and
Z = X + Y . Then Z is Bin(n + m, p). In particular we can also
view X as the sum of n independent Bernoulli random variables.

Let z be an integer between 0 and n + m. Then (with
(n
k

)
= 0 for

k < 0 or k > n)

P(Z = z) =
z∑

x=0

P(Y = z − x)P(X = x)

=
z∑

x=0

(
m

z − x

)
pz−x(1− p)m−z+x

(
n

x

)
px(1− p)n−x

= pz(1− p)n+m−z
z∑

x=0

(
m

z − x

)(
n

x

)
!

= pz(1− p)n+m−z
(
n + m

z

)
.
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Gamma example
Let X ,Y be independent, X is Gamma(α, λ) and Y is
Gamma(β, λ), and Z = X + Y . Then Z is Gamma(α + β, λ).

Let z > 0. Then

fZ (z) =

∫
R
fY (z − x)fX (x) dx

=

∫ z

0

λβ

Γ(β)
(z − x)β−1e−λ(z−x) λα

Γ(α)
xα−1e−λx dx

=
λβ+α

Γ(β)Γ(α)
e−λz

∫ z

0
(z − x)β−1xα−1 dx

x=zu
=

λβ+α

Γ(β)Γ(α)
e−λzzα+β−1

∫ 1

0
(1− u)β−1uα−1 du

= ‘the desired expression’.
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More examples

Let X ,Y be independent, X is Poisson(λ) and Y is Poisson(µ),
and Z = X + Y . Then Z is is Poisson(λ+ µ). [Summation as
before.]

Let X ,Y be independent, X is N(µ, σ2) and Y is N(ν, τ2), and
Z = X + Y . Then Z is N(µ+ ν, σ2 + τ2). [Tedious computations,
see Rice.]
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Transformation rule (hardly used)
If X is an n-dimensional random vector and

Y = g(X ) =

g1(x)
...

gn(x)

, where g : Rn → Rn is invertible (with

inverse h) and differentiable, then

fY (y) =
fX (h(y))

|J(h(y))|
,

where

J(x) = det


∂
∂x1

g1(x) · · · ∂
∂xn

g1(x)
...

...
∂
∂x1

gn(x) · · · ∂
∂xn

gn(x)

 .

See Rice for examples (especially for bivariate normal distributions).
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Transformation rule, linear case

Let X be a n-dimensional random vector and Y = AX + b, where
A is an invertible matrix and b a n-dimensional vector. Then
g(x) = Ax + b and J(x) = det(A). Hence

fY (y) =
fX (A−1(y − b))

| det(A)|
.

If X is bivariate normal (n = 2), a (tedious) computation shows
that also Y is bivariate normal, with corresponding µ-vector and
Σ-matrix

Aµ+ b and AΣA>

respectively. More (without tedious computations) on this later in
the course.
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Final remark

Be sure to have studied these slides and the corresponding parts in
Rice before the start of lecture 2.
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