Measure theory and stochastic processes Additional exercises

- 1. Let $\mathcal{A} = \{A_1, A_2, A_3\}$ be non-empty sets that form a partition of a set Ω . Write down all elements of $\sigma(\mathcal{A})$. Let B_1, B_2 be two subsets of Ω such that $B_1 \cap B_2$ and $(B_1 \cup B_2)^c$ are non-empty. Write down all elements of $\sigma(\{B_1, B_2\})$.
- 2. Let Ω be a nonempty set and let for each *i* in some (index) set $I \mathcal{F}_i$ be a σ -algebra on Ω . Let \mathcal{C} be some collection of subsets of Ω . In alternative wordings compared to Section A.2, but in content the same, we define $\sigma(\mathcal{C})$ to be the smallest σ -algebra that contains \mathcal{C} , i.e. the intersection of all σ -algebras that contain \mathcal{C} .
 - (a) Show that $\bigcap_{i \in I} \mathcal{F}_i$ (the intersection of all σ -algebras \mathcal{F}_i) is a σ -algebra.
 - (b) Why is there is at least one σ -algebra that contains C?
 - (c) Here we take $\Omega = \mathbb{R}$. Argue that $\mathcal{B}(\mathbb{R})$ is equal to $\sigma(\mathcal{C})$, where $\mathcal{C} = \{(-\infty, a], a \in \mathbb{R}\}.$
 - (d) Consider a function $X : \Omega \to \mathbb{R}$. Let \mathcal{C} be a collection of subsets of \mathbb{R} that is such that $\sigma(\mathcal{C}) = \mathcal{B}(\mathbb{R})$. Suppose that all sets $\{X \in C\}$ (for $C \in \mathcal{C}$) belong to a σ -algebra \mathcal{F} on Ω . Show that X is a random variable (Definition 1.1.5).
 - (e) Suppose that for all $a \in \mathbb{R}$ the set $\{X \leq a\}$ is an element of \mathcal{F} . Show that X is random variable.
 - (f) Suppose that for all $a \in \mathbb{R}$ the set $\{X < a\}$ is an element of \mathcal{F} . Is X a random variable?
- 3. Let μ_X be the distribution of a random variable X, see Definition 1.2.3. Show that μ_X is probability measure on the Borel sets of \mathbb{R} .
- 4. Assume that the random variable X takes on the different values x_0, x_1, \ldots in \mathbb{R} and that $\mathbb{E}|X| < \infty$. Show that $\mathbb{E} X = \sum_{k=0}^{\infty} x_k \mathbb{P}(X = x_k)$. Special case: X is such that $\mathbb{P}(X = k) = \frac{e^{-\lambda} \lambda^{|k|}}{2(|k|)!}$ for $k \in \mathbb{Z} \setminus \{0\}$ and $\mathbb{P}(X = 0) = e^{-\lambda}$. What is $\mathbb{E} X$?
- 5. Consider the setting of Theorem 1.6.1. Show that $\tilde{\mathbb{P}}$ and \mathbb{P} are equivalent iff $\mathbb{P}(Z > 0) = 1$.
- 6. Show that $\sigma(X)$ as defined in Definition 2.1.3 is indeed a σ -algebra and that $\sigma(X) \subset \mathcal{F}$ if X is a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ (there is almost nothing to prove).
- 7. Let X be a *nonnegative* random variable. Show that $\int X d\mathbb{P} \geq \frac{\mathbb{P}(X \geq 1/n)}{n}$. Assume further that $\int X d\mathbb{P} = 0$. Show that it follows that $\mathbb{P}(X = 0) = 1$.
- 8. Show (use the previous exercise) that the Radon-Nikodym derivative Z of Theorem 1.6.7 satisfies $Z \ge 0$ P-a.s. (integrate over the set $\{Z < 0\}$). Use the equivalence of $\tilde{\mathbb{P}}$ and \mathbb{P} to show that even Z > 0 P-a.s. Show also that for a possibly different Z' satisfying the assertions of Theorem 1.6.7 one has that $\mathbb{P}(Z > Z') = 0$ and therefore $\mathbb{P}(Z = Z') = 1$.

- 9. Show (use the previous exercise) that the random variable Y of Theorem B.1 is a.s. nonnegative. Alternative, you can modify the proof of Theorem B.1 with the integrand $\frac{X+a}{\mathbb{E}X+a}$ for arbitrary rational a > 0 instead of $\frac{X+1}{\mathbb{E}X+1}$. This yields the existence of \mathcal{G} -measurable random variables Y_a . Show that they are a.s. all the same. So we can define an a.s. limit of them, Y say. Show that it follows that Y > 0 a.s.
- 10. Let $\Pi = \{A_1, \ldots, A_n\}$ be a *partition* of Ω , i.e. the A_i are non-empty, $A_i \cap A_j = \emptyset$ for $i \neq j$ and $A_1 \cup \cdots \cup A_n = \Omega$. Let $\mathcal{G} = \sigma(\Pi)$ and $X : \Omega \to \mathbb{R}$. Show that X is constant on each A_i iff X is \mathcal{G} -measurable. If X is constant on the whole set Ω , what is $\sigma(X)$?
- 11. Let $(Z_t)_{t\geq 0}$ be a sequence of independent random variables, also independent of another random variable X_0 . Assume that the following recursion hold for some 'good' measurable functions.

$$X_{t+1} = f(X_t, Z_t), \ t \ge 0.$$

Find a filtration to which the sequence (X_t) is adapted and that (X_t) is a (discrete time) Markov process (w.r.t. this filtration).

12. Use moment generating functions to show that W(u) - W(t) and W(t) - W(s) are independent random variables if s < t < u (of course W is a standard Brownian motion). Compute also the conditional MGF $\mathbb{E} \left[\exp(uW(t)) | \mathcal{F}(s) \right]$ for s < t, where $\{\mathcal{F}(s)\}_{s \geq 0}$ is a filtration for the Brownian motion. What is the conditional distribution of W(t) given $\mathcal{F}(s)$?