
Measure theory and stochastic processes
Additional exercises



1. Let A = {A1, A2, A3} be non-empty sets that form a partition of a set Ω.
Write down all elements of σ(A). Let B1, B2 be two subsets of Ω such
that B1 ∩ B2 and (B1 ∪ B2)c are non-empty. Write down all elements of
σ({B1, B2}).

2. Let Ω be a nonempty set and let for each i in some (index) set I Fi be a
σ-algebra on Ω. Let C be some collection of subsets of Ω. In alternative
wordings compared to Section A.2, but in content the same, we define
σ(C) to be the smallest σ-algebra that contains C, i.e. the intersection of
all σ-algebras that contain C.

(a) Show that
⋂
i∈I Fi (the intersection of all σ-algebras Fi) is a σ-

algebra.
(b) Why is there is at least one σ-algebra that contains C?
(c) Here we take Ω = R. Argue that B(R) is equal to σ(C), where
C = {(−∞, a], a ∈ R}.

(d) Consider a function X : Ω → R. Let C be a collection of subsets of
R that is such that σ(C) = B(R). Suppose that all sets {X ∈ C}
(for C ∈ C) belong to a σ-algebra F on Ω. Show that X is a random
variable (Definition 1.1.5).

(e) Suppose that for all a ∈ R the set {X ≤ a} is an element of F . Show
that X is random variable.

(f) Suppose that for all a ∈ R the set {X < a} is an element of F . Is X
a random variable?

3. Let µX be the distribution of a random variable X, see Definition 1.2.3.
Show that µX is probability measure on the Borel sets of R.

4. Assume that the random variable X takes on the different values x0, x1, . . .
in R and that E |X| <∞. Show that EX =

∑∞
k=0 xkP(X = xk). Special

case: X is such that P(X = k) = e−λλ|k|

2(|k|)! for k ∈ Z \ {0} and P(X = 0) =
e−λ. What is EX?

5. Consider the setting of Theorem 1.6.1. Show that P̃ and P are equivalent
iff P(Z > 0) = 1.

6. Show that σ(X) as defined in Definition 2.1.3 is indeed a σ-algebra and
that σ(X) ⊂ F if X is a random variable on (Ω,F ,P) (there is almost
nothing to prove).

7. Let X be a nonnegative random variable. Show that
∫
XdP ≥ P(X>1/n)

n .
Assume further that

∫
XdP = 0. Show that it follows that P(X = 0) = 1.

8. Show (use the previous exercise) that the Radon-Nikodym derivative Z of
Theorem 1.6.7 satisfies Z ≥ 0 P-a.s. (integrate over the set {Z < 0}). Use
the equivalence of P̃ and P to show that even Z > 0 P-a.s. Show also that
for a possibly different Z ′ satisfying the assertions of Theorem 1.6.7 one
has that P(Z > Z ′) = 0 and therefore P(Z = Z ′) = 1.
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9. Show (use the previous exercise) that the random variable Y of Theo-
rem B.1 is a.s. nonnegative. Alternative, you can modify the proof of
Theorem B.1 with the integrand X+a

EX+a for arbitrary rational a > 0 instead
of X+1

EX+1 . This yields the existence of G-measurable random variables Ya.
Show that they are a.s. all the same. So we can define an a.s. limit of
them, Y say. Show that it follows that Y ≥ 0 a.s.

10. Let Π = {A1, . . . , An} be a partition of Ω, i.e. the Ai are non-empty,
Ai ∩ Aj = ∅ for i 6= j and A1 ∪ · · · ∪ An = Ω. Let G = σ(Π) and
X : Ω→ R. Show that X is constant on each Ai iff X is G-measurable. If
X is constant on the whole set Ω, what is σ(X)?

11. Let (Zt)t≥0 be a sequence of independent random variables, also indepen-
dent of another random variable X0. Assume that the following recursion
hold for some ‘good’ measurable functions.

Xt+1 = f(Xt, Zt), t ≥ 0.

Find a filtration to which the sequence (Xt) is adapted and that (Xt) is a
(discrete time) Markov process (w.r.t. this filtration).

12. Use moment generating functions to show that W (u)−W (t) and W (t)−
W (s) are independent random variables if s < t < u (of course W
is a standard Brownian motion). Compute also the conditional MGF
E [exp(uW (t))|F(s)] for s < t, where {F(s)}s≥0 is a filtration for the
Brownian motion. What is the conditional distribution of W (t) given
F(s)?
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