Tinbergen Institute Measure Theory Exam Questions

- 1. If X and Y are independent random variables with $\mathbb{E}|X| < \infty$ and $\mathbb{E}|Y| < \infty$ (assumed to hold throughout this exercise), then the product formula $\mathbb{E}(XY) = \mathbb{E}X \cdot \mathbb{E}Y$ holds. To show this you have to apply (parts of) the standard machine¹ a couple of times.
 - (a) First a special case. Let X be positive but arbitrary otherwise, and $Y = \mathbf{1}_A$ for some set $A \in \mathcal{F}$. Use the standard machine to show that $\mathbb{E}(X\mathbf{1}_A) = \mathbb{E} X \cdot \mathbb{P}(A)$.
 - (b) Prove now, using the previous item and the standard machine again, the product formula for $X \ge 0$ and $Y \ge 0$.
 - (c) Why are X^+ and Y^- also independent random variables?
 - (d) Complete the proof for arbitrary X and Y.
- 2. Let X and Y be random variables defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{G} = \sigma(Y)$.
 - (a) Show that the collection of events $\{Y \in B\}$, where B runs through the Borel sets $\mathcal{B}(\mathbb{R})$, forms a σ -algebra (so you show that it has all the defining properties of a σ -algebra). This σ -algebra will be denoted \mathcal{H} .
 - (b) Show the two inclusions $\mathcal{H} \subset \mathcal{G}$ and $\mathcal{G} \subset \mathcal{H}$. For the latter you need the 'minimality property' of $\sigma(Y)$.
 - (c) Let $X = \mathbf{1}_G$ for some $G \in \mathcal{G}$. Find a function $f : \mathbb{R} \to [0, 1]$ that is Borel-measurable (and check this property!) such that X = f(Y).
 - (d) Use the standard machine to prove the following result. If X is \mathcal{G} -measurable, then there exists a Borel-measurable function $f : \mathbb{R} \to \mathbb{R}$ such that X = f(Y).
- 3. Let X_1, X_2, \ldots be random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Assume that the X_i are nonnegative and let $S_n = \sum_{i=1}^n X_i$ for $n \geq 1$. It is known that the S_n are random variables (measurable functions) as well. We define $S(\omega) = \lim_{n \to \infty} S_n(\omega)$, which exists for every $\omega \in \Omega$ but may be infinite.
 - (a) Show that S is a random variable (*Hint:* show first that $\{S > a\} = \bigcup_{n=1}^{\infty} \{S_n > a\}$ for a > 0).

¹Recall that the standard machine is a method of proving along steps: (1) for indicator functions; (2) for nonnegative simple functions; (3) for nonnegative functions by approximation with simple functions (the approximating sequence always exists); (4) general case.

- (b) Note that $\mathbb{E} S \leq \infty$ is well defined. Show that $\mathbb{E} S = \sum_{i=1}^{\infty} \mathbb{E} X_i$.
- (c) Assume that $\sum_{i=1}^{\infty} \mathbb{E} X_i < \infty$. Show that $\mathbb{P}(S < \infty) = 1$.
- 4. Let X be a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. A well known property is that $\mathbb{E} X = 0$ if X = 0 a.s. In this exercise you will show this.
 - (a) Suppose that X assumes finitely many values y_0, y_1, \ldots, y_n and also that X = 0 a.s. Show that $\mathbb{E} X = 0$.
 - (b) Suppose that $X \ge 0$, but also X = 0 a.s. Argue by using lower Lebesgue sums and the previous item that $\mathbb{E} X = 0$.
 - (c) Let X be arbitrary but still X = 0 a.s. Show again that $\mathbb{E} X = 0$.
- 5. Recall the definition of *infimum*, written as inf. If x_1, x_2, \ldots is a finite or infinite sequence of real numbers, then $x = \inf\{x_1, x_2, \ldots\}$ iff (1) $x \le x_k$ for all k and (2) if y > x, there exists x_k such that $x_k < y$. It may happen that $x = -\infty$. For finite sequences x_1, \ldots, x_n , $\inf\{x_1, \ldots, x_n\}$ is the *minimum* of the x_k . An example with an infinite sequence is $\inf\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\} = 0$, another example is $\inf\{1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, \ldots\} = 0$.

If we have an infinite sequence of random variables X_1, X_2, \ldots , we say that the random variable X is $\inf\{X_1, X_2, \ldots\}$ if for every $\omega \in \Omega$ one has $X(\omega) = \inf\{X_1(\omega), X_2(\omega), \ldots\}$. From now on we assume to have a sequence of *nonnegative* random variables X_1, X_2, \ldots For each n we define the random variable $Y_n := \inf\{X_n, X_{n+1}, X_{n+2}, \ldots\}$, also written as $Y_n = \inf_{m \ge n} X_m$.

- (a) Show that (each) Y_n is a random variable by considering events like $\{Y_n \ge a\}$.
- (b) Show that the Y_n form an *increasing* sequence of random variables. They then have a limit $Y_{\infty} \leq \infty$.
- (c) Show that $Y_n \leq X_m$ for all $m \geq n$, and conclude that $\mathbb{E} Y_n \leq y_n := \inf\{\mathbb{E} X_n, \mathbb{E} X_{n+1}, \ldots\}$. Note that the y_n form an increasing sequence too.
- (d) Show that $\mathbb{E} Y_{\infty} \leq \lim_{n \to \infty} y_n$. This property is often written as $\mathbb{E} \lim_{n \to \infty} \inf_{m \geq n} X_m \leq \lim_{n \to \infty} \inf_{m \geq n} \mathbb{E} X_m$, and is known as Fatou's lemma.
- (e) In the previous item, a strict inequality may occur. Consider thereto the probability space with $\Omega = (0, 1)$, \mathcal{F} the Borel sets in (0, 1) and \mathbb{P} the Lebesgue measure. We take $X_n(\omega) = n \mathbf{1}_{(0,1/n)}(\omega)$. Show that indeed strict inequality now takes place in Fatou's lemma (so you compute both sides of the inequality).

- 6. In this exercise we need limits of sequences of subsets of a given set Ω , which we define in two cases. Suppose that we have an *increasing* sequence of sets A_n $(n \ge 0)$, i.e. $A_n \subset A_{n+1}$ for all $n \ge 0$. Then we define $\overline{A} = \lim_{n \to \infty} A_n := \bigcup_{n=0}^{\infty} A_n$. If the sequence is *decreasing*, $A_n \supset A_{n+1}$ for all n, we define $\underline{A} = \lim_{n \to \infty} A_n := \bigcap_{n=0}^{\infty} A_n$. We work with a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and we consider an increasing sequence of events A_n (so $A_n \in \mathcal{F}$ for all n). Let $D_0 = A_0$ and $D_n = A_n \setminus A_{n-1}$ for $n \ge 1$.
 - (a) Show that $\mathbb{P}(A_n) = \sum_{k=0}^n \mathbb{P}(D_k)$.
 - (b) Show that $\overline{A} = \bigcup_{k=0}^{\infty} D_k$.
 - (c) Show that $\mathbb{P}(A_n) \to \mathbb{P}(\overline{A})$ for $n \to \infty$.
 - (d) Suppose that events B_n $(n \ge 0)$ form a decreasing sequence. Show that $\mathbb{P}(B_n) \to \mathbb{P}(\underline{B})$. (Hint: consider the B_n^c .)
- 7. Let X, Y be random variables, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, so they are both \mathcal{F} -measurable.
 - (a) Let $c \in \mathbb{R}$. Show (make a sketch!) that $\{(x, y) \in \mathbb{R}^2 : x + y > c\} = \bigcup_{q \in \mathbb{O}} \{(x, y) \in \mathbb{R}^2 : x > q, y > c q\}.$
 - (b) Show that X+Y is also \mathcal{F} -measurable. NB: For this it is sufficient to show that $\{X+Y>c\} \in \mathcal{F}$ for all $c \in \mathbb{R}$.
- 8. Let x_1, x_2, \ldots be a sequence of real numbers. We put, for $n \ge 1$, $\overline{x}_n = \sup\{x_n, x_{n+1}, \ldots\}$ and $\underline{x}_n = \inf\{x_n, x_{n+1}, \ldots\}$. Note that the \overline{x}_n form a decreasing sequence and the \underline{x}_n an increasing one, and hence both sequences have a limit, denoted \overline{x} and \underline{x} respectively. One always has $\overline{x} \ge \underline{x}$ and $\overline{x} = \inf\{\overline{x}_1, \overline{x}_2, \ldots\}$. Moreover, the original sequence with the x_n has a limit x iff $x = \overline{x} = \underline{x}$.

Consider now a sequence of random variables X_n defined on some $(\Omega, \mathcal{F}, \mathbb{P})$. As these are measurable functions, we can define \overline{X}_n as the function s.t. $\overline{X}_n(\omega) = \sup\{X_n(\omega), X_{n+1}(\omega), \ldots\}$ and likewise $\underline{X}_n, \overline{X}, \underline{X}$.

- (a) Consider $E_a = \{\overline{X}_n \leq a\}$ for arbitrary $a \in \mathbb{R}$. Show that $E_a \in \mathcal{F}$ and conclude that \overline{X}_n is a random variable (for every n).
- (b) Show that \underline{X}_n is a random variable.
- (c) Show that \overline{X} and \underline{X} are random variables too.
- (d) Show that $\{\omega : \lim_{n \to \infty} X_n(\omega) \text{ exists}\} = \{\omega : \overline{X}(\omega) \underline{X}(\omega) \le 0\}$ and that this set belongs to \mathcal{F} .

- (e) Assume that $X(\omega) = \lim_{n \to \infty} X_n(\omega)$ exists for every ω . Show that X is a random variable.
- 9. Consider a sequence of random variables X_n defined on some $(\Omega, \mathcal{F}, \mathbb{P})$ and put $S_n = \sum_{k=1}^n X_k$ for $n \ge 1$.
 - (a) Assume all $X_n \ge 0$. Show that $\mathbb{E} \sum_{k=1}^{\infty} X_k = \sum_{k=1}^{\infty} \mathbb{E} X_k$. Hint: apply the Monotone Convergence Theorem to the S_n .

From here on the assumption that the X_n are nonnegative is dropped.

- (b) Show that $\mathbb{E} \sum_{k=1}^{\infty} |X_k| = \sum_{k=1}^{\infty} \mathbb{E} |X_k|.$
- (c) Assume $\sum_{k=1}^{\infty} \mathbb{E} |X_k| < \infty$. Show that $\mathbb{E} \sum_{k=1}^{\infty} X_k = \sum_{k=1}^{\infty} \mathbb{E} X_k$.