
Tinbergen Institute
Measure Theory Exam Questions

1. If X and Y are independent random variables with E |X| < ∞ and
E |Y | <∞ (assumed to hold throughout this exercise), then the prod-
uct formula E (XY ) = EX ·EY holds. To show this you have to apply
(parts of) the standard machine1 a couple of times.

(a) First a special case. Let X be positive but arbitrary otherwise,
and Y = 1A for some set A ∈ F . Use the standard machine to
show that E (X1A) = EX · P(A).

(b) Prove now, using the previous item and the standard machine
again, the product formula for X ≥ 0 and Y ≥ 0.

(c) Why are X+ and Y − also independent random variables?

(d) Complete the proof for arbitrary X and Y .

2. Let X and Y be random variables defined on some probability space
(Ω,F ,P) and let G = σ(Y ).

(a) Show that the collection of events {Y ∈ B}, where B runs through
the Borel sets B(R), forms a σ-algebra (so you show that it has
all the defining properties of a σ-algebra). This σ-algebra will be
denoted H.

(b) Show the two inclusions H ⊂ G and G ⊂ H. For the latter you
need the ‘minimality property’ of σ(Y ).

(c) Let X = 1G for some G ∈ G. Find a function f : R→ [0, 1] that is
Borel-measurable (and check this property!) such that X = f(Y ).

(d) Use the standard machine to prove the following result. If X
is G-measurable, then there exists a Borel-measurable function
f : R→ R such that X = f(Y ).

3. Let X1, X2, . . . be random variables defined on a probability space
(Ω,F ,P). Assume that the Xi are nonnegative and let Sn =

∑n
i=1Xi

for n ≥ 1. It is known that the Sn are random variables (measurable
functions) as well. We define S(ω) = limn→∞ Sn(ω), which exists for
every ω ∈ Ω but may be infinite.

(a) Show that S is a random variable (Hint: show first that {S >
a} =

⋃∞
n=1{Sn > a} for a > 0).

1Recall that the standard machine is a method of proving along steps: (1) for indicator
functions; (2) for nonnegative simple functions; (3) for nonnegative functions by approx-
imation with simple functions (the approximating sequence always exists); (4) general
case.
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(b) Note that ES ≤ ∞ is well defined. Show that ES =
∑∞

i=1 EXi.

(c) Assume that
∑∞

i=1 EXi <∞. Show that P(S <∞) = 1.

4. Let X be a random variable defined on a probability space (Ω,F ,P).
A well known property is that EX = 0 if X = 0 a.s. In this exercise
you will show this.

(a) Suppose that X assumes finitely many values y0, y1, . . . , yn and
also that X = 0 a.s. Show that EX = 0.

(b) Suppose that X ≥ 0, but also X = 0 a.s. Argue by using lower
Lebesgue sums and the previous item that EX = 0.

(c) Let X be arbitrary but still X = 0 a.s. Show again that EX = 0.

5. Recall the definition of infimum, written as inf. If x1, x2, . . . is a finite or
infinite sequence of real numbers, then x = inf{x1, x2, . . .} iff (1) x ≤ xk
for all k and (2) if y > x, there exists xk such that xk < y. It may
happen that x = −∞. For finite sequences x1, . . . , xn, inf{x1, . . . , xn}
is the minimum of the xk. An example with an infinite sequence is
inf{1, 1

2
, 1
3
, 1
4
, . . .} = 0, another example is inf{1, 1

2
, 1, 1

3
, 1, 1

4
, . . .} = 0.

If we have an infinite sequence of random variables X1, X2, . . ., we
say that the random variable X is inf{X1, X2, . . .} if for every ω ∈ Ω
one has X(ω) = inf{X1(ω), X2(ω), . . .}. From now on we assume to
have a sequence of nonnegative random variables X1, X2, . . .. For each
n we define the random variable Yn := inf{Xn, Xn+1, Xn+2, . . .}, also
written as Yn = infm≥nXm.

(a) Show that (each) Yn is a random variable by considering events
like {Yn ≥ a}.

(b) Show that the Yn form an increasing sequence of random variables.
They then have a limit Y∞ ≤ ∞.

(c) Show that Yn ≤ Xm for all m ≥ n, and conclude that EYn ≤
yn := inf{EXn,EXn+1, . . .}. Note that the yn form an increasing
sequence too.

(d) Show that EY∞ ≤ limn→∞ yn. This property is often written
as E limn→∞ infm≥nXm ≤ limn→∞ infm≥n EXm, and is known as
Fatou’s lemma.

(e) In the previous item, a strict inequality may occur. Consider
thereto the probability space with Ω = (0, 1), F the Borel sets in
(0, 1) and P the Lebesgue measure. We take Xn(ω) = n1(0,1/n)(ω).
Show that indeed strict inequality now takes place in Fatou’s
lemma (so you compute both sides of the inequality).
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6. In this exercise we need limits of sequences of subsets of a given set
Ω, which we define in two cases. Suppose that we have an increasing
sequence of sets An (n ≥ 0), i.e. An ⊂ An+1 for all n ≥ 0. Then we
define A = limn→∞An :=

⋃∞
n=0An. If the sequence is decreasing, An ⊃

An+1 for all n, we define A = limn→∞An :=
⋂∞

n=0An. We work with a
probability space (Ω,F ,P) and we consider an increasing sequence of
events An (so An ∈ F for all n). Let D0 = A0 and Dn = An \An−1 for
n ≥ 1.

(a) Show that P(An) =
∑n

k=0 P(Dk).

(b) Show that A =
⋃∞

k=0Dk.

(c) Show that P(An)→ P(A) for n→∞.

(d) Suppose that events Bn (n ≥ 0) form a decreasing sequence. Show
that P(Bn)→ P(B). (Hint: consider the Bc

n.)

7. Let X, Y be random variables, defined on a probability space (Ω,F ,P),
so they are both F -measurable.

(a) Let c ∈ R. Show (make a sketch!) that {(x, y) ∈ R2 : x + y >
c} =

⋃
q∈Q{(x, y) ∈ R2 : x > q, y > c− q}.

(b) Show that X+Y is also F -measurable. NB: For this it is sufficient
to show that {X + Y > c} ∈ F for all c ∈ R.

8. Let x1, x2, . . . be a sequence of real numbers. We put, for n ≥ 1,
xn = sup{xn, xn+1, . . .} and xn = inf{xn, xn+1, . . .}. Note that the xn
form a decreasing sequence and the xn an increasing one, and hence
both sequences have a limit, denoted x and x respectively. One always
has x ≥ x and x = inf{x1, x2, . . .}. Moreover, the original sequence
with the xn has a limit x iff x = x = x.

Consider now a sequence of random variables Xn defined on some
(Ω,F ,P). As these are measurable functions, we can define Xn as the
function s.t. Xn(ω) = sup{Xn(ω), Xn+1(ω), . . .} and likewise Xn, X,
X.

(a) Consider Ea = {Xn ≤ a} for arbitrary a ∈ R. Show that Ea ∈ F
and conclude that Xn is a random variable (for every n).

(b) Show that Xn is a random variable.

(c) Show that X and X are random variables too.

(d) Show that {ω : limn→∞Xn(ω) exists} = {ω : X(ω) −X(ω) ≤ 0}
and that this set belongs to F .
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(e) Assume that X(ω) = limn→∞Xn(ω) exists for every ω. Show that
X is a random variable.

9. Consider a sequence of random variables Xn defined on some (Ω,F ,P)
and put Sn =

∑n
k=1Xk for n ≥ 1.

(a) Assume all Xn ≥ 0. Show that E
∑∞

k=1Xk =
∑∞

k=1 EXk. Hint:
apply the Monotone Convergence Theorem to the Sn.

From here on the assumption that the Xn are nonnegative is dropped.

(b) Show that E
∑∞

k=1 |Xk| =
∑∞

k=1 E |Xk|.
(c) Assume

∑∞
k=1 E |Xk| <∞. Show that E

∑∞
k=1Xk =

∑∞
k=1 EXk.

4


