Measure theory and asymptotic statistics additional notes Tinbergen Institute

P.J.C. Spreij

this version: September 13, 2022

Metrics and norms 1

Let X be a non-empty set, on which we want to have a notion of *distance*. This notion is formalized by the concept of *metric*.

Definition 1.1 A metric on X is a function $d: X \times X \to [0,\infty)$ with the following properties.

- (a) Reflexivity: d(x, y) = 0 iff x = y.
- (b) Symmetry: d(x, y) = d(y, x) for all $x, y \in X$.
- Triangle inequality: $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in X$. (c)

The pair (X, d) is called a metric space.

Sketch a triangle with sides of lengths x, y, z to illustrate the triangle inequality, which makes you understand the terminology as well.

For a given X there are many metrics possible. Suppose one chooses a metric d, then d'(x,y) := pd(x,y) defines another metric for any p > 0 as is easily seen. But also $d''(x,y) := \frac{d(x,y)}{1+d(x,y)}$ defines a metric (less easy to see).

On $X = \mathbb{R}$, one usually takes d(x, y) = |x - y|, the Euclidean metric. On $X = \mathbb{R}^k$ with k an integer greater than 1, there are more than one popular choices. Points x in \mathbb{R}^k have coordinates $x_i, i = 1, ..., k$. A favourite choice of choices. Follows x in \mathbb{R} have coordinates x_i , i = 1, ..., k. A favoritte choice of a metric is $d(x, y) = \left(\sum_{i=1}^k (x_i - y_i)^2\right)^{1/2}$, called the Euclidean metric on \mathbb{R}^k . Think of Pythagoras' theorem in \mathbb{R}^2 for an illustration. Another metric on \mathbb{R}^k is $d'(x, y) = \sum_{i=1}^k |x_i - y_i|$, and yet another one is $d''(x, y) = \max\{|x_i - y_i|, i = 1, ..., k\}$. These three metrics are *equivalent* in

the following sense, there exist positive finite constants C_1, C_2, C_3 such that for all $x, y \in \mathbb{R}^k$ it holds that $d(x, y) \leq C_1 d'(x, y) \leq C_2 d''(x, y) \leq C_2 d(x, y)$.

There also exist metrics on infinite dimensional spaces, some of these will be discussed below.

Related to the concept of metric is that of a *norm*. For that one needs that Xis a (real) vector space, in which case we have the following definition.

Definition 1.2 A norm on X is a function $\|\cdot\|: X \to [0,\infty)$ with the following properties.

- (a) Reflexivity: ||x|| = 0 iff x = 0.
- Homogeneity: ||ax|| = a||x|| for all $x \in X$ and $a \ge 0$. (b)
- Triangle inequality: $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$. (c)

The pair $(X, \|\cdot\|)$ is called a normed space.

If X is endowed with a norm $\|\cdot\|$, then there is an obvious choice for a metric d, namelijk $d(x, y) = \|x - y\|$. Many of the examples of metrics above are derived from a norm, you check which ones and what the norms there are.

Let X be the set of functions $f : [0,1] \to \mathbb{R}$. A possible norm on X is $||f|| = \sup\{|f(x)| : x \in [0,1]\}$. If X is the space of continuous (in the usual sense) functions on [0,1] another often used norm is $||f||_1 = \int_0^1 |f(x)| \, dx$. In the course we will also use the norm $||f||_2 = (\int_0^1 f(x)^2 \, dx)^{1/2}$. You check that all these are indeed norms.

Other examples are the spaces $\mathcal{L}^p(S, \Sigma, \mu)$ for $p \in [1, \infty]$ with the *p*-norms $\|f\|_p = (\mu(|f|^p))^{1/p}$ for $p \in [1, \infty)$ and the 'sup-norm' $\|f\|_{\infty}$. Care must be taken here with reflexivity, if $\|f\|_p = 0$ then one can only conclude that f = 0 μ -a.e., which is not the same as f(x) = 0 for all $x \in S$. Still, one can call $\|\cdot\|$ a norm with abuse of terminology, which often happens. Another, more fundamental way out is to consider the *quotient spaces* $L^p(S, \Sigma, \mu)$, whose elements are *classes* of functions that coincide a.e. We omit a further treatment.

For random variables we consider the spaces $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ instead of $\mathcal{L}^p(S, \Sigma, \mu)$.

We will often look at *convergent* sequences (x_n) with limit x in a metric space (X, d). By this we mean sequences satisfying $d(x_n, x) \to 0$ when $n \to \infty$. The concept convergence depends thus on the metric on X! And it may happen that some sequence (x_n) in X converges in a metric d, but not in a metric d'. One has to be careful with the term convergent. Here is an example. Let $f_n(x) = n^{1/2} e^{-nx} \mathbf{1}_{[0,\infty)}(x)$. Then $||f_n||_1 = \frac{1}{\sqrt{n}} \to 0$, whereas $||f_n||_2$ is constant. So $f_n \stackrel{\|\cdot\|_1}{\to} 0$ (convergence of the f_n to the zero function in the $\|\cdot\|_1$ -norm, but

So $f_n \xrightarrow{\sim} 0$ (convergence of the f_n to the zero function in the $\|\cdot\|_1$ -norm, but the f_n don't converge (to the zero function) in the $\|\cdot\|_2$ -norm.

Convergence in the metrics above on \mathbb{R}^k takes place simultaneously, one has $d(x_n, x) \to 0$ (in the Euclidean metric) iff $d'(x_n, x) \to 0$ iff $d''(x_n, x) \to 0$.

Finally a remark on product spaces. Suppose (X, d_X) and (Y, d_Y) are metric spaces and consider the product space $X \times Y$. There are various ways to define a metric on this product and a convenient is the 'sum' of the metrics. For any (x_1, y_1) and (x_2, y_2) in $X \times Y$ we define $d((x_1, y_1), (x_2, y_2)) := d_X(x_1, x_2) + d_Y(y_1, y_2)$. Verify that this d is indeed a metric on $X \times Y$. If (x_n) is a sequence in X with limit x and (y_n) is a sequence in Y with limit y, then $(x_n, y_n) \to (x, y)$, when we use the appropriate limits.

2 Helly's lemma

First some notation. For a function F defined on \mathbb{R} we denote by C_F the set of $x \in \mathbb{R}$ where F is continuous.

Lemma 2.1 Let (F_n) be a sequence of distribution functions. Then there exists a, possibly defective, distribution function F and a subsequence (F_{n_k}) such that $F_{n_k}(x) \to F(x)$, for all $x \in C_F$. **Proof** The proof's main ingredients are an infinite repetition of the Bolzano-Weierstraß theorem combined with a Cantor diagonalization. First we restrict ourselves to working on \mathbb{Q} , instead of \mathbb{R} , and exploit the countability of \mathbb{Q} . Write $\mathbb{Q} = \{q_1, q_2, \ldots\}$ and consider the F_n restricted to \mathbb{Q} . Then the sequence $(F_n(q_1))$ is bounded and along some subsequence (n_k^1) it has a limit, $\ell(q_1)$ say. Look then at the sequence $F_{n_k^1}(q_2)$. Again, along some subsequence of (n_k^1) , call it (n_k^2) , we have a limit, $\ell(q_2)$ say. Note that along the thinned subsequence, we still have the limit $\lim_{k\to\infty} F_{n_k^2}(q_1) = \ell(q_1)$. Continue like this to construct a nested sequence of subsequences (n_k^j) for which we have that $\lim_{k\to\infty} F_{n_k^j}(q_i) = \ell(q_i)$ holds for every $i \leq j$. Put $n_k = n_k^k$, then (n_k) is a subsequence of (n_k^i) for every $i \leq k$. Hence for any fixed i, eventually $n_k \in (n_k^i)$. It follows that for arbitrary i one has $\lim_{k\to\infty} F_{n_k}(q_i) = \ell(q_i)$. In this way we have constructed a function $\ell : \mathbb{Q} \to [0, 1]$ and by the monotonicity of the F_n this function is increasing.

In the next step we extend this function to a function F on \mathbb{R} that is rightcontinuous, and still increasing. We put

$$F(x) = \inf\{\ell(q) : q \in \mathbb{Q}, q > x\}.$$

Note that in general F(q) is not equal to $\ell(q)$ for $q \in \mathbb{Q}$, but the inequality $F(q) \geq \ell(q)$ always holds true. Obviously, F is an increasing function and by construction it is right-continuous. An explicit verification of the latter property is as follows. Let $x \in \mathbb{R}$ and $\varepsilon > 0$. There is $q \in \mathbb{Q}$ with q > x such that $\ell(q) < F(x) + \varepsilon$. Pick $y \in (x, q)$. Then $F(y) < \ell(q)$ and we have $F(y) - F(x) < \varepsilon$. Note that it may happen that for instance $\lim_{x\to\infty} F(x) < 1$, F can be defective.

The function F is of course the one we are aiming at. Having verified that F is a (possibly defective) distribution function, we show that $F_{n_k}(x) \to F(x)$ if $x \in C_F$. Take such an x and let $\varepsilon > 0$ and q as above. By left-continuity of F at x, there is y < x such that $F(x) < F(y) + \varepsilon$. Take now $r \in (y, x) \cap \mathbb{Q}$, then $F(y) \leq \ell(r)$, hence $F(x) < \ell(r) + \varepsilon$. So we have the inequalities

 $\ell(q) - \varepsilon < F(x) < \ell(r) + \varepsilon.$

Then $\limsup F_{n_k}(x) \leq \lim F_{n_k}(q) = \ell(q) < F(x) + \varepsilon$ and $\liminf F_{n_k}(x) \geq \liminf F_{n_k}(r) = \ell(r) > F(x) - \varepsilon$. The result follows since ε is arbitrary. \Box

Here is an example for which the limit is not a true distribution function. Let μ_n be the Dirac measure concentrated on $\{n\}$. Then its distribution function is given by $F_n(x) = \mathbf{1}_{[n,\infty)}(x)$ and hence $\lim_{n\to\infty} F_n(x) = 0$. Hence any limit function F in Lemma 2.1 has to be the zero function, which is clearly defective.

3 Inverse function theorem (IFT)

The formulation of the theorem is taken from wikipedia, https://en.wikipedia.org/wiki/Inverse_function_theorem. For functions of more than one variable, the IFT states that if F is a continuously differentiable function from an open set of \mathbb{R}^n into \mathbb{R}^n , and the total derivative is invertible at a point p (i.e., the Jacobian determinant of F at p is non-zero), then F is invertible near p: an inverse function to F is defined on some neighborhood of q = F(p).

Writing $F = (F_1, \ldots, F_n)$, this means that the system of n equations y = F(x), explicitly written as $y_i = F_i(x_1, \ldots, x_n)$ with $i = 1, \ldots, n$, has a unique solution for x_1, \ldots, x_n in terms of y_1, \ldots, y_n , provided that we restrict x and y to small enough neighborhoods of p and q, respectively.

Finally, the theorem says that the inverse function F^{-1} is continuously differentiable, and its Jacobian derivative at q = F(p) is the matrix inverse of the Jacobian of F at p: $J_{F^{-1}}(q) = [J_F(p)]^{-1}$.

To get some intuition, one can argue as follows. Taylor's theorem says that approximately, in a neighbourhood of p and with q = F(p), y = F(x), $A = [J_F(p)]$,

 $F(x) \approx F(p) + A(x-p),$

leading to

$$y \approx q + A(x - p),$$

 \mathbf{so}

$$Ax \approx y - q + Ap$$
.

Assuming that A is an invertible matrix, one gets

 $x \approx A^{-1}(y-q) + p.$

If F is an affine function, F(x) = Ax + b, then the above heuristics is completely correct, and one gets exactly $x = A^{-1}(y - b)$.

Invertibility of $[J_F(p)]$ is a sufficient condition, not a necessary one. This can already be seen when n = 1, when $[J_F(p)] = F'(p)$. Let $F(x) = x^3$, $x \in \mathbb{R}$. Then F is everywhere ('globally') invertible and $F^{-1}(x) = x^{1/3}$. But at p = 0, F'(p) = 0.

A well known example for n = 1 illustrates the theorem. Let $F(x) = x^2$, then F is not globally invertible (since F(-x) = F(x) for all x), and then also not 'locally' in a neighborhood of x = 0. But F is locally invertible in a neighborhood of any $p \neq 0$, since then $F'(p) = 2p \neq 0$. Indeed, if p > 0, then $y = x^2$ has a unique solution $x = \sqrt{y}$ if y is (sufficiently) near $q = p^2$, and if p < 0, then $y = x^2$ has a unique solution $x = -\sqrt{y}$ if y is near $q = p^2$. Note that (in both last cases), $F^{-1}(q) = \pm \frac{1}{2\sqrt{q}} = \frac{1}{F'(p)}$ as $\sqrt{p^2} = |p|$.

4 On the proof of Lemma 4.9 in vdV

Here are some more detailed arguments used in that proof.

- If A_n, B_n are events such that $\mathbb{P}(A_n) \to 1$ and $\mathbb{P}(B_n) \to 1$, then also $\mathbb{P}(A_n \cap B_n) \to 1$. Reason as follows, $(A_n \cap B_n)^c = A_n^c \cup B_n^c$ and hence $\mathbb{P}(A_n \cap B_n)^c \leq \mathbb{P}(A_n^c) + \mathbb{P}(B_n^c) \to 0$. This is used the final statement of the first paragraph.
- The rule $A = (A \cap B) \cup (A \cap B^c) \subset (A \cap B) \cup B^c$ is used to get the second display. Take $A = \{\Psi_n(\theta_0 \varepsilon) < -\eta\} \cap \{\Psi_n(\theta_0 + \varepsilon) > \eta\}$ and $B = \{\Psi_n(\hat{\theta}_n) \in [-\eta, \eta]\}$. Then $A \cap B \subset \{\theta_0 \varepsilon < \hat{\theta}_n < \theta_0 + \varepsilon\}$.
- Here is some extra information on the text below the second display.
 $$\begin{split} \Psi_n(\theta_0 - \varepsilon) \xrightarrow{\mathbb{P}} \Psi(\theta_0 - \varepsilon) & \text{means } \mathbb{P}(|\Psi_n(\theta_0 - \varepsilon) - \Psi(\theta_0 - \varepsilon)| < \delta) \to 1 \text{ for every } \\ \delta > 0. \text{ But } \mathbb{P}(\Psi_n(\theta_0 - \varepsilon) - \Psi(\theta_0 - \varepsilon) < \delta) \geq \mathbb{P}(|\Psi_n(\theta_0 - \varepsilon) - \Psi(\theta_0 - \varepsilon)| < \delta) \\ \text{ and hence also } \mathbb{P}(\Psi_n(\theta_0 - \varepsilon) - \Psi(\theta_0 - \varepsilon) < \delta) \to 1. \text{ Next we develop with } \\ \eta < -\frac{1}{2}\Psi(\theta_0 - \varepsilon) \text{ (which is positive!),} \end{split}$$

$$\begin{split} \mathbb{P}(\Psi_n(\theta_0 - \varepsilon) - \Psi(\theta_0 - \varepsilon) < \delta) \\ &= \mathbb{P}(\Psi_n(\theta_0 - \varepsilon) < \Psi(\theta_0 - \varepsilon) + \delta) \\ &= \mathbb{P}(\Psi_n(\theta_0 - \varepsilon) < -\eta + \Psi(\theta_0 - \varepsilon) + \delta + \eta) \\ &\leq \mathbb{P}(\Psi_n(\theta_0 - \varepsilon) < -\eta + \Psi(\theta_0 - \varepsilon) + \delta - \frac{1}{2}\Psi(\theta_0 - \varepsilon)) \\ &= \mathbb{P}(\Psi_n(\theta_0 - \varepsilon) < -\eta + \frac{1}{2}\Psi(\theta_0 - \varepsilon) + \delta) \\ &= \mathbb{P}(\Psi_n(\theta_0 - \varepsilon) < -\eta), \end{split}$$

if we choose, which we do, $\delta = -\frac{1}{2}\Psi(\theta_0 - \varepsilon) > 0$. It follows from the assumption that $\mathbb{P}(\Psi_n(\theta_0 - \varepsilon) < -\eta) \to 1$.

With similar reasoning one sees $\mathbb{P}(\Psi_n(\theta_0 + \varepsilon) > \eta) \to 1$ and hence $\mathbb{P}(\Psi_n(\theta_0 - \varepsilon) < -\eta, \Psi_n(\theta_0 + \varepsilon) > \eta)$ tends to 1.

5 On Example 4.10 in vdV

Let $\Psi(\theta) = \mathbb{P}(X > \theta) - \mathbb{P}(X < \theta)$ and note that Ψ is nonincreasing. If X has a density f w.r.t. Lebesgue measure, both probabilities here are continuous in θ and hence there must be a θ_0 such that $\Psi(\theta_0) = 0$, which is then equivalent to $\mathbb{P}(X < \theta_0) = \frac{1}{2}$. One further has

$$\Psi(\theta_0 - \varepsilon) = 1 - 2 \mathbb{P}(X < \theta_0 - \varepsilon) = 2 \int_{\theta_0 - \varepsilon}^{\theta_0} f(x) \, \mathrm{d}x,$$

which is strictly positive if f is strictly positive on the interval $[\theta_0 - \varepsilon, \theta_0]$. One similarly shows $\Psi(\theta_0 + \varepsilon) < 0$.

The more general condition $\mathbb{P}(X < \theta_0 - \varepsilon) < \frac{1}{2} < \mathbb{P}(X < \theta_0 + \varepsilon)$ for all positive ε gives first (let $\varepsilon \to 0$) $\mathbb{P}(X < \theta_0) \leq \frac{1}{2} \leq \mathbb{P}(X \leq \theta_0)$, using right-

continuity of a distribution function. Then

$$\Psi(\theta_0 - \varepsilon) = \mathbb{P}(X > \theta_0 - \varepsilon) - \mathbb{P}(X < \theta_0 - \varepsilon)$$
$$> \mathbb{P}(X > \theta_0 - \varepsilon) - \frac{1}{2}$$
$$\ge \mathbb{P}(X \ge \theta_0) - \frac{1}{2}$$
$$\ge 0.$$

It follows that $\Psi(\theta_0 - \varepsilon) > 0$. The inequality $\Psi(\theta_0 + \varepsilon) < 0$ is shown by similar arguments (you try!).

6 On the second display of page 47

The display reads

$$\mathbf{P}\big(\mid \ddot{\Psi}_n(\tilde{\theta}_n) \mid > M\big) \le \mathbf{P}\big(\frac{1}{n}\sum_{i=1}^n \ddot{\Psi}_n(X_i) > M\big) + \mathbf{P}\big(A_n^c\big).$$

To prove this, one needs the information in and above the previous display, which is valid on the event $A_n = \{\tilde{\theta}_n \in B\}$ (this follows from the assumptions in Theorem 4.11):

On
$$A_n$$
: $| \ddot{\Psi}_n(\tilde{\theta}_n) | \leq \frac{1}{n} \sum_{i=1}^n \ddot{\Psi}_n(X_i)$

Let $C = \{ | \ddot{\Psi}_n(\tilde{\theta}_n) | > M \}$ and $C' = \{ \frac{1}{n} \sum_{i=1}^n \ddot{\Psi}_n(X_i) > M \}$, and observe that it now follows

$$C \cap A_n \subset C' \cap A_n.$$

Use next the disjoint union $C = (B \cap A_n) \cup (C \cap A_n^c)$ which is contained in $(C \cap A_n) \cup A_n^c$, from which it follows that $P(C) \leq P(C \cap A_n) + P(A_n^c)$. Then

$$\begin{split} \mathbf{P}\big(\mid \ddot{\Psi}_n(\tilde{\theta}_n) \mid > M\big) &= \mathbf{P}(C) \\ &\leq \mathbf{P}(C \cap A_n) + \mathbf{P}(A_n^c) \\ &\leq \mathbf{P}(C' \cap A_n) + \mathbf{P}(A_n^c) \\ &\leq \mathbf{P}(C') + \mathbf{P}(A_n^c) \\ &\leq \mathbf{P}(\frac{1}{n}\sum_{i=1}^n \ddot{\Psi}_n(X_i) > M) + \mathbf{P}(A_n^c), \end{split}$$

and we arrive where we wished to be.