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1 Metrics and norms

Let X be a non-empty set, on which we want to have a notion of distance. This
notion is formalized by the concept of metric.

Definition 1.1 A metric on X is a function d : X × X → [0,∞) with the
following properties.

(a) Reflexivity: d(x, y) = 0 iff x = y.

(b) Symmetry: d(x, y) = d(y, x) for all x, y ∈ X.

(c) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The pair (X, d) is called a metric space.

Sketch a triangle with sides of lengths x, y, z to illustrate the triangle inequality,
which makes you understand the terminology as well.

For a given X there are many metrics possible. Suppose one chooses a metric d,
then d′(x, y) := pd(x, y) defines another metric for any p > 0 as is easily seen.

But also d′′(x, y) := d(x,y)
1+d(x,y) defines a metric (less easy to see).

On X = R, one usually takes d(x, y) = |x − y|, the Euclidean metric. On
X = Rk with k an integer greater than 1, there are more than one popular
choices. Points x in Rk have coordinates xi, i = 1, . . . , k. A favourite choice of
a metric is d(x, y) =

(∑k
i=1(xi − yi)

2)1/2, called the Euclidean metric on Rk.
Think of Pythagoras’ theorem in R2 for an illustration.

Another metric on Rk is d′(x, y) =
∑k

i=1 |xi − yi|, and yet another one is
d′′(x, y) = max{|xi − yi|, i = 1, . . . , k}. These three metrics are equivalent in
the following sense, there exist positive finite constants C1, C2, C3 such that for
all x, y ∈ Rk it holds that d(x, y) ≤ C1d

′(x, y) ≤ C2d
′′(x, y) ≤ C2d(x, y).

There also exist metrics on infinite dimensional spaces, some of these will be
discussed below.

Related to the concept of metric is that of a norm. For that one needs that X
is a (real) vector space, in which case we have the following definition.

Definition 1.2 A norm on X is a function ∥·∥ : X → [0,∞) with the following
properties.

(a) Reflexivity: ∥x∥ = 0 iff x = 0.

(b) Homogeneity: ∥ax∥ = a∥x∥ for all x ∈ X and a ≥ 0.

(c) Triangle inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.

The pair (X, ∥ · ∥) is called a normed space.
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If X is endowed with a norm ∥ ·∥, then there is an obvious choice for a metric d,
namelijk d(x, y) = ∥x− y∥. Many of the examples of metrics above are derived
from a norm, you check which ones and what the norms there are.

Let X be the set of functions f : [0, 1] → R. A possible norm on X is
∥f∥ = sup{|f(x)| : x ∈ [0, 1]}. If X is the space of continuous (in the usual

sense) functions on [0, 1] another often used norm is ∥f∥1 =
∫ 1

0
|f(x)| dx. In

the course we will also use the norm ∥f∥2 =
( ∫ 1

0
f(x)2 dx

)1/2
. You check that

all these are indeed norms.
Other examples are the spaces Lp(S,Σ, µ) for p ∈ [1,∞] with the p-norms

∥f∥p = (µ(|f |p))1/p for p ∈ [1,∞) and the ‘sup-norm’ ∥f∥∞. Care must be taken
here with reflexivity, if ∥f∥p = 0 then one can only conclude that f = 0 µ-a.e.,
which is not the same as f(x) = 0 for all x ∈ S. Still, one can call ∥ · ∥ a norm
with abuse of terminology, which often happens. Another, more fundamental
way out is to consider the quotient spaces Lp(S,Σ, µ), whose elements are classes
of functions that coincide a.e. We omit a further treatment.

For random variables we consider the spaces Lp(Ω,F ,P) instead of Lp(S,Σ, µ).

We will often look at convergent sequences (xn) with limit x in a metric space
(X, d). By this we mean sequences satisfying d(xn, x) → 0 when n → ∞. The
concept convergence depends thus on the metric on X! And it may happen
that some sequence (xn) in X converges in a metric d, but not in a metric
d′. One has to be careful with the term convergent. Here is an example. Let
fn(x) = n1/2e−nx1[0,∞)(x). Then ∥fn∥1 = 1√

n
→ 0, whereas ∥fn∥2 is constant.

So fn
∥·∥1→ 0 (convergence of the fn to the zero function in the ∥ · ∥1-norm, but

the fn don’t converge (to the zero function) in the ∥ · ∥2-norm.
Convergence in the metrics above on Rk takes place simultaneously, one has

d(xn, x) → 0 (in the Euclidean metric) iff d′(xn, x) → 0 iff d′′(xn, x) → 0.

Finally a remark on product spaces. Suppose (X, dX) and (Y, dY ) are metric
spaces and consider the product space X ×Y . There are various ways to define
a metric on this product and a convenient is the ‘sum’ of the metrics. For any
(x1, y1) and (x2, y2) in X × Y we define d((x1, y1), (x2, y2)) := dX(x1, x2) +
dY (y1, y2). Verify that this d is indeed a metric on X ×Y . If (xn) is a sequence
inX with limit x and (yn) is a sequence in Y with limit y, then (xn, yn) → (x, y),
when we use the appropriate limits.

2 Helly’s lemma

First some notation. For a function F defined on R we denote by CF the set of
x ∈ R where F is continuous.

Lemma 2.1 Let (Fn) be a sequence of distribution functions. Then there exists
a, possibly defective, distribution function F and a subsequence (Fnk

) such that
Fnk

(x) → F (x), for all x ∈ CF .
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Proof The proof’s main ingredients are an infinite repetition of the Bolzano-
Weierstraß theorem combined with a Cantor diagonalization. First we restrict
ourselves to working on Q, instead of R, and exploit the countability of Q.
Write Q = {q1, q2, . . .} and consider the Fn restricted to Q. Then the sequence
(Fn(q1)) is bounded and along some subsequence (n1

k) it has a limit, ℓ(q1) say.
Look then at the sequence Fn1

k
(q2). Again, along some subsequence of (n1

k), call

it (n2
k), we have a limit, ℓ(q2) say. Note that along the thinned subsequence, we

still have the limit limk→∞ Fn2
k
(q1) = ℓ(q1). Continue like this to construct a

nested sequence of subsequences (nj
k) for which we have that limk→∞ Fnj

k
(qi) =

ℓ(qi) holds for every i ≤ j. Put nk = nk
k, then (nk) is a subsequence of (ni

k)
for every i ≤ k. Hence for any fixed i, eventually nk ∈ (ni

k). It follows that for
arbitrary i one has limk→∞ Fnk

(qi) = ℓ(qi). In this way we have constructed
a function ℓ : Q → [0, 1] and by the monotonicity of the Fn this function is
increasing.

In the next step we extend this function to a function F on R that is right-
continuous, and still increasing. We put

F (x) = inf{ℓ(q) : q ∈ Q, q > x}.

Note that in general F (q) is not equal to ℓ(q) for q ∈ Q, but the inequality
F (q) ≥ ℓ(q) always holds true. Obviously, F is an increasing function and
by construction it is right-continuous. An explicit verification of the latter
property is as follows. Let x ∈ R and ε > 0. There is q ∈ Q with q > x
such that ℓ(q) < F (x) + ε. Pick y ∈ (x, q). Then F (y) < ℓ(q) and we have
F (y)−F (x) < ε. Note that it may happen that for instance limx→∞ F (x) < 1,
F can be defective.

The function F is of course the one we are aiming at. Having verified that
F is a (possibly defective) distribution function, we show that Fnk

(x) → F (x)
if x ∈ CF . Take such an x and let ε > 0 and q as above. By left-continuity of F
at x, there is y < x such that F (x) < F (y) + ε. Take now r ∈ (y, x) ∩Q, then
F (y) ≤ ℓ(r), hence F (x) < ℓ(r) + ε. So we have the inequalities

ℓ(q)− ε < F (x) < ℓ(r) + ε.

Then lim supFnk
(x) ≤ limFnk

(q) = ℓ(q) < F (x) + ε and lim inf Fnk
(x) ≥

lim inf Fnk
(r) = ℓ(r) > F (x)− ε. The result follows since ε is arbitrary. □

Here is an example for which the limit is not a true distribution function. Let
µn be the Dirac measure concentrated on {n}. Then its distribution function
is given by Fn(x) = 1[n,∞)(x) and hence limn→∞ Fn(x) = 0. Hence any limit
function F in Lemma 2.1 has to be the zero function, which is clearly defective.

3 Inverse function theorem (IFT)

The formulation of the theorem is taken from wikipedia, https://en.wikipedia.
org/wiki/Inverse_function_theorem. For functions of more than one vari-
able, the IFT states that if F is a continuously differentiable function from an
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open set of Rn into Rn, and the total derivative is invertible at a point p (i.e.,
the Jacobian determinant of F at p is non-zero), then F is invertible near p: an
inverse function to F is defined on some neighborhood of q = F (p).

Writing F = (F1, . . . , Fn), this means that the system of n equations y =
F (x), explicitly written as yi = Fi(x1, . . . , xn) with i = 1, . . . , n, has a unique
solution for x1, . . . , xn in terms of y1, . . . , yn, provided that we restrict x and y
to small enough neighborhoods of p and q, respectively.

Finally, the theorem says that the inverse function F−1 is continuously dif-
ferentiable, and its Jacobian derivative at q = F (p) is the matrix inverse of the
Jacobian of F at p: JF−1(q) = [JF (p)]

−1.

To get some intuition, one can argue as follows. Taylor’s theorem says that ap-
proximately, in a neighbourhood of p and with q = F (p), y = F (x), A = [JF (p)],

F (x) ≈ F (p) +A(x− p),

leading to

y ≈ q +A(x− p),

so

Ax ≈ y − q +Ap.

Assuming that A is an invertible matrix, one gets

x ≈ A−1(y − q) + p.

If F is an affine function, F (x) = Ax+b, then the above heuristics is completely
correct, and one gets exactly x = A−1(y − b).

Invertibility of [JF (p)] is a sufficient condition, not a necessary one. This can
already be seen when n = 1, when [JF (p)] = F ′(p). Let F (x) = x3, x ∈ R.
Then F is everywhere (‘globally’) invertible and F−1(x) = x1/3. But at p = 0,
F ′(p) = 0.

A well known example for n = 1 illustrates the theorem. Let F (x) = x2,
then F is not globally invertible (since F (−x) = F (x) for all x), and then
also not ‘locally’ in a neighborhood of x = 0. But F is locally invertible in a
neighborhood of any p ̸= 0, since then F ′(p) = 2p ̸= 0. Indeed, if p > 0, then
y = x2 has a unique solution x =

√
y if y is (sufficiently) near q = p2, and if

p < 0, then y = x2 has a unique solution x = −√
y if y is near q = p2. Note

that (in both last cases), F−1(q) = ± 1
2
√
q = 1

F ′(p) as
√
p2 = |p|.

4 On the proof of Lemma 4.9 in vdV

Here are some more detailed arguments used in that proof.
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• If An, Bn are events such that P(An) → 1 and P(Bn) → 1, then also
P(An ∩ Bn) → 1. Reason as follows, (An ∩ Bn)

c = Ac
n ∪ Bc

n and hence
P(An ∩ Bn)

c ≤ P(Ac
n) + P(Bc

n) → 0. This is used the final statement of
the first paragraph.

• The rule A = (A ∩ B) ∪ (A ∩ Bc) ⊂ (A ∩ B) ∪ Bc is used to get the
second display. Take A = {Ψn(θ0 − ε) < −η} ∩ {Ψn(θ0 + ε) > η} and

B = {Ψn(θ̂n) ∈ [−η, η]}. Then A ∩B ⊂ {θ0 − ε < θ̂n < θ0 + ε}.

• Here is some extra information on the text below the second display.

Ψn(θ0−ε)
P→ Ψ(θ0−ε) means P(|Ψn(θ0−ε)−Ψ(θ0−ε)| < δ) → 1 for every

δ > 0. But P(Ψn(θ0−ε)−Ψ(θ0−ε) < δ) ≥ P(|Ψn(θ0−ε)−Ψ(θ0−ε)| < δ)
and hence also P(Ψn(θ0 − ε)−Ψ(θ0 − ε) < δ) → 1. Next we develop with
η < − 1

2Ψ(θ0 − ε) (which is positive!),

P(Ψn(θ0 − ε)−Ψ(θ0 − ε) < δ)

= P(Ψn(θ0 − ε) < Ψ(θ0 − ε) + δ)

= P(Ψn(θ0 − ε) < −η +Ψ(θ0 − ε) + δ + η)

≤ P(Ψn(θ0 − ε) < −η +Ψ(θ0 − ε) + δ − 1

2
Ψ(θ0 − ε))

= P(Ψn(θ0 − ε) < −η +
1

2
Ψ(θ0 − ε) + δ)

= P(Ψn(θ0 − ε) < −η),

if we choose, which we do, δ = − 1
2Ψ(θ0 − ε) > 0. It follows from the

assumption that P(Ψn(θ0 − ε) < −η) → 1.

With similar reasoning one sees P(Ψn(θ0 + ε) > η) → 1 and hence
P(Ψn(θ0 − ε) < −η,Ψn(θ0 + ε) > η) tends to 1.

5 On Example 4.10 in vdV

Let Ψ(θ) = P(X > θ)− P(X < θ) and note that Ψ is nonincreasing. If X has a
density f w.r.t. Lebesgue measure, both probabilities here are continuous in θ
and hence there must be a θ0 such that Ψ(θ0) = 0, which is then equivalent to
P(X < θ0) =

1
2 . One further has

Ψ(θ0 − ε) = 1− 2P(X < θ0 − ε) = 2

∫ θ0

θ0−ε

f(x) dx,

which is strictly positive if f is strictly positive on the interval [θ0 − ε, θ0]. One
similarly shows Ψ(θ0 + ε) < 0.

The more general condition P(X < θ0 − ε) < 1
2 < P(X < θ0 + ε) for all

positive ε gives first (let ε → 0) P(X < θ0) ≤ 1
2 ≤ P(X ≤ θ0), using right-
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continuity of a distribution function. Then

Ψ(θ0 − ε) = P(X > θ0 − ε)− P(X < θ0 − ε)

> P(X > θ0 − ε)− 1

2

≥ P(X ≥ θ0)−
1

2
≥ 0.

It follows that Ψ(θ0 − ε) > 0. The inequality Ψ(θ0 + ε) < 0 is shown by similar
arguments (you try!).

6 On the second display of page 47

The display reads

P
(
| Ψ̈n(θ̃n) |> M

)
≤ P

( 1
n

n∑
i=1

Ψ̈n(Xi) > M
)
+ P

(
Ac

n

)
.

To prove this, one needs the information in and above the previous display,
which is valid on the event An = {θ̃n ∈ B} (this follows from the assumptions
in Theorem 4.11):

On An: | Ψ̈n(θ̃n) |≤
1

n

n∑
i=1

Ψ̈n(Xi).

Let C = {| Ψ̈n(θ̃n) |> M} and C ′ = { 1
n

∑n
i=1 Ψ̈n(Xi) > M}, and observe that

it now follows

C ∩An ⊂ C ′ ∩An.

Use next the disjoint union C = (B ∩ An) ∪ (C ∩ Ac
n) which is contained in

(C ∩An) ∪Ac
n, from which it follows that P(C) ≤ P(C ∩An) + P(Ac

n). Then

P
(
| Ψ̈n(θ̃n) |> M

)
= P(C)

≤ P(C ∩An) + P(Ac
n)

≤ P(C ′ ∩An) + P(Ac
n)

≤ P(C ′) + P(Ac
n)

≤ P(
1

n

n∑
i=1

Ψ̈n(Xi) > M) + P(Ac
n),

and we arrive where we wished to be.
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