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Lecture 1

• random variables (discrete or continuous)

• distribution function

• frequency (or probability mass) function

• density function

• specific discrete distributions

• specific continuous distributions

• transformations of a random variable
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Lecture 2

• random vectors (discrete or continuous)

• joint distribution function

• frequency (or probability mass) function

• density function

• independent random variables

• sums of independent random variables

• transformations of a random variable
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the density of a bivariate random vector

f(x, y) =
1

2πσXσY

√
1− ρ2

exp

(
−
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2(1− ρ2)
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σ2
X

+
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Y

− 2ρ
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σXσY
)

)

4



transformation rule

If X is a random variable and Y = g(X), with

g monotone and differentiable with inverse h,

then

fY (y) =
fX(h(y))

|g′(h(y))|
.

If X is a random variable and Y = g(X), where

g is invertible (with inverse h) and differen-

tiable, then

fY (y) =
fX(h(y))

|J(h(y))|
,

where

J(x) = det


∂

∂x1
g1(x) · · · ∂

∂xn
g1(x)

... ...
∂

∂x1
gn(x) · · · ∂

∂xn
gn(x).
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Lecture 3

• expected value of a random variable (dis-

crete and continuous)

• expectations of functions of a random vari-

able

• expectation of linear combinations

• variance and standard deviation

• covariance and correlation
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Dependence and Correlation

Important implication: if X and Y are in-

dependent, then Cov(X, Y ) = 0, so they are

uncorrelated.

BUT, if X and Y are uncorrelated, they are

not necessarily independent.

Example:

Y �X −1 0 +1

0 1/4 0 1/4 1/2
1 0 1/2 0 1/2

1/4 1/2 1/4 1

We see that EX = 0, E(XY ) = 0,

so Cov(X, Y ) = 0,

but P(X = 0, Y = 0) 6= P(X = 0)P(Y = 0).

However.........
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Remember that in general

ρ = ρ(X, Y ) =
Cov(X, Y )

σXσY
.

Let X and Y have a bivariate normal distribu-

tion with parameters µX (the expected value

of X), µY , σX (the standard deviation of X),

σY and (correlation coefficient) ρ.

We have seen that IN THIS CASE X and Y

are independent iff ρ = 0.

Hence for bivariate normal (X, Y ) indepen-

dence is equivalent to being uncorrelated!

Warning: If X is normal and Y is normal, then

it does NOT necessarily follow that (X, Y ) is

bivariate normal. But this certainly happens if

one also knows that X and Y are independent.
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Lecture 4

• Some extras

• Limit theorems

– Laws of large numbers

– Convergence in distribution

– the Central Limit Theorem

• Distributions derived from the normal dis-
tribution

– χ2 distribution

– (student) t distribution

– F distribution
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Covariance matrix

If X = (X1, . . . , Xm)> and Y = (Y1, . . . , Yn)>

are random vectors, then Cov(X, Y ) is the m×n

matrix with elements

Cov(X, Y )ij = Cov(Xi, Yj).

For X = Y we write Cov(X) instead of Cov(X, Y ).

Properties:

1. Cov(X) is a symmetric nonnegative definite

matrix.

2. If a sub-vector of X is independent of a

sub-vector of Y , then their corresponding co-

variance matrix is the zero matrix.

3. If X has expectation vector µ and covari-

ance matrix Σ, then Y = AX + b has expec-

tation vector Aµ + b and covariance matrix

AΣA>.

10



the multivariate normal distribution

Let a random n-vector X have expectation vec-

tor µ and covariance matrix Σ. Assume that

Σ is invertible. Then X is said to have multi-

variate normal distribution if the density of X

is

1

(2π)n/2 det(Σ)1/2
exp

(
−

1

2
(x− µ)>Σ−1(x− µ)

)
.

Properties:

1. Two non-overlapping sub-vectors of X are

independent iff their covariance matrix is zero.

2. If X has a multivariate normal distribution

with expectation µ and covariance matrix Σ,

then Y = AX +b (A a square invertible matrix,

b a vector) also has a multivariate normal dis-

tribution, with expectation vector Aµ + b and

covariance matrix AΣA>.
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Relations between different types of con-
vergence

Let X, X1, X2, . . . and Y1, Y2, . . . be random vari-
ables, c a real constant.

1. If Xn
P→ X, then also Xn

d→ X.

2. If Xn
d→ c, then also Xn

P→ c.

3. If Xn
P→ c, then also g(Xn)

P→ g(c), if g is a
continuous function. Similar statement for
d→.

4. If Xn
d→ X and Yn

d→ c, then g(Xn, Yn)
d→

g(X, c), if g is a continuous function (on
R2).

5. If Xn
d→ X and Yn

P→ c, then g(Xn, Yn)
d→

g(X, Y ), if g is a continuous function (on
R2).
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Lecture 5

• parameter estimation, consistency

• method of moments

• maximum likelihood, asymptotic distribu-

tion

• Cramer-Rao bound, optimality
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Lecture 6

• hypothesis testing

• Neyman-Pearson, optimal tests

• properties of normal distribution

• (student) t distribution

• confidence intervals, relation with tests
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χ2 distribution

A random variable X is said to have a χ2 distri-

bution with n degrees of freedom (χ2
n distribu-

tion) if it has the same distribution as
∑n

i=1 Z2
i ,

where the Zi are iid standard normal random

variables:

X
d
=

n∑
i=1

Z2
i .

(student) t distribution

A random variable X is said to have a t distribu-

tion with n degrees of freedom (tn distribution)

if

X
d
=

Z√
W/n

,

where Z and W are independent random vari-

ables, Z having a standard normal distribution

and W having a χ2
n distribution.

For large n, the tn distribution is approximately

normal.
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Theorem Let X1, . . . , Xn be a sample form a

N(µ, σ2) distribution. Then

(1) X and
∑n

i=1(Xi −X)2 are independent.

(2) 1
σ2

∑n
i=1(Xi−X)2 has a χ2 distribution with

n− 1 degrees of freedom.

(3) The statistic
√

n(X − µ)

Sn

has a t-distribution with n− 1 degrees of free-

dom, where

S2
n =

1

n− 1

n∑
i=1

(Xi −X)2.
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Application - t-statistic

The Gauss test statistic for µ when we deal

with a sample from the N(µ, σ2) distribution is
√

n(X − µ)

σ
,

which we can only use when σ is known. If

this is not the case, we replace it in the above

statistic with S = ( 1
n−1

∑n
i=1(Xi−X)2)1/2. The

resulting statistic is
√

n(X − µ)

S
,

which has a tn−1 distribution.
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Confidence intervals based on MLE

Recall that (under some assumptions)√
nI(θ0)(θ̂ − θ0)

d≈ N(0,1).

Hence (1− α)-confidence interval for θ0 would

have limits

θ̂ ±
z(α/2)√
nI(θ0)

.

But, since θ0 is unknown this does not work.

Instead we take the calculable confidence in-

terval

θ̂ ±
z(α/2)√

nI(θ̂)
.

Justification: if I is continuous, also√
nI(θ̂)(θ̂ − θ0)

d≈ N(0,1).
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Lecture 7

• (generalized) likelihood ratio test

• regression

• least squares estimators

• matrix approach

• statistical properties of the estimators (mean,

variance, confidence intervals)
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(generalized) likelihood ratio test

Neyman-Pearson test to testing H0 : θ = θ0
against HA : θ = θA rejects H0 for small values

of

fθ0(X)

fθA
(X)

,

when X is observed and where the fθ are ‘den-

sities’.

For composite hypotheses testing this approach

is generalized as follows. We consider H0 : θ ∈
Θ0 and H1 : θ ∈ ΘA, where Θ0

⋂
ΘA = ∅. Let

Θ = Θ0
⋃

ΘA. The GLR test rejects the null-

hypothesis for small values of

Λ = Λ(X) =
supθ∈Θ0

fθ(X)

supθ∈Θ fθ(X)
.

Remark: notice that the denominator is maxi-

mized by the Maximum likelihood estimator (if

it exists).
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To find the rejection region, one needs the

distribution of Λ (under the null-hypothesis).

Usually Λ and its distribution are difficult to

handle. Therefore one uses an asymptotic re-

sult for the case when we observe a large sam-

ple X = (X1, . . . , Xn).

Under certain conditions one has the following

result:

The distribution of L = −2 logΛ(X) is approx-

imately χ2
d−d0

, where d = dimΘ and d0 =

dimΘ0.

Hence the rejection set R is approximated by

the set {x : −2 logΛ(x) ≥ χ2
d−d0

(α)}.
Alternatively, you can compute an approxima-

tion of the p-value, when you observe X = x.

The p-value is P (L ≥ −2 logΛ(x)), which you

approximate by giving L the χ2
d−d0

distribution.
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