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the density of a bivariate random vector

(X ,Y ) has a bivariate normal distribution
if it has a density given by

f (x , y) =

1

2πσXσY
√
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exp

(
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1
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)
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transformation rule

If X is a random variable and Y = g(X ), with g : R→ R
monotone and differentiable with inverse h, then

fY (y) =
fX (h(y))

|g ′(h(y))|
.

If X is an n-dimensional random vector and Y = g(X ), where
g : Rn → Rn is invertible (with inverse h) and differentiable, then

fY (y) =
fX (h(y))

|J(h(y))|
,

where

J(x) = det


∂
∂x1

g1(x) · · · ∂
∂xn

g1(x)
...

...
∂
∂x1

gn(x) · · · ∂
∂xn

gn(x).


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dependence and correlation

Important implication: if X and Y are independent, then
Cov(X ,Y ) = 0, so they are uncorrelated.

BUT, if X and Y are uncorrelated, they are not necessarily
independent.

Example:
Y�X −1 0 +1

0 1/4 0 1/4 1/2
1 0 1/2 0 1/2

1/4 1/2 1/4 1

We see that EX = 0, E(XY ) = 0,
so Cov(X ,Y ) = 0,
but P(X = 0,Y = 0) 6= P(X = 0)P(Y = 0).

However.........
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special property of the bivariate normal distribution

Remember that in general

ρ = ρ(X ,Y ) =
Cov(X ,Y )

σXσY
.

Let (X ,Y ) have a bivariate normal distribution with parameters
µX (the expected value of X ), µY , σX (the standard deviation of
X ), σY and (correlation coefficient) ρ.
We have seen that IN THIS CASE X and Y are independent iff
ρ = 0.

Hence for bivariate normal (X ,Y ) independence is equivalent
to being uncorrelated!

Warning: If X is normal and Y is normal, then it does NOT
necessarily follow that (X ,Y ) is bivariate normal. However, if one
also knows that X and Y are independent, then (X ,Y ) is bivariate
normal.
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covariance matrix

If X = (X1, . . . ,Xm)> and Y = (Y1, . . . ,Yn)> are random vectors,
then Cov(X ,Y ) is the m × n matrix with elements

Cov(X ,Y )ij = Cov(Xi ,Yj).

For X = Y we write Cov(X ) instead of Cov(X ,Y ).

Proposition

Cov(X ) is a symmetric nonnegative definite matrix.

If a sub-vector of X is independent of a sub-vector of Y , then
their corresponding covariance matrix is the zero matrix.

If X has expectation vector µ and covariance matrix Σ, then
Y = AX + b has expectation vector Aµ+ b and covariance
matrix AΣA>.
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the multivariate normal distribution

Let a random n-vector X have expectation vector µ and covariance
matrix Σ. Assume that Σ is invertible. Then X is said to have
multivariate normal distribution if the density of X is

1

(2π)n/2 det(Σ)1/2
exp

(
−1

2
(x − µ)>Σ−1(x − µ)

)
.

Proposition

Two non-overlapping sub-vectors of X are independent iff
their covariance matrix is zero.

If X has a multivariate normal distribution with expectation
vector µ and covariance matrix Σ, then Y = AX + b (A a
square invertible matrix, b a vector) also has a multivariate
normal distribution, with expectation vector Aµ+ b and
covariance matrix AΣA>. A subvector of Y also has a normal
distribution.
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results for different types of convergence

Proposition

Let X ,X1,X2, . . . and Y1,Y2, . . . be random variables, c a real
constant.

1 If Xn
P→ X, then also Xn

d→ X.

2 If Xn
d→ c, then also Xn

P→ c.

3 If Xn
P→ c, then also g(Xn)

P→ g(c), if g is a continuous at c.

Similar statement for
d→.

4 If Xn
d→ X and Yn

d→ c, then g(Xn,Yn)
d→ g(X , c), if g is a

continuous function (on R2).
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convergence rules

Proposition

Let X ,X1,X2, . . . and Y1,Y2, . . . be random variables, c a real
constant.

1 If Xn
P→ X and Yn

P→ Y , then also Xn ± Yn
P→ X ± Y .

2 If Xn
P→ X and Yn

P→ Y , then also XnYn
P→ XY , and also

Xn/Yn
P→ X/Y provided P(Y 6= 0) = 1.

3 If Xn
d→ X and Yn

P→ c, then also Xn ± Yn
d→ X ± c.

4 If Xn
d→ X and Yn

P→ c, then also XnYn
d→ Xc, and

Xn/Yn
d→ X/c provided c 6= 0.
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χ2 distributions

A random variable X is said to have a χ2 distribution with n
degrees of freedom (χ2

n distribution) if it has the same distribution
as
∑n

i=1 Z
2
i , where the Zi are iid standard normal random

variables:

X
d
=

n∑
i=1

Z 2
i .
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(student) t distributions

A random variable X is said to have a t distribution with n degrees
of freedom (tn distribution) if

X
d
=

Z√
W /n

,

where Z and W are independent random variables, Z having a
standard normal distribution and W having a χ2

n distribution.

For large n, the tn distribution is approximately normal (see the
tables in Rice for an illustration).
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X and S2 for the normal distribution

Theorem

Let X1, . . . ,Xn be a sample form a N(µ, σ2) distribution. Then

X and
∑n

i=1(Xi − X )2 are independent.
1
σ2

∑n
i=1(Xi − X )2 has a χ2

n−1 distribution.

The statistic √
n(X − µ)

Sn

has a tn−1 distribution, where

S2
n =

1

n − 1

n∑
i=1

(Xi − X )2.
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application - t-statistic

The Gauss test statistic for µ when we deal with a sample from the
N(µ, σ2) distribution is

√
n(X − µ)

σ
,

which we can only use when σ is known. If this is not the case, we
replace it in the above statistic with S = ( 1

n−1

∑n
i=1(Xi − X )2)1/2.

The resulting statistic √
n(X − µ)

S
,

has a tn−1 distribution.
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confidence intervals based on MLE

Recall that (under some assumptions, including θ̂n
P→ θ0)√

nI (θ0)(θ̂ − θ0)
d
≈ N(0, 1).

Hence (1− α)-confidence interval for θ0 would have limits

θ̂ ± z(α/2)√
nI (θ0)

.

But, since θ0 is unknown this does not work. Instead we take the
calculable confidence interval

θ̂ ± z(α/2)√
nI (θ̂)

.

Justification: if I is continuous, then I (θ̂n)
P→ I (θ0). Hence also√

nI (θ̂)(θ̂ − θ0)
d
≈ N(0, 1).
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(generalized) likelihood ratio test

Neyman-Pearson test to testing H0 : θ = θ0 against HA : θ = θA
rejects H0 for small values of

fθ0(X )

fθA(X )
,

when X is observed and where the fθ are ‘densities’.

For composite hypotheses testing this approach is generalized as
follows. We consider H0 : θ ∈ Θ0 and H1 : θ ∈ ΘA, where
Θ0
⋂

ΘA = ∅. Let Θ = Θ0
⋃

ΘA. The GLR test rejects the
null-hypothesis for small values of

Λ = Λ(X ) =
supθ∈Θ0

fθ(X )

supθ∈Θ fθ(X )
.

Remark: notice that the denominator is maximized by the
Maximum likelihood estimator (if it exists).
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distribution of the GLR test statistic Λ

To find the rejection region, one needs the distribution of Λ (under
the null-hypothesis). Usually Λ and its distribution are difficult to
handle. Therefore one uses an asymptotic result for the case when
we observe a large sample X = (X1, . . . ,Xn).
Under certain conditions one has the following result:

The distribution of L = −2 log Λ(X ) (under H0!) is approximately
χ2
d−d0

, where d = dim Θ and d0 = dim Θ0.

Hence the rejection set R is approximated by the set
{x : −2 log Λ(x) ≥ χ2

d−d0
(α)}.
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p-values of the GLR test statistic Λ

Alternatively, you can compute an approximation of the p-value,
when you observe X = x . The p-value is

sup
θ0∈Θ0

Pθ0(L ≥ −2 log Λ(x)),

which you approximate by

P(χ2
d−d0

> −2 log Λ(x)).

Reject H0 if this is smaller than χ2
d−d0

(α).
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