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the density of a bivariate random vector

(X, Y) has a bivariate normal distribution
if it has a density given by

f(x,y) =
1 1 X — 2 - 2 X — —
exp [ — . (( 5x) . @ 2uy) _2p( px)(y uv)) .
2moxoy /1 — p? 2(1 - p?) Ox Ty oXxoy
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transformation rule

If X is a random variable and Y = g(X), with g : R — R
monotone and differentiable with inverse h, then

 K(h))
MPTOE

If X is an n-dimensional random vector and Y = g(X), where
g : R” — R" is invertible (with inverse h) and differentiable, then

fx(h(y))

W)= TR

where 5 5
aqul(X) e mgl(x)

J(x) = det : :
28n(X) -+ a-gn(x).
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dependence and correlation

Important implication: if X and Y are independent, then
Cov(X,Y) =0, so they are uncorrelated.

BUT, if X and Y are uncorrelated, they are not necessarily
independent.

Example:
X[ -1 0 +1]
0 [1/4 0o 1/4[1/2
1 0 1/2 0 |1/2
1/4 172 1/4] 1

We see that EX =0, E(XY) =0,
so Cov(X,Y) =0,
but P(X =0, Y = 0) # P(X = 0)P(Y = 0).

However.........
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special property of the bivariate normal distribution

Remember that in general

Cov(X,Y)

p=pX,Y)=
OXOy

Let (X, Y) have a bivariate normal distribution with parameters
wx (the expected value of X), py, ox (the standard deviation of
X), oy and (correlation coefficient) p.

We have seen that IN THIS CASE X and Y are independent iff

p=0.

Hence for bivariate normal (X, Y) independence is equivalent
to being uncorrelated!

Warning: If X is normal and Y is normal, then it does NOT
necessarily follow that (X, Y) is bivariate normal. However, if one
also knows that X and Y are independent, then (X, Y) is bivariate
normal.
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covariance matrix

If X = (X1,...,Xm)" and Y = (Y1,...,Y,)" are random vectors,
then Cov(X, Y) is the m x n matrix with elements

Cov(X, Y);i = Cov(X;, Y)).

For X = Y we write Cov(X) instead of Cov(X, Y).

e Cov(X) is a symmetric nonnegative definite matrix.

@ If a sub-vector of X is independent of a sub-vector of Y, then
their corresponding covariance matrix is the zero matrix.

o If X has expectation vector i1 and covariance matrix ¥, then
Y = AX + b has expectation vector Au + b and covariance
matrix ALAT .
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the multivariate normal distribution

Let a random n-vector X have expectation vector p and covariance
matrix X. Assume that X is invertible. Then X is said to have
multivariate normal distribution if the density of X is

1 1 )
(27r)”/2 det(Z)1/2 exp (_2(X — M)TZ l(x _ M)) .

Proposition

@ Two non-overlapping sub-vectors of X are independent iff
their covariance matrix is zero.

o If X has a multivariate normal distribution with expectation
vector . and covariance matrix X, then Y = AX + b (A a
square invertible matrix, b a vector) also has a multivariate
normal distribution, with expectation vector Ay + b and
covariance matrix AXA". A subvector of Y also has a normal
distribution.
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results for different types of convergence

Let X, X1,Xo,... and Y1, Yo,... be random variables, c a real
constant.

Q If X, 5 X, then also X, % X.

Q If X, i> c, then also X, £> C.

O If X, 5 ¢, then also g(Xn) A g(c), if g is a continuous at c.

Similar statement for -%.
O IfX, % X and Y, % c, then g(Xn, Yn) LN g(X,c), ifgisa
continuous function (on R?).
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convergence ru les

Let X, X1,X5,...and Y1,Y5,... be random variables, c a real
constant.

O IfX, B XandY, B Y, thenalso X, +Y, 5 x+VY.

Q@ IfX, B X and Y, B Y, then also X, Y, B XY, and also
Xo/Yn 5 XY provided P(Y #0) = 1.

Q IfFX, % X and Y, 5 ¢, then also X, + Y, % X + c.

O IfX, % X and Y, 5 ¢, then also X, Y, % Xc, and
Xn/ Yn LN X /c provided ¢ # 0.
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x? distributions

A random variable X is said to have a x? distribution with n
degrees of freedom (2 distribution) if it has the same distribution
as Y., Z?, where the Z; are iid standard normal random

variables: .,
d
X£y 77
i=1
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(student) t distributions

A random variable X is said to have a t distribution with n degrees
of freedom (t, distribution) if

d Z

X< _ £
W /n

9

where Z and W are independent random variables, Z having a
standard normal distribution and W having a x? distribution.

For large n, the t, distribution is approximately normal (see the
tables in Rice for an illustration).
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X and S? for the normal distribution

Let Xi,...,X, be a sample form a N(u,c?) distribution. Then
o X and Y7, (Xi — X)? are independent.
o L 57  (Xi — X)? has a x2_, distribution.

@ The statistic
V(X —p)
Sh

has a t,_1 distribution, where
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application - t-statistic

The Gauss test statistic for 4 when we deal with a sample from the
N(u,o?) distribution is

Vn(X — p)
o )
which we can only use when o is known. If this is not the case, we

replace it in the above statistic with S = (-1 S°7_, (X; — X)?)1/2.
The resulting statistic
V(X — p)

5 Y

has a t,_1 distribution.
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confidence intervals based on MLE

. : . AP
Recall that (under some assumptions, including 6, — )

nl(80) (0 — 60) 2 N(0,1).
Hence (1 — a)-confidence interval for 6y would have limits

P z(a/2)

\/nl(6o)

But, since g is unknown this does not work. Instead we take the
calculable confidence interval

§o 2/
nl(0)

Justification: if / is continuous, then /(6,) 5 1(6p). Hence also

V()0 — 60) £ N0, 1).
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(generalized) likelihood ratio test

Neyman-Pearson test to testing Hp : 6 = 0y against Ha : 6 = 04
rejects Hp for small values of

fgo (X)
fou(X)’

when X is observed and where the fy are ‘densities’.

For composite hypotheses testing this approach is generalized as
follows. We consider Hy : 8 € ©g and H; : 0 € ©4, where
©0[(1©a=0. Let © =0 JOa. The GLR test rejects the
null-hypothesis for small values of

A = A(X) = SUPocey fo(X)
supgeo fy(X)

Remark: notice that the denominator is maximized by the
Maximum likelihood estimator (if it exists).
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distribution of the GLR test statistic A

To find the rejection region, one needs the distribution of A (under
the null-hypothesis). Usually A and its distribution are difficult to
handle. Therefore one uses an asymptotic result for the case when
we observe a large sample X = (Xi,...,Xp).

Under certain conditions one has the following result:

The distribution of L = —2log A(X) (under Hp!) is approximately
X(fodo’ where d = dim © and dp = dim ©p.

Hence the rejection set R is approximated by the set
{x: ~2log A(x) > x3_g(a)}.
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p-values of the GLR test statistic A

Alternatively, you can compute an approximation of the p-value,
when you observe X = x. The p-value is

sup Py,(L > —2log A(x)),
906@0

which you approximate by
P(xf,_do > —2log A(x)).

Reject Hy if this is smaller than Xi/—do(a)-
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