Convergence of random variables

(telegram style notes)

P.J.C. Spreij

this version: September 6, 2005

1 Introduction

As we know, random variables are by definition measurable functions on some underlying measurable space (Ω, \mathcal{F}). If we have a sequence X_{1}, X_{2}, \ldots of them and we ask for limit behaviour of this sequence, then we have to specify the type of convergence. And since we are dealing with functions, there are many useful types available. In these notes we will treat the best known ones. They are called a.s. convergence, convergence in probability and convergence in p-th mean. Another important concept, weak convergence, with the Central Limit Theorem as its best known example is treated somewhere else. In this notes we finally arrive at the Strong law of large numbers for an iid sequence of random variables. This law states that averages of an iid sequence converge almost surely to their common expectation.

2 Preliminaries

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, In the sequel, unless stated otherwise, we assume that all random variables are defined on this space. The σ-algebra \mathcal{F} on Ω is the collection of events. One says that an event F takes place almost surely, if $\mathbb{P}(F)=0$.
For events E_{1}, E_{2}, \ldots we define

$$
\lim \sup E_{n}=\bigcap_{n \geq 1} \bigcup_{m \geq n} E_{m}
$$

and

$$
\liminf E_{n}=\bigcup_{n \geq 1} \bigcap_{m \geq n} E_{m}
$$

Notice that $\left(\limsup E_{n}\right)^{c}=\lim \inf E_{n}^{c}$. For the event $\limsup E_{n}$ one often writes E_{n} i.o. (i.o. means infinitely often) and for the event $\lim \inf E_{n}$ one also writes E_{n} eventually.
We will mostly consider real valued random variables X, functions $X: \Omega \rightarrow \mathbb{R}$ that are measurable. Recall that a map $X: \Omega \rightarrow \mathbb{R}$ is called measurable if $X^{-1}[B] \in \mathcal{F}$ for all $B \in \mathcal{B}$, the Borel sets of \mathbb{R}. Measurability thus depends on the choice of the σ-algebra \mathcal{F} on Ω. There is always a σ-algebra on Ω that makes a given function X measurable, the power set. More interesting is the smallest σ-algebra that turns X into a measurable function. This σ-algebra is denoted by $\sigma(X)$ and it is given by $\sigma(X)=\left\{X^{-1}[B]: B \in \mathcal{B}\right\}$.

3 Independence

We are used to call two events E and F independent if $\mathbb{P}(E \cap F)=\mathbb{P}(E) \mathbb{P}(F)$. Below we extend this to independence of an arbitrary sequence of events, which comes at the end of a sequence of definitions.

Definition 3.1 (i) Let $\mathcal{G}_{1}, \mathcal{G}_{2}, \ldots$ be a sequence of sub- σ-algebras of \mathcal{F}. One says that this sequence is independent if for all $n \in \mathbb{N}$ and $G_{i_{k}} \in \mathcal{G}_{i_{k}}$ it holds that

$$
\mathbb{P}\left(G_{i_{1}} \cap \cdots \cap G_{i_{n}}\right)=\prod_{i=1}^{n} \mathbb{P}\left(G_{i_{k}}\right)
$$

For finite sequences $\mathcal{G}_{1}, \ldots, \mathcal{G}_{n}$ of σ-algebras, independence is defined as independence of the sequence $\mathcal{G}_{1}, \mathcal{G}_{2}, \ldots$, where $\mathcal{G}_{k}=\{\emptyset, \Omega\}$, for $k>n$.
(ii) A sequence X_{1}, X_{2}, \ldots of random variables is said to be an independent sequence, if the σ-algebras $\mathcal{F}_{k}=\sigma\left(X_{k}\right)(k \in \mathbb{N})$ are independent.
(iii) A sequence E_{1}, E_{2}, \ldots of events is called independent, if the random variables $X_{k}:=1_{E_{k}}$ are independent.
Remark 3.2 Notice that an independent sequence of events remain independent, if in any subsequence of it, the events E_{n} are replaced with their complements.

Lemma 3.3 (Borel-Cantelli) Let E_{1}, E_{2}, \ldots be a sequence of events.
(i) If it has the property that $\sum_{n \geq 1} \mathbb{P}\left(E_{n}\right)<\infty$, then $\mathbb{P}\left(\limsup E_{n}\right)=0$.
(ii) If $\sum_{n>1} \mathbb{P}\left(E_{n}\right)=\infty$ and if, moreover, the sequence is independent, then $\mathbb{P}\left(\limsup \bar{E}_{n}\right)=1$.
Proof (i) Let $U_{n}=\bigcup_{m \geq n} E_{m}$. Notice that the sequence $\left(U_{n}\right)$ decreases to $U=\lim \sup E_{n}$. Hence we have $\mathbb{P}(U) \leq \mathbb{P}\left(U_{n}\right) \leq \sum_{m \geq n} \mathbb{P}\left(E_{m}\right)$, which converges to zero by assumption.
(ii) We prove that $\mathbb{P}\left(\lim \inf E_{n}^{c}\right)=0$. Let $D_{n}^{N}=\bigcap_{m=n}^{N} E_{m}^{c}(N \geq n)$. Notice that for fixed n the sequence $\left(D_{n}^{N}\right)_{N \geq n}$ decreases to $D_{n}^{\infty}:=\bigcap_{m=n}^{\infty} E_{m}^{c}$. By independence we obtain $\mathbb{P}\left(D_{n}^{N}\right)=\prod_{m=n}^{N}\left(1-\mathbb{P}\left(E_{m}\right)\right)$, which is less than $\exp \left(-\sum_{m=n}^{N} \mathbb{P}\left(E_{m}\right)\right)$. Hence by taking limits for $N \rightarrow \infty$, we obtain for every n that $\mathbb{P}\left(D_{n}^{\infty}\right) \leq \exp \left(-\sum_{m=n}^{\infty} \mathbb{P}\left(E_{m}\right)\right)=0$. Finally, we observe that $\liminf E_{n}^{c}=\bigcup_{n=1}^{\infty} D_{n}^{\infty}$ and hence $\mathbb{P}\left(\liminf E_{n}^{c}\right) \leq \sum_{n=1}^{\infty} \mathbb{P}\left(D_{n}^{\infty}\right)=0$.
Next to (ordinary) independence, we also have the notion of conditional independence. As in definition 3.1 this concept can be defined for infinite sequences of σ-algebras. We only need a special case.

Definition 3.4 Two σ-algebras \mathcal{F}_{1} and \mathcal{F}_{2} are called conditionally independent given a third σ-algebra \mathcal{G} if

$$
\begin{equation*}
\mathbb{P}\left(F_{1} \cap F_{2} \mid G\right)=\mathbb{P}\left(F_{1} \mid G\right) \mathbb{P}\left(F_{2} \mid G\right) \tag{3.1}
\end{equation*}
$$

for all $F_{1} \in \mathcal{F}_{1}, F_{2} \in \mathcal{F}_{2}$ and $G \in \mathcal{G}$ with $\mathbb{P}(G)>0$.
The equality in (3.1) is easily seen to be equivalent to

$$
\begin{equation*}
\mathbb{P}\left(F_{1} \cap F_{2} \cap G\right)=\mathbb{P}\left(F_{1} \cap G\right) \mathbb{P}\left(F_{2} \mid G\right) \tag{3.2}
\end{equation*}
$$

Furthermore, 3.2 is obviously also equivalent to

$$
\mathbb{P}\left(F_{2} \mid F_{1} \cap G\right)=\mathbb{P}\left(F_{2} \mid G\right)
$$

provided that $\mathbb{P}\left(F_{2} \cap G\right)>0$.

4 Convergence concepts

Let X, X_{1}, X_{2}, \ldots be random variables. We have the following definitions of different modes of convergence. We will always assume that the parameter n tends to infinity, unless stated otherwise.

Definition 4.1 (i) If $\mathbb{P}\left(\omega: X_{n}(\omega) \rightarrow X(\omega)\right)=1$, then we say that X_{n} converges to X almost surely (a.s.).
(ii) If $\mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right) \rightarrow 0$ for all $\varepsilon>0$, then we say that X_{n} converges to X in probability.
(iii) If $\mathbb{E}\left|X_{n}-X\right|^{p} \rightarrow 0$ for some $p>0$, then we say that X_{n} converges to X in p-th mean, or in \mathcal{L}^{p}.
For these types of convergence we use the following notations: $X_{n} \xrightarrow{\text { a.s. }} X, X_{n} \xrightarrow{\mathbb{P}}$ X and $X_{n} \xrightarrow{\mathcal{L}^{p}} X$ respectively.

First we study a bit more in detail almost sure convergence of X_{n} to X. If this type of convergence takes place we have

$$
\mathbb{P}\left(\omega: \forall \varepsilon>0: \exists N: \forall n \geq N:\left|X_{n}(\omega)-X(\omega)\right|<\varepsilon\right)=1
$$

But then also (dropping the ω in the notation)

$$
\begin{equation*}
\text { for all } \varepsilon>0: \mathbb{P}\left(\exists N: \forall n \geq N:\left|X_{n}-X\right|<\varepsilon\right)=1 \tag{4.3}
\end{equation*}
$$

Conversely, if (4.3) holds, we have almost sure convergence. Notice that we can rewrite the probability in 4.3) as $\mathbb{P}\left(\lim \inf E_{n}^{\varepsilon}\right)=1$, with $E_{n}^{\varepsilon}=\left\{\left|X_{n}-X\right|<\varepsilon\right\}$.

Limits are often required to be unique in an appropriate sense. The natural concept of uniqueness here is that of almost sure uniqueness.
Proposition 4.2 In each of convergence concepts in definition 4.1 the limit, when it exists, is almost surely unique. This means that if there are two candidate limits X and X^{\prime}, one must have $\mathbb{P}\left(X=X^{\prime}\right)=1$.

Proof Suppose that $X_{n} \xrightarrow{\text { a.s. }} X$ and $X_{n} \xrightarrow{\text { a.s. }} X^{\prime}$. Let Ω_{0} be the set of probability one on which $X_{n}(\omega) \rightarrow X(\omega)$ and Ω_{0}^{\prime} be the set of probability one on which $X_{n}(\omega) \rightarrow X^{\prime}(\omega)$. Then also $\mathbb{P}\left(\Omega_{0} \cap \Omega_{0}^{\prime}\right)=1$ and by uniqueness of limits of real numbers we must have that $X(\omega)=X^{\prime}(\omega)$ for all $\omega \in \Omega_{0} \cap \Omega_{0}^{\prime}$. Hence $\mathbb{P}\left(X=X^{\prime}\right) \geq \mathbb{P}\left(\Omega_{0} \cap \Omega_{0}^{\prime}\right)=1$.
If $X_{n} \xrightarrow{\mathbb{P}} X$ and $X_{n} \xrightarrow{\mathbb{P}} X^{\prime}$, then we have by the triangle inequality for any $\varepsilon>0$

$$
\mathbb{P}\left(\left|X-X^{\prime}\right|>\varepsilon\right) \leq \mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon / 2\right)+\mathbb{P}\left(\left|X_{n}-X^{\prime}\right|>\varepsilon / 2\right)
$$

and the right hand side converges to zero by assumption.
Finally we consider the third convergence concept. We need the basic inequality $|a+b|^{p} \leq c_{p}\left(|a|^{p}+|b|^{p}\right)$ (exercise 6.3), where $c_{p}=\max \left\{2^{p-1}, 1\right\}$. This allows us to write $\mathbb{E}\left|X-X^{\prime}\right|^{p} \leq c_{p}\left(\mathbb{E}\left|\bar{X}_{n}-X\right|^{p}+\mathbb{E}\left|X_{n}-X^{\prime}\right|^{p}\right)$. It follows that $\mathbb{E}\left|X-X^{\prime}\right|^{p}=0$ and hence that $\mathbb{P}\left(X=X^{\prime}\right)=1$.

The following relations hold between the types of convergence introduced in definition 4.1

Proposition 4.3 (i) If $X_{n} \xrightarrow{\text { a.s. }} X$, then $X_{n} \xrightarrow{\mathbb{P}} X$.
(ii) If $X_{n} \xrightarrow{\mathcal{L}^{p}} X$, then $X_{n} \xrightarrow{\mathbb{P}} X$.
(iii) If $p>q>0$ and $X_{n} \xrightarrow{\mathcal{L}^{p}} X$, then $X_{n} \xrightarrow{\mathcal{L}^{q}} X$.

Proof (i) Fix $\varepsilon>0$ and let $A_{n}=\left\{\left|X_{n}-X\right| \geq \varepsilon\right\}$. From 4.3 we know that $\mathbb{P}\left(\lim \inf A_{n}^{c}\right)=1$, or that $\mathbb{P}\left(\limsup A_{n}\right)=0$. But $A_{n} \subset U_{n}:=\bigcup_{m \geq n} A_{m}$ and the U_{n} form a decreasing sequence with $\lim \sup A_{n}$ as its limit. Hence we have $\limsup \mathbb{P}\left(A_{n}\right) \leq \lim \mathbb{P}\left(U_{n}\right)=0$.
(ii) By Markov's inequality we have

$$
\mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right)=\mathbb{P}\left(\left|X_{n}-X\right|^{p}>\varepsilon^{p}\right) \leq \frac{1}{\varepsilon^{p}} \mathbb{E}\left|X_{n}-X\right|^{p}
$$

and the result follows.
(iii) Recall that the function $x \mapsto|x|^{r}$ is convex for $r \geq 1$. Hence, Jensen's inequality $\left(|\mathbb{E} Z|^{r} \leq \mathbb{E}|Z|^{r}\right)$ yields for $r=p / q$ the inequality $\left(\mathbb{E}\left|X_{n}-X\right|^{q}\right)^{r} \leq$ $\mathbb{E}\left|X_{n}-X\right|^{p}$.

We close this section with criterions that can be used to decide whether convergence almost surely or in probability takes place.

Proposition 4.4 (i) If for all $\varepsilon>0$ the series $\sum_{n} \mathbb{P}\left(\left|X_{n}-X\right|>\varepsilon\right)$ is convergent, then $X_{n} \xrightarrow{\text { a.s. }} X$.
(ii) There is equivalence between
(a) $X_{n} \xrightarrow{\mathbb{P}} X$ and
(b) every subsequence of $\left(X_{n}\right)$ contains a further subsequence that is almost surely convergent to X.

Proof (i) Fix $\varepsilon>0$ and let $E_{n}=\left\{\left|X_{n}-X\right|>\varepsilon\right\}$. The first part of the Borel-Cantelli lemma (lemma 3.3) gives that $\mathbb{P}\left(\lim \sup E_{n}\right)=0$, equivalently $\mathbb{P}\left(\lim \inf E_{n}^{c}\right)=1$, but this is just 4.3).
(ii) Assume that (a) holds, then for any $\varepsilon>0$ and any subsequence we also have $\mathbb{P}\left(\left|X_{n_{k}}-X\right|>\varepsilon\right) \rightarrow 0$. Hence for every $p \in \mathbb{N}$, there is $k_{p} \in \mathbb{N}$ such that $\mathbb{P}\left(\left|X_{n_{k_{p}}}-X\right|>\varepsilon\right) \leq 2^{-p}$. Now we apply part (i) of this proposition, which gives us (b). Conversely, assume that (b) holds. We reason by contradiction. Suppose that (a) doesn't hold. Then there exist an $\varepsilon>0$ and a level $\delta>0$ such that along some subsequence $\left(n_{k}\right)$ one has

$$
\begin{equation*}
\mathbb{P}\left(\left|X_{n_{k}}-X\right|>\varepsilon\right)>\delta, \text { for all } k \tag{4.4}
\end{equation*}
$$

But the sequence $X_{n_{k}}$ by assumption has an almost surely convergent subsequence ($X_{n_{k_{p}}}$), which, by proposition 4.3 (i), also converges in probability. But this contradicts 4.4.

5 The strong law

The main result of this section is the strong law of large numbers for an iid sequence of random variables who have a finite expectation. Readers should be familiar with the weak law of large numbers for a sequence of random variables that have a finite variance (otherwise, make exercise 6.4 now!). The proof of the theorem 5.2 uses approximations with bounded random variables. The following lemma (sometimes called the truncation lemma) prepares for that.

Lemma 5.1 Let X_{1}, X_{2}, \ldots be an iid sequence with $\mathbb{E}\left|X_{1}\right|<\infty$ and $\mathbb{E} X_{1}=\mu$. Put $Y_{n}=X_{n} 1_{\left\{\left|X_{n}\right| \leq n\right\}}$. Then the following assertions hold true.
(i) $\mathbb{P}\left(X_{n}=Y_{n}\right.$ eventually $)=1$.
(ii) $\mathbb{E} Y_{n} \rightarrow \mu$.
(iii) $\sum_{n \geq 1} \frac{1}{n^{2}} \operatorname{Var} Y_{n}<\infty$.

Proof (i) Let $E_{n}=\left\{X_{n} \neq Y_{n}\right\}=\left\{\left|X_{n}\right|>n\right\}$. We will use the first part of the Borel-Cantelli lemma to conclude that the assertion holds, i.e. we will show that $\mathbb{P}\left(\lim \sup E_{n}\right)=0$. We therefore look at $\sum_{n} \mathbb{P}\left(E_{n}\right)$. Since all X_{n} have the same distribution as X_{1}, we also have $\mathbb{P}\left(\left|X_{n}\right|>n\right)=\mathbb{P}\left(X_{1} \mid>n\right)$. Recall the familiar inequality $\mathbb{E}\left|X_{1}\right| \geq \sum_{n \geq 1} \mathbb{P}\left(\left|X_{1}\right|>n\right)$ (exercise 6.18). Using these ingredients we get $\sum_{n \geq 1} \mathbb{P}\left(E_{n}\right) \leq \mathbb{E}\left|X_{1}\right|<\infty$. Indeed, the Borel-Cantelli now give us the result.
(ii) Since X_{n} has the same distribution as X_{1}, we also have that Y_{n} has the same distribution as $X_{1} 1_{\left\{\left|X_{1}\right| \leq n\right\}}$. In particular, they have the same expectation. Hence $\mathbb{E} Y_{n}=\mathbb{E} X_{1} 1_{\left\{\left|X_{1}\right| \leq n\right\}}$, which tends to $\mathbb{E} X_{1}$ in view of theorem A.1 in the appendix (see also exercise 6.17).
(iii) This proof is a little tricky. It is sufficient to show that $\sum_{n \geq 1} \frac{1}{n^{2}} \mathbb{E} Y_{n}^{2}<\infty$. The sum is equal to $\sum_{n \geq 1} \frac{1}{n^{2}} \mathbb{E} X_{1}^{2} 1_{\left\{\left|X_{1}\right| \leq n\right\}}$. Interchanging expectation and summation gives $\mathbb{E} X_{1}^{2} \sum_{n \geq 1} \frac{1}{n^{2}} 1_{\left\{\left|X_{1}\right| \leq n\right\}}$ and we study the summation. Split it as follows:

$$
\sum_{n \geq 1} \frac{1}{n^{2}} 1_{\left\{\left|X_{1}\right| \leq n\right\}} 1_{\left\{\left|X_{1}\right| \leq 1\right\}}+\sum_{n \geq 1} \frac{1}{n^{2}} 1_{\left\{\left|X_{1}\right| \leq n\right\}} 1_{\left\{\left|X_{1}\right|>1\right\}}
$$

The first summation is less than $2 \cdot 1_{\left\{\left|X_{1}\right| \leq 1\right\}}$. For the second summation we have

$$
\begin{aligned}
\sum_{n \geq 1} \frac{1}{n^{2}} 1_{\left\{\left|X_{1}\right| \leq n\right\}} 1_{\left\{\left|X_{1}\right|>1\right\}} & =\sum_{n \geq\left|X_{1}\right|} \frac{1}{n^{2}} 1_{\left\{\left|X_{1}\right|>1\right\}} \\
& \leq 2 \sum_{n \geq\left|X_{1}\right|} \int_{n}^{n+1} \frac{1}{x^{2}} d x 1_{\left\{\left|X_{1}\right|>1\right\}} \\
& \leq 2 \int_{\left|X_{1}\right|}^{\infty} \frac{1}{x^{2}} d x 1_{\left\{\left|X_{1}\right|>1\right\}} \\
& =2 \frac{1}{\left|X_{1}\right|} 1_{\left\{\left|X_{1}\right|>1\right\}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathbb{E} X_{1}^{2} \sum_{n \geq 1} \frac{1}{n^{2}} 1_{\left\{\left|X_{1}\right| \leq n\right\}} & \leq 2 \mathbb{E} X_{1}^{2}\left(1_{\left\{\left|X_{1}\right| \leq 1\right\}}+\frac{1}{\left|X_{1}\right|} 1_{\left\{\left|X_{1}\right|>1\right\}}\right) \\
& \leq 2\left(\mathbb{E}\left|X_{1}\right| 1_{\left\{\left|X_{1}\right| \leq 1\right\}}+\mathbb{E}\left|X_{1}\right| 1_{\left\{\left|X_{1}\right|>1\right\}}\right)=2 \mathbb{E}\left|X_{1}\right|
\end{aligned}
$$

which is finite by assumption.
Here is the announced strong law of large numbers.
Theorem 5.2 Let X_{1}, X_{2}, \ldots be a sequence of iid random variables and assume that $\mathbb{E}\left|X_{1}\right|<\infty$. Let $\mu=\mathbb{E} X_{1}$, then

$$
\begin{equation*}
\bar{X}_{n} \rightarrow \mu \text { a.s. } \tag{5.5}
\end{equation*}
$$

Proof Let us first assume that the X_{n} are nonnegative. Put $Y_{n}=X_{n} 1_{\left\{X_{n} \leq n\right\}}$. Then

$$
\bar{X}_{n}=\frac{1}{n} \sum_{k=1}^{n} Y_{k}+\frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-Y_{k}\right)
$$

Notice that on a set of probability one the sum $\sum_{k=1}^{n}\left(X_{k}(\omega)-Y_{k}(\omega)\right)$ contains only finitely many nonzero terms (this follows from lemma 5.1(i)), so that it is sufficient to show that

$$
\begin{equation*}
\bar{Y}_{n} \xrightarrow{\text { a.s. }} \mu . \tag{5.6}
\end{equation*}
$$

Fix $\alpha>1, \beta_{n}=\left[\alpha^{n}\right]$ and put

$$
\eta_{n}=\frac{1}{\beta_{n}} \sum_{k=1}^{\beta_{n}} Y_{k}
$$

We first show that

$$
\begin{equation*}
\eta_{n}-\mathbb{E} \eta_{n} \xrightarrow{\text { a.s. }} 0 \tag{5.7}
\end{equation*}
$$

by applying proposition 4.4 (i). Below we need the following technical result. There exists a constant C_{α} such that for all $i \geq 1$ it holds that $\sum_{n: \beta_{n} \geq i} \frac{1}{\beta_{n}^{2}} \leq \frac{C_{\alpha}}{i^{2}}$ (exercise 6.10. Consider for any $\varepsilon>0$

$$
\begin{aligned}
\sum_{n=1}^{\infty} \mathbb{P}\left(\left|\eta_{n}-\mathbb{E} \eta_{n}\right|>\varepsilon\right) & \leq \frac{1}{\varepsilon^{2}} \sum_{n=1}^{\infty} \operatorname{Var} \eta_{n} \\
& =\frac{1}{\varepsilon^{2}} \sum_{n=1}^{\infty} \frac{1}{\beta_{n}^{2}} \sum_{i=1}^{\beta_{n}} \operatorname{Var} Y_{i} \\
& =\frac{1}{\varepsilon^{2}} \sum_{i=1}^{\infty}\left(\sum_{n: \beta_{n} \geq i} \frac{1}{\beta_{n}^{2}}\right) \operatorname{Var} Y_{i} \\
& \leq C_{\alpha} \sum_{i=1}^{\infty} \frac{1}{i^{2}} \operatorname{Var} Y_{i},
\end{aligned}
$$

which is finite by lemma 5.1(iii). Hence proposition 4.4 (i) yields the result. It is easy to show that $\mathbb{E} \eta_{n}$ converges to μ (exercise 6.11), and we then conclude from (5.7) that

$$
\begin{equation*}
\eta_{n} \xrightarrow{a . s .} \mu . \tag{5.8}
\end{equation*}
$$

Recall that η_{n} depends on $\alpha>1$. We proceed by showing that, by a limit argument, the result 5.8 is also valid for $\alpha=1$.
For every n, let $m=m(n)=\inf \left\{k: \beta_{k}>n\right\}$. Then $\beta_{m}>n \geq \beta_{m-1}$ and therefore

$$
\frac{1}{n} \sum_{i=1}^{n} Y_{i} \leq \frac{1}{\beta_{m-1}} \sum_{i=1}^{\beta_{m}} Y_{i}=\frac{\beta_{m}}{\beta_{m-1}} \eta_{m}
$$

Using 5.8 and $\frac{\beta_{m}}{\beta_{m-1}} \rightarrow \alpha$ as $m \rightarrow \infty$, we conclude that

$$
\limsup \bar{Y}_{n} \leq \alpha \mu \text { a.s. },
$$

and, since this is true for every $\alpha>1$, we must also have

$$
\begin{equation*}
\limsup \bar{Y}_{n} \leq \mu \text { a.s. } \tag{5.9}
\end{equation*}
$$

By a similar argument we have

$$
\frac{1}{n} \sum_{i=1}^{n} Y_{i} \geq \frac{1}{\beta_{m-1}} \sum_{i=1}^{\beta_{m-1}} Y_{i}=\frac{\beta_{m-1}}{\beta_{m}} \eta_{m-1}
$$

Using (5.8 again, we conclude that

$$
\liminf \bar{Y}_{n} \geq \frac{1}{\alpha} \mu \text { a.s. }
$$

and then we must also have

$$
\begin{equation*}
\liminf \bar{Y}_{n} \leq \mu \text { a.s. } \tag{5.10}
\end{equation*}
$$

Combining (5.9) and (5.10) yields (5.6) for nonnegative X_{i}. Finally, for arbitrary X_{i} we proceed as follows. For every real number x we define $x^{+}=\max \{x, 0\}$ and $x^{-}=\max \{-x, 0\}$. Then $x=x^{+}-x^{-}$. Similar notation applies to random variables. We apply the above results to the averages of the X_{i}^{+}and X_{i}^{-}to get

$$
\bar{X}_{n} \xrightarrow{\text { a.s. }} \mathbb{E} X_{1}^{+}-\mathbb{E} X_{1}^{-}=\mathbb{E} X_{1}=\mu .
$$

The next proposition shows that if a.s. convergence of the averages to a constant takes place, this constant must be the (common) expectation.

Proposition 5.3 Let X_{1}, X_{2}, \ldots be a sequence of iid random variables, and assume that

$$
\begin{equation*}
\bar{X}_{n} \rightarrow \mu \text { a.s. } \tag{5.11}
\end{equation*}
$$

for some constant $\mu \in \mathbb{R}$. Then $\mathbb{E}\left|X_{1}\right|$ is finite and $\mu=\mathbb{E} X_{1}$.
Proof Write $\bar{X}_{n}=\frac{n-1}{n} \bar{X}_{n-1}+\frac{X_{n}}{n}$ to conclude that $\frac{X_{n}}{n} \xrightarrow{\text { a.s. }} 0$. In particular we have $\frac{\left|X_{n}\right|}{n} \leq 1$ eventually. I.e. $\mathbb{P}\left(\lim \inf \left\{\frac{\left|X_{n}\right|}{n} \leq 1\right\}\right)=1$, or $\mathbb{P}\left(\lim \sup \left\{\frac{\left|X_{n}\right|}{n}>\right.\right.$ $1\})=0$. Using the second half of the Borel-Cantelli lemma (lemma 3.3), we conclude that $\sum_{n} \mathbb{P}\left(\frac{\left|X_{n}\right|}{n} \leq 1\right)=\infty$, and thus $\sum_{n} \mathbb{P}\left(\left|X_{1}\right| \leq n\right)=\infty$. Since $E\left|X_{1}\right| \leq \sum_{n=0}^{\infty} \mathbb{P}\left(\left|X_{1}\right|>n\right)$ (exercise 6.18), we thus have $\mathbb{E}\left|X_{1}\right|<\infty$ and theorem 5.2 then yields that $\mu=\mathbb{E} X_{1}$.

The assertion of theorem 5.2 is stated under the assumption of the existence of a finite expectation. In the case where one deals with nonnegative random variables, this assumption can be dropped.

Theorem 5.4 Let X_{1}, X_{2}, \ldots be a sequence of nonnegative iid random variables, defined on a common probability space. Let $\mu=\mathbb{E} X_{1} \leq \infty$, then

$$
\begin{equation*}
\bar{X}_{n} \rightarrow \mu \text { a.s. } \tag{5.12}
\end{equation*}
$$

Proof We only need to consider the case where $\mu=\infty$. Fix $N \in \mathbb{N}$ and let $X_{n}^{N}=X_{n} 1_{\left\{X_{n} \leq N\right\}}, n \in \mathbb{N}$. Then theorem 5.2 applies and we have that $\frac{1}{n} \sum_{k=1}^{n} X_{k}^{N} \xrightarrow{\text { a.s. }} \mathbb{E} X_{1}^{N}$. But $\bar{X}_{n} \geq \frac{1}{n} \sum_{k=1}^{n} X_{k}^{N}$ and hence $\ell:=\lim \inf \bar{X}_{n} \geq$ $\mathbb{E} X_{1}^{N}$ a.s. for all N, and thus also $\ell \geq \lim _{N \rightarrow \infty} E X_{1}^{N}$ a.s. But, by theorem A.1. the latter limit is equal to $\mathbb{E} X_{1}$. Hence $\ell=\infty$ a.s.

6 Exercises

6.1 Let E_{1} and E_{2} be two events such that $\mathbb{P}\left(E_{1} \cap E_{2}\right)=\mathbb{P}\left(E_{1}\right) \mathbb{P}\left(E_{2}\right)$. Show that these events are independent in the sense of definition 3.1.
6.2 Let E_{1}, E_{2}, \ldots be events and let $X_{n}=1_{E_{n}}, n \geq 1$. Show that $\lim \inf X_{n}=$ $1_{\operatorname{lim~inf} E_{n}}$ and that $\limsup X_{n}=1_{\lim \sup E_{n}}$.
6.3 Show that for any two real number a and b and for any $p>0$ it holds that $(|a|+|b|)^{p} \leq \max \left\{2^{p-1}, 1\right\}\left(|a|^{p}+|b|^{p}\right)$.
6.4 Let X_{1}, X_{2}, \ldots be an iid sequence of random variables with common finite variance σ^{2} and expectation μ and put $\bar{X}_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}$. Show that $\operatorname{Var} \bar{X}_{n}=$ $\frac{\sigma^{2}}{n}$ and deduce from Chebychev's inequality that $\bar{X}_{n} \xrightarrow{\mathbb{P}} \mu$.
6.5 Let X, X_{1}, X_{2}, \ldots be random variables defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show that the set $\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}$ is an event, i.e. it is measurable.
6.6 Suppose that the real random variables X_{1}, X_{2}, \ldots are defined on a common probability space and that they are $i i d$ with a uniform distribution on $[0,1]$. Let $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Show that $M_{n} \xrightarrow{\mathbb{P}} 1$ and that even $M_{n} \xrightarrow{\text { a.s. }} 1$.
6.7 Give an example of a sequence of random variables that converge in probability, but not almost surely.
6.8 Let X_{1}, X_{2}, \ldots be an a.s. bounded sequence of random variables $\mathbb{P}\left(\left|X_{n}\right| \leq\right.$ $M)=1$, for some real number M. Assume that for some random variable X one has $X_{n} \xrightarrow{\mathbb{P}} X$. Show that also $\mathbb{P}(|X| \leq M)=1$ and that for all $p>0$ one has $X_{n} \xrightarrow{\mathcal{L}^{p}} X$.
6.9 Let Z_{1}, Z_{2}, \ldots be an iid sequence of standard normals and let $S_{n}=\sum_{k=1}^{n} Z_{k}$. Let $a, b \in \mathbb{R}$ and define

$$
X_{n}=\exp \left(a S_{n}-b n\right)
$$

(i) Express for every $\varepsilon>0$ the probability $\mathbb{P}\left(X_{n}>\varepsilon\right)$ in the cumulative distribution function of Z_{1} and deduce that $X_{n} \xrightarrow{\mathbb{P}} 0$ iff $b>0$.
(ii) Show that $\mathbb{E} \exp \left(\lambda Z_{1}\right)=\exp \left(\frac{1}{2} \lambda^{2}\right)$ for $\lambda \in \mathbb{R}$ and compute $\mathbb{E} X_{n}^{p},(p>0)$.
(iii) Show that $X_{n} \xrightarrow{\mathcal{L}^{p}} 0$ iff $p<2 b / a^{2}$.
(iv) Show that $X_{n} \xrightarrow{\text { a.s. }} 0$ iff $b>0$. Hint: Use Markov's inequality for X_{n}^{p}.
6.10 Let $\alpha>1$ and $\beta_{k}=\left[\alpha^{k}\right]$. Show that there exists a constant C_{α} such that for all integers i on has

$$
\sum_{n: \beta_{n} \geq i} \leq \frac{C_{\alpha}}{i^{2}}
$$

Show also that $\frac{\beta_{k+1}}{\beta_{k}} \rightarrow \alpha$.
6.11 Let x_{n} be real numbers with $x_{n} \rightarrow x$. Let $y_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$. Show that $y_{n} \rightarrow x$. Take the η_{n} from the proof of theorem 5.2. Show that $\mathbb{E} \eta_{n} \rightarrow \mu$.
6.12 Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables with $\mathbb{E} X_{1}^{2}<\infty$. The aim is to show is that both $\bar{X}_{n} \xrightarrow{\mathcal{L}^{2}} \mu$ where $\mu=\mathbb{E} X_{1}$ and $\bar{X}_{n} \xrightarrow{\text { a.s. }} \mu$.
(i) Show the \mathcal{L}^{2} convergence.
(ii) Use Chebychev's inequality to show that $\sum_{n} \mathbb{P}\left(\left|\bar{X}_{n^{2}}-\mu\right|>\varepsilon\right)<\infty$ and deduce form a well known lemma that $\bar{X}_{n^{2}} \xrightarrow{\text { a.s. }} \mu$.
(iii) Show the almost sure convergence of \bar{X}_{n} by "filling the gaps".
6.13 Let X_{1}, X_{2}, \ldots be real random variables and $g: \mathbb{R} \rightarrow \mathbb{R}$ a uniformly continuous function. Show that $g\left(X_{n}\right) \xrightarrow{\mathbb{P}} g(X)$ if $X_{n} \xrightarrow{\mathbb{P}} X$. What can be said of the $g\left(X_{n}\right)$ if $X_{n} \xrightarrow{\text { a.s. }} X$?
6.14 Let $X_{1}, Y_{1}, X_{2}, Y_{2}, \ldots$ be an i.i.d. sequence whose members have a uniform distribution on $[0,1]$ and let $f:[0,1] \rightarrow[0,1]$ be continuous. Define $Z_{i}=$ $1_{\left\{f\left(X_{i}\right)>Y_{i}\right\}}$.
(i) Show that $\frac{1}{n} \sum_{i=1}^{n} Z_{i} \rightarrow \int_{0}^{1} f(x) d x$ a.s.
(ii) Show that $\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\int_{0}^{1} f(x) d x\right)^{2} \leq \frac{1}{4 n}$.
(iii) Explain why these two results are useful.
6.15 If $X_{n} \xrightarrow{\mathbb{P}} X$ and g is a continuous function, then also $g\left(X_{n}\right) \xrightarrow{\mathbb{P}} g(X)$. Show this.
6.16 Assume that $X_{n} \xrightarrow{\mathbb{P}} X$ and $Y_{n} \xrightarrow{\mathbb{P}} Y$. Show that $X_{n}+Y_{n} \xrightarrow{\mathbb{P}} X$ and similar statements for products and ratios. What about convergence of the pairs $\left(X_{n}, Y_{n}\right)$? How do the results look for almost sure convergence instead of convergence in probability.
6.17 Let X_{1}, X_{2}, \ldots be nonnegative random variables such that $X_{n+1} \geq X_{n}$ and let $X=\lim X_{n}$ a.s. Then $\lim \mathbb{E} X_{n} \leq \mathbb{E} X$. Let X be a nonnegative random variable and $X_{n}=X 1_{\{X \leq n\}}, n \in \mathbb{N}$. Show also that $\mathbb{E} X_{n} \rightarrow \mathbb{E} X$, when X has density, or when X is discrete. (This is a special case of theorem A.1).
6.18 Prove for every random variable X the double inequalities

$$
\sum_{n=1}^{\infty} \mathbb{P}(|X|>n) \leq \mathbb{E}|X| \leq \sum_{n=0}^{\infty} \mathbb{P}(|X|>n)
$$

and

$$
\sum_{n=1}^{\infty} \mathbb{P}(|X| \geq n) \leq \mathbb{E}|X| \leq 1+\sum_{n=1}^{\infty} \mathbb{P}(|X| \geq n)
$$

A The monotone convergence theorem

Although familiarity with measure theory is not assumed in this course, occasionally we need one of the main theorems that will be provided in any introductory course in measure theory. One that deals with interchanging limits and expectation. For a proof we refer to a course in measure theory, although a part of the proof of theorem A.1 is elementary (see exercise 6.17).

Theorem A. 1 (Monotone convergence theorem) Let X_{1}, X_{2}, \ldots be nonnegative random variables with property that $X_{n+1} \geq X_{n}$ and let $X=\lim X_{n}$. Then $\lim \mathbb{E} X_{n}=\mathbb{E} X$.

