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1 Introduction

As we know, random variables are by definition measurable functions on some
underlying measurable space (Ω,F). If we have a sequence X1, X2, . . . of them
and we ask for limit behaviour of this sequence, then we have to specify the
type of convergence. And since we are dealing with functions, there are many
useful types available. In these notes we will treat the best known ones. They
are called a.s. convergence, convergence in probability and convergence in p-th
mean. Another important concept, weak convergence, with the Central Limit
Theorem as its best known example is treated somewhere else. In this notes we
finally arrive at the Strong law of large numbers for an iid sequence of random
variables. This law states that averages of an iid sequence converge almost
surely to their common expectation.

2 Preliminaries

Let (Ω,F , P) be a probability space, In the sequel, unless stated otherwise, we
assume that all random variables are defined on this space. The σ-algebra F
on Ω is the collection of events. One says that an event F takes place almost
surely, if P(F ) = 0.

For events E1, E2, . . . we define

lim sup En =
⋂
n≥1

⋃
m≥n

Em,

and

lim inf En =
⋃
n≥1

⋂
m≥n

Em.

Notice that (lim supEn)c = lim inf Ec
n. For the event lim supEn one often writes

En i.o. (i.o. means infinitely often) and for the event lim inf En one also writes
En eventually.

We will mostly consider real valued random variables X, functions X : Ω → R
that are measurable. Recall that a map X : Ω → R is called measurable if
X−1[B] ∈ F for all B ∈ B, the Borel sets of R. Measurability thus depends
on the choice of the σ-algebra F on Ω. There is always a σ-algebra on Ω that
makes a given function X measurable, the power set. More interesting is the
smallest σ-algebra that turns X into a measurable function. This σ-algebra is
denoted by σ(X) and it is given by σ(X) = {X−1[B] : B ∈ B}.

3 Independence

We are used to call two events E and F independent if P(E ∩ F ) = P(E)P(F ).
Below we extend this to independence of an arbitrary sequence of events, which
comes at the end of a sequence of definitions.
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Definition 3.1 (i) Let G1,G2, . . . be a sequence of sub-σ-algebras of F . One
says that this sequence is independent if for all n ∈ N and Gik

∈ Gik
it holds

that

P(Gi1 ∩ · · · ∩Gin
) =

n∏
i=1

P(Gik
).

For finite sequences G1, . . . ,Gn of σ-algebras, independence is defined as inde-
pendence of the sequence G1,G2, . . ., where Gk = {∅,Ω}, for k > n.
(ii) A sequence X1, X2, . . . of random variables is said to be an independent
sequence, if the σ-algebras Fk = σ(Xk) (k ∈ N) are independent.
(iii) A sequence E1, E2, . . . of events is called independent, if the random vari-
ables Xk := 1Ek

are independent.

Remark 3.2 Notice that an independent sequence of events remain indepen-
dent, if in any subsequence of it, the events En are replaced with their comple-
ments.

Lemma 3.3 (Borel-Cantelli) Let E1, E2, . . . be a sequence of events.
(i) If it has the property that

∑
n≥1 P(En) < ∞, then P(lim sup En) = 0.

(ii) If
∑

n≥1 P(En) = ∞ and if, moreover, the sequence is independent, then
P(lim supEn) = 1.

Proof (i) Let Un =
⋃

m≥n Em. Notice that the sequence (Un) decreases to
U = lim supEn. Hence we have P(U) ≤ P(Un) ≤

∑
m≥n P(Em), which con-

verges to zero by assumption.
(ii) We prove that P(lim inf Ec

n) = 0. Let DN
n =

⋂N
m=n Ec

m (N ≥ n). No-
tice that for fixed n the sequence (DN

n )N≥n decreases to D∞
n :=

⋂∞
m=n Ec

m.
By independence we obtain P(DN

n ) =
∏N

m=n(1 − P(Em)), which is less than
exp(−

∑N
m=n P(Em)). Hence by taking limits for N → ∞, we obtain for

every n that P(D∞
n ) ≤ exp(−

∑∞
m=n P(Em)) = 0. Finally, we observe that

lim inf Ec
n =

⋃∞
n=1 D∞

n and hence P(lim inf Ec
n) ≤

∑∞
n=1 P(D∞

n ) = 0. �

Next to (ordinary) independence, we also have the notion of conditional inde-
pendence. As in definition 3.1 this concept can be defined for infinite sequences
of σ-algebras. We only need a special case.

Definition 3.4 Two σ-algebras F1 and F2 are called conditionally independent
given a third σ-algebra G if

P(F1 ∩ F2|G) = P(F1|G)P(F2|G), (3.1)

for all F1 ∈ F1, F2 ∈ F2 and G ∈ G with P(G) > 0.

The equality in (3.1) is easily seen to be equivalent to

P(F1 ∩ F2 ∩G) = P(F1 ∩G)P(F2|G). (3.2)

Furthermore, (3.2) is obviously also equivalent to

P(F2|F1 ∩G) = P(F2|G),

provided that P(F2 ∩G) > 0.
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4 Convergence concepts

Let X, X1, X2, . . . be random variables. We have the following definitions of
different modes of convergence. We will always assume that the parameter n
tends to infinity, unless stated otherwise.

Definition 4.1 (i) If P(ω : Xn(ω) → X(ω)) = 1, then we say that Xn converges
to X almost surely (a.s.).
(ii) If P(|Xn −X| > ε) → 0 for all ε > 0, then we say that Xn converges to X
in probability.
(iii) If E |Xn −X|p → 0 for some p > 0, then we say that Xn converges to X in
p-th mean, or in Lp.
For these types of convergence we use the following notations: Xn

a.s.→ X, Xn
P→

X and Xn
Lp

→ X respectively.

First we study a bit more in detail almost sure convergence of Xn to X. If this
type of convergence takes place we have

P(ω : ∀ε > 0 : ∃N : ∀n ≥ N : |Xn(ω)−X(ω)| < ε) = 1.

But then also (dropping the ω in the notation)

for all ε > 0: P(∃N : ∀n ≥ N : |Xn −X| < ε) = 1. (4.3)

Conversely, if (4.3) holds, we have almost sure convergence. Notice that we can
rewrite the probability in (4.3) as P(lim inf Eε

n) = 1, with Eε
n = {|Xn−X| < ε}.

Limits are often required to be unique in an appropriate sense. The natural
concept of uniqueness here is that of almost sure uniqueness.

Proposition 4.2 In each of convergence concepts in definition 4.1 the limit,
when it exists, is almost surely unique. This means that if there are two candi-
date limits X and X ′, one must have P(X = X ′) = 1.

Proof Suppose that Xn
a.s.→ X and Xn

a.s.→ X ′. Let Ω0 be the set of probability
one on which Xn(ω) → X(ω) and Ω′0 be the set of probability one on which
Xn(ω) → X ′(ω). Then also P(Ω0 ∩ Ω′0) = 1 and by uniqueness of limits of
real numbers we must have that X(ω) = X ′(ω) for all ω ∈ Ω0 ∩ Ω′0. Hence
P(X = X ′) ≥ P(Ω0 ∩ Ω′0) = 1.
If Xn

P→ X and Xn
P→ X ′, then we have by the triangle inequality for any ε > 0

P(|X −X ′| > ε) ≤ P(|Xn −X| > ε/2) + P(|Xn −X ′| > ε/2),

and the right hand side converges to zero by assumption.
Finally we consider the third convergence concept. We need the basic inequality
|a + b|p ≤ cp(|a|p + |b|p) (exercise 6.3), where cp = max{2p−1, 1}. This allows
us to write E |X − X ′|p ≤ cp(E |Xn − X|p + E |Xn − X ′|p). It follows that
E |X −X ′|p = 0 and hence that P(X = X ′) = 1. �
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The following relations hold between the types of convergence introduced in
definition 4.1.

Proposition 4.3 (i) If Xn
a.s.→ X, then Xn

P→ X.

(ii) If Xn
Lp

→ X, then Xn
P→ X.

(iii) If p > q > 0 and Xn
Lp

→ X, then Xn
Lq

→ X.

Proof (i) Fix ε > 0 and let An = {|Xn − X| ≥ ε}. From (4.3) we know that
P(lim inf Ac

n) = 1, or that P(lim sup An) = 0. But An ⊂ Un :=
⋃

m≥n Am and
the Un form a decreasing sequence with lim supAn as its limit. Hence we have
lim sup P(An) ≤ lim P(Un) = 0.
(ii) By Markov’s inequality we have

P(|Xn −X| > ε) = P(|Xn −X|p > εp) ≤ 1
εp

E |Xn −X|p,

and the result follows.
(iii) Recall that the function x 7→ |x|r is convex for r ≥ 1. Hence, Jensen’s
inequality (|E Z|r ≤ E |Z|r) yields for r = p/q the inequality (E |Xn −X|q)r ≤
E |Xn −X|p. �

We close this section with criterions that can be used to decide whether conver-
gence almost surely or in probability takes place.

Proposition 4.4 (i) If for all ε > 0 the series
∑

n P(|Xn −X| > ε) is conver-
gent, then Xn

a.s.→ X.
(ii) There is equivalence between

(a) Xn
P→ X and

(b) every subsequence of (Xn) contains a further subsequence that is almost
surely convergent to X.

Proof (i) Fix ε > 0 and let En = {|Xn − X| > ε}. The first part of the
Borel-Cantelli lemma (lemma 3.3) gives that P(lim sup En) = 0, equivalently
P(lim inf Ec

n) = 1, but this is just (4.3).
(ii) Assume that (a) holds, then for any ε > 0 and any subsequence we also
have P(|Xnk

−X| > ε) → 0. Hence for every p ∈ N, there is kp ∈ N such that
P(|Xnkp

− X| > ε) ≤ 2−p. Now we apply part (i) of this proposition, which
gives us (b). Conversely, assume that (b) holds. We reason by contradiction.
Suppose that (a) doesn’t hold. Then there exist an ε > 0 and a level δ > 0 such
that along some subsequence (nk) one has

P(|Xnk
−X| > ε) > δ, for all k. (4.4)

But the sequence Xnk
by assumption has an almost surely convergent subse-

quence (Xnkp
), which, by proposition 4.3 (i), also converges in probability. But

this contradicts (4.4). �
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5 The strong law

The main result of this section is the strong law of large numbers for an iid
sequence of random variables who have a finite expectation. Readers should be
familiar with the weak law of large numbers for a sequence of random variables
that have a finite variance (otherwise, make exercise 6.4 now!). The proof of the
theorem 5.2 uses approximations with bounded random variables. The following
lemma (sometimes called the truncation lemma) prepares for that.

Lemma 5.1 Let X1, X2, . . . be an iid sequence with E |X1| < ∞ and E X1 = µ.
Put Yn = Xn1{|Xn|≤n}. Then the following assertions hold true.
(i) P(Xn = Yn eventually) = 1.
(ii) E Yn → µ.
(iii)

∑
n≥1

1
n2 VarYn < ∞.

Proof (i) Let En = {Xn 6= Yn} = {|Xn| > n}. We will use the first part of the
Borel-Cantelli lemma to conclude that the assertion holds, i.e. we will show that
P(lim supEn) = 0. We therefore look at

∑
n P(En). Since all Xn have the same

distribution as X1, we also have P(|Xn| > n) = P(X1| > n). Recall the familiar
inequality E |X1| ≥

∑
n≥1 P(|X1| > n) (exercise 6.18). Using these ingredients

we get
∑

n≥1 P(En) ≤ E |X1| < ∞. Indeed, the Borel-Cantelli now give us the
result.
(ii) Since Xn has the same distribution as X1, we also have that Yn has the same
distribution as X11{|X1|≤n}. In particular, they have the same expectation.
Hence E Yn = E X11{|X1|≤n}, which tends to E X1 in view of theorem A.1 in
the appendix (see also exercise 6.17).
(iii) This proof is a little tricky. It is sufficient to show that

∑
n≥1

1
n2 E Y 2

n < ∞.
The sum is equal to

∑
n≥1

1
n2 E X2

11{|X1|≤n}. Interchanging expectation and
summation gives E X2

1

∑
n≥1

1
n2 1{|X1|≤n} and we study the summation. Split it

as follows:∑
n≥1

1
n2

1{|X1|≤n}1{|X1|≤1} +
∑
n≥1

1
n2

1{|X1|≤n}1{|X1|>1}.

The first summation is less than 2 · 1{|X1|≤1}. For the second summation we
have ∑

n≥1

1
n2

1{|X1|≤n}1{|X1|>1} =
∑

n≥|X1|

1
n2

1{|X1|>1}

≤ 2
∑

n≥|X1|

∫ n+1

n

1
x2

dx 1{|X1|>1}

≤ 2
∫ ∞

|X1|

1
x2

dx 1{|X1|>1}

= 2
1

|X1|
1{|X1|>1}.
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Hence

E X2
1

∑
n≥1

1
n2

1{|X1|≤n} ≤ 2E X2
1 (1{|X1|≤1} +

1
|X1|

1{|X1|>1})

≤ 2(E |X1|1{|X1|≤1} + E |X1|1{|X1|>1}) = 2E |X1|,

which is finite by assumption. �

Here is the announced strong law of large numbers.

Theorem 5.2 Let X1, X2, . . . be a sequence of iid random variables and assume
that E |X1| < ∞. Let µ = E X1, then

Xn → µ a.s. (5.5)

Proof Let us first assume that the Xn are nonnegative. Put Yn = Xn1{Xn≤n}.
Then

Xn =
1
n

n∑
k=1

Yk +
1
n

n∑
k=1

(Xk − Yk).

Notice that on a set of probability one the sum
∑n

k=1(Xk(ω)− Yk(ω)) contains
only finitely many nonzero terms (this follows from lemma 5.1 (i)), so that it is
sufficient to show that

Y n
a.s.→ µ. (5.6)

Fix α > 1, βn = [αn] and put

ηn =
1
βn

βn∑
k=1

Yk.

We first show that

ηn − E ηn
a.s.→ 0 (5.7)

by applying proposition 4.4(i). Below we need the following technical result.
There exists a constant Cα such that for all i ≥ 1 it holds that

∑
n:βn≥i

1
β2

n
≤ Cα

i2

(exercise 6.10). Consider for any ε > 0
∞∑

n=1

P(|ηn − E ηn| > ε) ≤ 1
ε2

∞∑
n=1

Var ηn

=
1
ε2

∞∑
n=1

1
β2

n

βn∑
i=1

VarYi

=
1
ε2

∞∑
i=1

(
∑

n:βn≥i

1
β2

n

)Var Yi

≤ Cα

∞∑
i=1

1
i2

VarYi,

6



which is finite by lemma 5.1(iii). Hence proposition 4.4(i) yields the result. It
is easy to show that E ηn converges to µ (exercise 6.11), and we then conclude
from (5.7) that

ηn
a.s.→ µ. (5.8)

Recall that ηn depends on α > 1. We proceed by showing that, by a limit
argument, the result (5.8) is also valid for α = 1.
For every n, let m = m(n) = inf{k : βk > n}. Then βm > n ≥ βm−1 and
therefore

1
n

n∑
i=1

Yi ≤
1

βm−1

βm∑
i=1

Yi =
βm

βm−1
ηm.

Using (5.8) and βm

βm−1
→ α as m →∞, we conclude that

lim sup Y n ≤ αµ a.s.,

and, since this is true for every α > 1, we must also have

lim sup Y n ≤ µa.s. (5.9)

By a similar argument we have

1
n

n∑
i=1

Yi ≥
1

βm−1

βm−1∑
i=1

Yi =
βm−1

βm
ηm−1.

Using (5.8) again, we conclude that

lim inf Y n ≥
1
α

µa.s.,

and then we must also have

lim inf Y n ≤ µa.s. (5.10)

Combining (5.9) and (5.10) yields (5.6) for nonnegative Xi. Finally, for arbitrary
Xi we proceed as follows. For every real number x we define x+ = max{x, 0}
and x− = max{−x, 0}. Then x = x+ − x−. Similar notation applies to random
variables. We apply the above results to the averages of the X+

i and X−
i to get

Xn
a.s.→ E X+

1 − E X−
1 = E X1 = µ.

�

The next proposition shows that if a.s. convergence of the averages to a constant
takes place, this constant must be the (common) expectation.
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Proposition 5.3 Let X1, X2, . . . be a sequence of iid random variables, and
assume that

Xn → µ a.s. (5.11)

for some constant µ ∈ R. Then E |X1| is finite and µ = E X1.

Proof Write Xn = n−1
n Xn−1 + Xn

n to conclude that Xn

n

a.s.→ 0. In particular
we have |Xn|

n ≤ 1 eventually. I.e. P(lim inf{ |Xn|
n ≤ 1}) = 1, or P(lim sup{ |Xn|

n >
1}) = 0. Using the second half of the Borel-Cantelli lemma (lemma 3.3), we
conclude that

∑
n P( |Xn|

n ≤ 1) = ∞, and thus
∑

n P(|X1| ≤ n) = ∞. Since
E|X1| ≤

∑∞
n=0 P(|X1| > n) (exercise 6.18), we thus have E |X1| < ∞ and

theorem 5.2 then yields that µ = E X1. �

The assertion of theorem 5.2 is stated under the assumption of the existence
of a finite expectation. In the case where one deals with nonnegative random
variables, this assumption can be dropped.

Theorem 5.4 Let X1, X2, . . . be a sequence of nonnegative iid random vari-
ables, defined on a common probability space. Let µ = E X1 ≤ ∞, then

Xn → µ a.s. (5.12)

Proof We only need to consider the case where µ = ∞. Fix N ∈ N and
let XN

n = Xn 1{Xn≤N}, n ∈ N. Then theorem 5.2 applies and we have that
1
n

∑n
k=1 XN

k
a.s.→ E XN

1 . But Xn ≥ 1
n

∑n
k=1 XN

k and hence ` := lim inf Xn ≥
E XN

1 a.s. for all N , and thus also ` ≥ limN→∞ EXN
1 a.s. But, by theorem A.1,

the latter limit is equal to E X1. Hence ` = ∞ a.s. �

6 Exercises

6.1 Let E1 and E2 be two events such that P(E1 ∩ E2) = P(E1)P(E2). Show
that these events are independent in the sense of definition 3.1.

6.2 Let E1, E2, . . . be events and let Xn = 1En
, n ≥ 1. Show that lim inf Xn =

1lim inf En
and that lim sup Xn = 1lim sup En

.

6.3 Show that for any two real number a and b and for any p > 0 it holds that
(|a|+ |b|)p ≤ max{2p−1, 1}(|a|p + |b|p).

6.4 Let X1, X2, . . . be an iid sequence of random variables with common finite
variance σ2 and expectation µ and put Xn = 1

n

∑n
k=1 Xk. Show that Var Xn =

σ2

n and deduce from Chebychev’s inequality that Xn
P→ µ.

6.5 Let X, X1, X2, . . . be random variables defined on some probability space
(Ω,F , P). Show that the set {ω : limn→∞ Xn(ω) = X(ω)} is an event, i.e. it is
measurable.
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6.6 Suppose that the real random variables X1, X2, . . . are defined on a common
probability space and that they are iid with a uniform distribution on [0, 1]. Let
Mn = max{X1, . . . , Xn}. Show that Mn

P→ 1 and that even Mn
a.s.→ 1.

6.7 Give an example of a sequence of random variables that converge in prob-
ability, but not almost surely.

6.8 Let X1, X2, . . . be an a.s. bounded sequence of random variables P(|Xn| ≤
M) = 1, for some real number M . Assume that for some random variable X

one has Xn
P→ X. Show that also P(|X| ≤ M) = 1 and that for all p > 0 one

has Xn
Lp

→ X.

6.9 Let Z1, Z2, . . . be an iid sequence of standard normals and let Sn =
∑n

k=1 Zk.
Let a, b ∈ R and define

Xn = exp(aSn − bn).

(i) Express for every ε > 0 the probability P(Xn > ε) in the cumulative distri-
bution function of Z1 and deduce that Xn

P→ 0 iff b > 0.
(ii) Show that E exp(λZ1) = exp( 1

2λ2) for λ ∈ R and compute E Xp
n, (p > 0).

(iii) Show that Xn
Lp

→ 0 iff p < 2b/a2.
(iv) Show that Xn

a.s.→ 0 iff b > 0. Hint: Use Markov’s inequality for Xp
n.

6.10 Let α > 1 and βk = [αk]. Show that there exists a constant Cα such that
for all integers i on has∑

n:βn≥i

≤ Cα

i2
.

Show also that βk+1
βk

→ α.

6.11 Let xn be real numbers with xn → x. Let yn = 1
n

∑n
i=1 xi. Show that

yn → x. Take the ηn from the proof of theorem 5.2. Show that E ηn → µ.

6.12 Let X1, X2, . . . be a sequence of i.i.d. random variables with E X2
1 < ∞.

The aim is to show is that both Xn
L2

→ µ where µ = E X1 and Xn
a.s.→ µ.

(i) Show the L2 convergence.
(ii) Use Chebychev’s inequality to show that

∑
n P(|Xn2 − µ| > ε) < ∞ and

deduce form a well known lemma that Xn2
a.s.→ µ.

(iii) Show the almost sure convergence of Xn by ”filling the gaps”.

6.13 Let X1, X2, . . . be real random variables and g : R → R a uniformly
continuous function. Show that g(Xn) P→ g(X) if Xn

P→ X. What can be said
of the g(Xn) if Xn

a.s.→ X?
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6.14 Let X1, Y1, X2, Y2, . . . be an i.i.d. sequence whose members have a uniform
distribution on [0, 1] and let f : [0, 1] → [0, 1] be continuous. Define Zi =
1{f(Xi)>Yi}.
(i) Show that 1

n

∑n
i=1 Zi →

∫ 1

0
f(x) dx a.s.

(ii) Show that E ( 1
n

∑n
i=1 Zi −

∫ 1

0
f(x) dx)2 ≤ 1

4n .
(iii) Explain why these two results are useful.

6.15 If Xn
P→ X and g is a continuous function, then also g(Xn) P→ g(X). Show

this.

6.16 Assume that Xn
P→ X and Yn

P→ Y . Show that Xn + Yn
P→ X and

similar statements for products and ratios. What about convergence of the
pairs (Xn, Yn)? How do the results look for almost sure convergence instead of
convergence in probability.

6.17 Let X1, X2, . . . be nonnegative random variables such that Xn+1 ≥ Xn and
let X = lim Xn a.s. Then lim E Xn ≤ E X. Let X be a nonnegative random
variable and Xn = X 1{X≤n}, n ∈ N. Show also that E Xn → E X, when X has
density, or when X is discrete. (This is a special case of theorem A.1).

6.18 Prove for every random variable X the double inequalities

∞∑
n=1

P(|X| > n) ≤ E |X| ≤
∞∑

n=0

P(|X| > n)

and
∞∑

n=1

P(|X| ≥ n) ≤ E |X| ≤ 1 +
∞∑

n=1

P(|X| ≥ n).

A The monotone convergence theorem

Although familiarity with measure theory is not assumed in this course, occa-
sionally we need one of the main theorems that will be provided in any intro-
ductory course in measure theory. One that deals with interchanging limits and
expectation. For a proof we refer to a course in measure theory, although a part
of the proof of theorem A.1 is elementary (see exercise 6.17).

Theorem A.1 (Monotone convergence theorem) Let X1, X2, . . . be non-
negative random variables with property that Xn+1 ≥ Xn and let X = lim Xn.
Then lim E Xn = E X.
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