Exercises and Problems Brownse Beweging en Stochastische Differentiaalvergelijkingen II

- 1. KS, page 134, problem 2.5
- 2. KS, page 141, problem 2.12
- 3. Show the validity of (2.26) for simple processes X and Y by direct computation.
- 4. Let M be a continuous square integrable martingale and T a stopping time. Show that $\langle M^T \rangle = \langle M \rangle^T$. (For any process X and any stopping time we write $X_t^T = X_{T \wedge t}$.)
- 5. Let M be a continuous local martingale. Show that there exists a continuous increasing process such that the difference of M^2 and this process is a local martingale. Show that with zero initial condition this process is unique.
- 6. KS, page 147, problem 2.28. Do this first without Itô's formula, then also with.
- 7. KS, page 148, problem 2.29
- 8. Let M be a continuous local martingale and T a stopping time. Prove Lenglart's inequality: for all $\varepsilon > 0$ and $\delta > 0$ we have

$$\mathbb{P}(\sup_{t \leq T} |M_t| > \varepsilon) \leq \frac{\mathbb{E}(\delta \land \langle M \rangle_T)}{\varepsilon^2} + \mathbb{P}(\langle M \rangle_T \geq \delta).$$

- 9. Let M be a continuous square integrable martingale and T a finite stopping time. Prove that $\mathbb{P}(M_t = 0, \forall t \leq T) = 1$ if $\langle M \rangle_T = 0$ a.s.
- 10. Let M, N be continuous square integrable martingales and T a stopping time. Show the a.s. inequality

$$\langle M, N \rangle_T^2 \le \langle M \rangle_T \langle N \rangle_T$$

- 11. Let W be standard Brownian motion. Find a sequence of piecewise constant processes W^n such that $\mathbb{E} \int_0^T |W_t^n W_t|^2 dt \to 0$. Compute $\int_0^T W_t^n dW_t$ and show that it 'converges' (in what sense?) to $\frac{1}{2}(W_T^2 T)$, if we consider smaller and smaller intervals of constancy. Deduce that $\int_0^T W_t dW_t = \frac{1}{2}(W_T^2 T)$.
- 12. Prove Gronwall's inequality (KS problem 5.2.7)

- 13. KS problem 2.12. Argue as follows. Replace ξ with $\xi_k = \xi \mathbb{1}_{\{|\xi| \le k\}}$. Define solution X^k of the SDE with ξ replaced by ξ_k . Compare X^l with X^k for $l \ge k$ and show that $\max_{s \le T} |X_s^l X_s^k| \mathbb{1}_{\{|\xi| \le k\}} = 0$ a.s. (use the techniques of the proofs of theorem 2.5 and 2.9.). Then we can define a process X by $X_t(\omega) = X_t^k$, where we choose $k = k(\omega)$ such that $|\xi(\omega)| \le k$. Show that $X_t \mathbb{1}_{\{|\xi| \le k\}}$ is a solution of the SDE, and let $k \to \infty$.
- 14. KS problems 5.6.1 and 5.6.2 Find explicit solutions if $A(t) \equiv A$, $\sigma(t) = \sigma$ and $a(t) \equiv 0$. Find the parameters of the normal distribution of X_0 such that all X_t have the same distribution, if A has all its eigenvalues in the complex left half plane.
- 15. Show that Z(X) in (5.2) of page 191 is a local martingale.
- 16. KS Problem 3.5.6
- 17. KS Problem 3.5.18
- 18. KS Problem 3.5.20
- 19. Show that the process $\hat{X}_t(\omega) = X_t(\omega) \mathbb{1}_{\{s \ge t\}} \mathbb{1}_A(\omega)$ with $A \in \mathcal{F}_s$ is progressive (this is the process that I needed at the end of the proof of proposition 3.4.14 in KS, but notice that the proof that I gave differs from the one in the book).
- 20. Show the validity of (4.46), KS page 184, by a Monotone Class argument.
- 21. Let $L(\cdot, x)$ be the local time of a Brownian motion B at x. If $\{\mathcal{F}_t\}$ is the *augmented* filtration generated by |B|, show then that $L(\cdot, x)$ is adapted to this filtration. (This was needed at the end of example 5.3.5 in KS).
- 22. Determine for all of the following processes M the representation as a (constant plus a) stochastic integral (in terms of the Martingale Representation Theorem).
 - (a) $M_t = W_t^3 c \int_0^t W_s \, ds$ for a suitable constant c (which one?).
 - (b) For some fixed time T we have $M_t = \mathbb{E}[e^{W_T} | \mathcal{F}_t]$.
 - (c) For some fixed time T we take $M_t = \mathbb{E}[\int_0^T W_s \, ds |\mathcal{F}_t].$
 - (d) If v is the solution of the partial differential equation

$$\frac{\partial v}{\partial t}(t,x) + \frac{1}{2}\frac{\partial^2 v}{\partial x^2}(t,x) = 0,$$

then $M_t = v(t, W_t)$ is a martingale (show this by the Itô formula, you may assume enough integrability).