Opgaven kansrekening 2003-2004

1. Let $\left\{Y_{\gamma}: \gamma \in C\right\}$ be an arbitrary collection of random variables and $\left\{X_{n}: n \in \mathbb{N}\right\}$ be a countable collection of random variables, all defined on the same probability space.
(a) Show that $\sigma\left\{Y_{\gamma}: \gamma \in C\right\}=\sigma\left\{Y_{\gamma}^{-1}(B): \gamma \in C, B \in \mathcal{B}\right\}$.
(b) Let $\mathcal{X}_{n}=\sigma\left\{X_{1}, \ldots, X_{n}\right\}(n \in \mathbb{N})$ and $\mathcal{A}=\bigcup_{n=1}^{\infty} \mathcal{X}_{n}$. Show that \mathcal{A} is an algebra and that $\sigma(\mathcal{A})=\sigma\left\{X_{n}: n \in \mathbb{N}\right\}$.
2. Let \mathcal{F} be a σ-algebra on Ω with the property that for all $F \in \mathcal{F}$ it holds that $\mathbb{P}(F) \in\{0,1\}$. Let $X: \Omega \rightarrow \mathbb{R}$ be \mathcal{F}-measurable. Show that for some $c \in \mathbb{R}$ one has $\mathbb{P}(X=c)=1$. (Hint: $\mathbb{P}(X \leq x) \in\{0,1\}$ for all x.)
3. Let X be a (real) random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define $\Lambda(B)=\mathbb{P}\left(X^{-1}[B]\right)$ for every $B \in \mathcal{B}(\mathbb{R})$ and $F(x)=\Lambda((-\infty, x])$, $x \in \mathbb{R}$. Prove the following.
(a) Λ is a probability measure on $\mathcal{B}(\mathbb{R})$.
(b) F is increasing with $\lim _{x \rightarrow \infty} F(x)=1, \lim _{x \rightarrow-\infty} F(x)=0$ and F is rightcontinuous.
(c) For every $d \in \mathbb{R}$ we have $\mathbb{P}(X=d)=F(d)-F(d-)$ (where $F(d-)=$ $\left.\lim _{x \uparrow d} F(x)\right)$. Show that the set $D=\{d \in \mathbb{R}: \mathbb{P}(X=d)>0\}$ is at most countable.
4. If c is convex on a convex set $G \subset \mathbb{R}$, then for all $u<v<w$ in G one has

$$
\frac{c(v)-c(u)}{v-u} \leq \frac{c(w)-c(v)}{w-v}
$$

Show this inequality. Give an example of a set G and a convex function on it that is not continuous.
5. Let $p \geq 1$ and show that for all $x, y \in \mathbb{R}$ one has $|x+y|^{p} \leq 2^{p-1}\left(|x|^{p}+|y|^{q}\right)$. (Hint: $x \mapsto x^{p}$ is convex on $[0, \infty)$.)
6. Let $X, Y \in \mathcal{L}^{2}(\Omega, \mathcal{F}, \mathbb{P})$. Show that $X Y \in \mathcal{L}^{1}(\Omega, \mathcal{F}, \mathbb{P})$ and that the (Cauchy-)Schwartz inequality

$$
|\mathbb{E} X Y| \leq\left(\mathbb{E} X^{2} \mathbb{E} Y^{2}\right)^{1 / 2}
$$

holds. (Hint: Use that $\mathbb{E}(X+a Y)^{2} \geq 0$, for all $a \in \mathbb{R}$.)
7. If Z_{1}, Z_{2}, \ldots is a sequence of nonnegative random variables, then $\mathbb{E} \sum_{k=1}^{\infty} Z_{k}=$ $\sum_{k=1}^{\infty} \mathbb{E} Z_{k}$. Show that this follows from Fubini's theorem.
8. Show that $\mathbb{E} X^{2} 1_{\{|X|>\varepsilon\}} \leq \mathbb{E}|X|^{2+\delta} \varepsilon^{-\delta}$ for all $\delta, \varepsilon>0$.
9. Let $F, G: \mathbb{R} \rightarrow \mathbb{R}$ be nondecreasing and right-continuous. Use Fubini's theorem to show the integration by parts formula, valid for all $a<b$,

$$
F(b) G(b)-F(a) G(a)=\int_{(a, b]} F(s-) d G(s)+\int_{(a, b]} G(s) d F(s)
$$

Hint: integrate $1_{(a, b]^{2}}$ and split the square into a lower and an upper triangle.
10. Let F be the distribution function of a nonnegative random variable X and assume that $\mathbb{E} X^{\alpha}<\infty$ for some $\alpha>0$. Use exercise 9 to show that

$$
\mathbb{E} X^{\alpha}=\alpha \int_{0}^{\infty} x^{\alpha-1}(1-F(x)) d x
$$

11. Let X be a random variable and let $\Pi(X)=\left\{X^{-1}(-\infty, x]: x \in \mathbb{R}\right\}$. Show that $\Pi(X)$ is a π-system that generates $\sigma(X)$.
12. Let the vector of random variables (X, Y) have a joint probability density function f. Let f_{X} and f_{Y} be the (marginal) probability density functions of X and Y respectively. Show that X and Y are independent iff $f(x, y)=$ $f_{X}(x) f_{Y}(y)$ for all x, y except in a set of Leb \times Leb-measure zero.
13. Let X, X_{1}, X_{2}, \ldots be random variables defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show that the set $\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}$ is measurable.
14. Suppose that the real random variables X_{1}, X_{2}, \ldots are defined on a common probability space and that they are iid with a uniform distribution on $[0,1]$. Let $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$.
(a) Show that $M_{n} \xrightarrow{P} 1$.
(b) Show that $M_{n} \xrightarrow{\text { a.s. }} 1$.
15. Suppose that there are two real random variables X and X^{\prime} such that a sequence X_{1}, X_{2}, \ldots converges in probability to both X and X^{\prime}. Show that $\mathbb{P}\left(X=X^{\prime}\right)=1$. Same question for almost sure convergence.
16. Let real random variables X_{1}, X_{2}, \ldots be defined on a common probability space. Prove that ' $X_{n} \xrightarrow{P} X^{\prime}$ ' is equivalent with 'every subsequence of (X_{n}) has a further subsequence that converges a.s. to X^{\prime} '.
17. Give an example of a sequence of random variables that converge in probability, but not almost surely.
18. Let X_{1}, X_{2}, \ldots be an a.s. bounded sequence of random variables $\mathbb{P}\left(\left|X_{n}\right| \leq\right.$ $M)=1$, for some real number M. Assume that for some random variable X one has $X_{n} \xrightarrow{P} X$. Show that also $\mathbb{P}(|X| \leq M)=1$ and that for all $p \geq 1$ one has $X_{n} \xrightarrow{\mathcal{L}^{p}} X$.
19. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables with $\mathbb{E} X_{1}^{2}<\infty$. The aim is to show is that both $\bar{X}_{n} \xrightarrow{\mathcal{L}^{2}} \mu$ where $\mu=\mathbb{E} X_{1}$ and $\bar{X}_{n} \xrightarrow{\text { a.s. }} \mu$.
(a) Show the \mathcal{L}^{2} convergence.
(b) Use Chebychev's inequality to show that $\sum_{n} \mathbb{P}\left(\left|\bar{X}_{n^{2}}-\mu\right|>\varepsilon\right)<\infty$ and deduce from a wellknown lemma that $\bar{X}_{n^{2}} \xrightarrow{\text { a.s. }} \mu$.
(c) Show the almost sure convergence of \bar{X}_{n} by "filling the gaps".
20. Let $\alpha>1$ and $\beta_{k}=\left[\alpha^{k}\right]$. Show that
(a) $\beta_{k} \geq \alpha^{k}\left(1-\frac{1}{\alpha}\right)$
(b) $\sum_{k=m}^{\infty} \frac{1}{\beta_{k}^{2}} \leq\left(\frac{\alpha}{\alpha-1}\right)^{4} \frac{1}{\beta_{m}^{2}}$.
(c) $\frac{\beta_{k+1}}{\beta_{k}} \rightarrow \alpha$.
21. Let X_{1}, X_{2}, \ldots be real random variables and $g: \mathbb{R} \rightarrow \mathbb{R}$ a uniformly continuous function. Show that $g\left(X_{n}\right) \xrightarrow{P} g(X)$ if $X_{n} \xrightarrow{P} X$. What can be said of the $g\left(X_{n}\right)$ if $X_{n} \xrightarrow{\text { a.s. }} X$?
22. Let x_{n} be real numbers with $x_{n} \rightarrow x$. Let $y_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$. Show that $y_{n} \rightarrow x$.
23. Let $X_{1}, Y_{1}, X_{2}, Y_{2}, \ldots$ be an i.i.d. sequence whose members have a uniform distribution on $[0,1]$ and let $f:[0,1] \rightarrow[0,1]$ be continuous. Define $Z_{i}=1_{\left\{f\left(X_{i}\right)>Y_{i}\right\}}$.
(a) Show that $\frac{1}{n} \sum_{i=1}^{n} Z_{i} \rightarrow \int_{0}^{1} f(x) d x$ a.s.
(b) Show that $\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\int_{0}^{1} f(x) d x\right)^{2} \leq \frac{1}{4 n}$.
(c) Explain why these two results are useful.
24. If $X_{n} \xrightarrow{P} X$ and g is a continuous function, then also $g\left(X_{n}\right) \xrightarrow{P} g(X)$. Show this.
25. Let X be a random variable with $\mathbb{E} X^{2}<\infty$ and let $\phi(\theta)=\mathbb{E} e^{i \theta X}$. Show that $\phi^{\prime \prime}(0)=-\mathbb{E} X^{2}$.
26. Let X be a random variable with values in \mathbb{Z} and ϕ its characteristic function. Show that $\mathbb{P}(X=k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \phi(\theta) e^{-k i \theta} d \theta$ for $k \in \mathbb{Z}$. Is $\int_{\mathbb{R}}|\phi(\theta)| d \theta<\infty ?$
27. Verify the formulas for the characteristic functions in each of the following cases.
(a) $\phi_{N(0,1)}(\theta)=\exp \left(-\frac{1}{2} \theta^{2}\right)$
(b) $\phi_{N\left(\mu, \sigma^{2}\right)}(\theta)=\exp \left(i \theta \mu-\frac{1}{2} \sigma^{2} \theta^{2}\right)$
(c) If X has an exponential distribution with parameter λ, then $\phi_{X}(\theta)=$ $\lambda /(\lambda-i \theta)$.
(d) If X has a Cauchy distribution, then $\phi_{X}(\theta)=\exp (-|\theta|)$.
28. Read the proof of the Helly-Bray lemma. Show that the function F defined on page 184 is (a) right-continuous and that (b) $\lim F_{n_{i}}(x)=F(x)$ for all x where F is continuous. Hint: Fix x and $\varepsilon>0$. Then there is $c \in \mathbb{Q}$ such that $F(x) \leq H(c)<F(x)+\varepsilon$. If F is continuous at x, then there exists also $c^{\prime}<c \in \mathbb{Q}$ and $y<x$ such that $F(x)-\varepsilon \leq F(y) \leq H\left(c^{\prime}\right) \leq H(c)$.
29. Let $\left(F_{n}\right)$ be a sequence of distribution functions on \mathbb{R} such that $\lim _{n \rightarrow \infty} F_{n}(x)=$ $F(x)$ for all x where the distribution function F is continuous. Show that $\lim _{n \rightarrow \infty} \int_{\mathbb{R}} h d F_{n}=\int_{\mathbb{R}} h d F$ for all bounded and continuous $h: \mathbb{R} \rightarrow \mathbb{R}$.
30. Let X, X_{1}, X_{2}, \ldots be real-valued random variables with $F_{X_{n}} \xrightarrow{w} F_{X}$. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and put $Y=h(X)$ and $Y_{n}=h\left(X_{n}\right)$ for every $n \in \mathbb{N}$. Show that $F_{Y_{n}} \xrightarrow{w} F_{Y}$.
31. Suppose that X, X_{1}, X_{2}, \ldots are real valued random variables, defined on one the same probability space, with $X_{n} \rightarrow X$ in probability. Show that $F_{X_{n}} \xrightarrow{w} F_{X}$. Hint: use exercise 16.
32. Let $\mu, \mu_{1}, \mu_{2}, \ldots$ be probability measures on \mathbb{R} and suppose that for any open $G \subset \mathbb{R}$ that $\lim \inf \mu_{n}(G) \geq \mu(G)$. Then $\mu_{n} \rightarrow \mu$.Show this as follows. Let h be a bounded continuous function on \mathbb{R}. Assume w.l.og. that $0 \leq h<1$. Let $k \in \mathbb{N}$ and define $F_{i}=\left\{x: \frac{i-1}{k} \leq h(x)<\frac{i}{k}\right\}$. Split $\mu(h)$ into integrals over the F_{i}. Then

$$
\frac{1}{k} \sum_{i=1}^{k} \mu\left(h>\frac{i}{k}\right) \leq \mu(h) \leq \frac{1}{k} \sum_{i=1}^{k} \mu\left(h>\frac{i-1}{k}\right)
$$

and something similar for μ_{n}. Deduce that $\liminf \mu_{n}(h) \geq \mu(h)$ and complete the proof with the aid of an inequality for $\lim \sup \mu_{n}(h)$.
33. Suppose that the real random variables X, X_{1}, X_{2}, \ldots are defined on a common probability space and that $F_{X_{n}} \xrightarrow{w} F_{X}$. Suppose that $X=x_{0}$ a.s. for some $x_{0} \in \mathbb{R}$. Show that $X_{n} \rightarrow X$ in probability.
34. Let X_{n} have a $\operatorname{Bin}(n, \lambda / n)$ distribution (for $n>\lambda$). Show that $X_{n} \xrightarrow{w} X$, where X has a Poisson (λ) distribution.
35. Exercise 18.3
36. Show the following two statements. If $X_{n} \xrightarrow{\text { a.s. }} X$ and $Y_{n} \xrightarrow{\text { a.s. }} Y$, then $X_{n}+Y_{n} \xrightarrow{\text { a.s. }} X+Y$. If $X_{n} \xrightarrow{P} X$ and $Y_{n} \xrightarrow{P} Y$, then $X_{n}+Y_{n} \xrightarrow{P} X+Y$.
37. Show that $\sum_{n=1}^{\infty} \mathbb{P}(|X| \geq n) \leq \mathbb{E}|X| \leq 1+\sum_{n=1}^{\infty} \mathbb{P}(|X| \geq n)$.
38. Let X_{1}, X_{2}, \ldots be an iid sequence of random variables with a (common) Cauchy distribution. Find the distribution of the sample means $\bar{X}_{n}=$ $\sum_{i=1}^{n} X_{i} / n$ (use characteristic functions). Do the \bar{X}_{n} obey the strong or weak law of large numbers? If so, what is the limit?
39. Let N have a Poisson (λ) distribution, Y_{1}, Y_{2}, \ldots be an iid sequence, independent of N. Show that $\phi_{X}=\exp \left(\lambda\left(\phi_{Y}-1\right)\right)$.

