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1. Let {Yγ : γ ∈ C} be an arbitrary collection of random variables and
{Xn : n ∈ N} be a countable collection of random variables, all defined on
the same probability space.

(a) Show that σ{Yγ : γ ∈ C} = σ{Y −1
γ (B) : γ ∈ C,B ∈ B}.

(b) Let Xn = σ{X1, . . . , Xn} (n ∈ N) and A =
⋃∞
n=1 Xn. Show that A

is an algebra and that σ(A) = σ{Xn : n ∈ N}.

2. Let F be a σ-algebra on Ω with the property that for all F ∈ F it holds
that P(F ) ∈ {0, 1}. Let X : Ω→ R be F-measurable. Show that for some
c ∈ R one has P(X = c) = 1. (Hint: P(X ≤ x) ∈ {0, 1} for all x.)

3. Let X be a (real) random variable defined on a probability space (Ω,F ,P).
Define Λ(B) = P(X−1[B]) for every B ∈ B(R) and F (x) = Λ((−∞, x]),
x ∈ R. Prove the following.

(a) Λ is a probability measure on B(R).
(b) F is increasing with limx→∞ F (x) = 1, limx→−∞ F (x) = 0 and F is

rightcontinuous.
(c) For every d ∈ R we have P(X = d) = F (d)−F (d−) (where F (d−) =

limx↑d F (x)). Show that the set D = {d ∈ R : P(X = d) > 0} is at
most countable.

4. If c is convex on a convex set G ⊂ R, then for all u < v < w in G one has

c(v)− c(u)
v − u

≤ c(w)− c(v)
w − v

.

Show this inequality. Give an example of a set G and a convex function
on it that is not continuous.

5. Let p ≥ 1 and show that for all x, y ∈ R one has |x+y|p ≤ 2p−1(|x|p+|y|q).
(Hint: x 7→ xp is convex on [0,∞).)

6. Let X,Y ∈ L2(Ω,F ,P). Show that XY ∈ L1(Ω,F ,P) and that the
(Cauchy-)Schwartz inequality

|EXY | ≤
(
EX2EY 2

)1/2
holds. (Hint: Use that E(X + aY )2 ≥ 0, for all a ∈ R.)

7. If Z1, Z2, . . . is a sequence of nonnegative random variables, then E
∑∞
k=1 Zk =∑∞

k=1 EZk. Show that this follows from Fubini’s theorem.

8. Show that EX21{|X|>ε} ≤ E |X|2+δε−δ for all δ, ε > 0.

9. Let F,G : R → R be nondecreasing and right-continuous. Use Fubini’s
theorem to show the integration by parts formula, valid for all a < b,

F (b)G(b)− F (a)G(a) =
∫

(a,b]

F (s−) dG(s) +
∫

(a,b]

G(s) dF (s).
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Hint: integrate 1(a,b]2 and split the square into a lower and an upper
triangle.

10. Let F be the distribution function of a nonnegative random variable X
and assume that EXα <∞ for some α > 0. Use exercise 9 to show that

EXα = α

∫ ∞
0

xα−1(1− F (x)) dx.

11. Let X be a random variable and let Π(X) = {X−1(−∞, x] : x ∈ R}. Show
that Π(X) is a π-system that generates σ(X).

12. Let the vector of random variables (X,Y ) have a joint probability density
function f . Let fX and fY be the (marginal) probability density functions
of X and Y respectively. Show that X and Y are independent iff f(x, y) =
fX(x)fY (y) for all x, y except in a set of Leb×Leb-measure zero.

13. Let X,X1, X2, . . . be random variables defined on some probability space
(Ω,F ,P). Show that the set {ω : limn→∞Xn(ω) = X(ω)} is measurable.

14. Suppose that the real random variables X1, X2, . . . are defined on a com-
mon probability space and that they are iid with a uniform distribution
on [0, 1]. Let Mn = max{X1, . . . ,Xn}.

(a) Show that Mn
P→ 1.

(b) Show that Mn
a.s.→ 1.

15. Suppose that there are two real random variables X and X ′ such that a
sequence X1,X2, . . . converges in probability to both X and X ′. Show
that P(X = X ′) = 1. Same question for almost sure convergence.

16. Let real random variables X1, X2, . . . be defined on a common probability
space. Prove that ‘Xn

P→ X’ is equivalent with ‘every subsequence of (Xn)
has a further subsequence that converges a.s. to X’.

17. Give an example of a sequence of random variables that converge in pro-
bability, but not almost surely.

18. Let X1,X2, . . . be an a.s. bounded sequence of random variables P(|Xn| ≤
M) = 1, for some real number M . Assume that for some random variable
X one has Xn

P→ X. Show that also P(|X| ≤ M) = 1 and that for all

p ≥ 1 one has Xn
Lp

→ X.

19. Let X1, X2, . . . be a sequence of i.i.d. random variables with EX2
1 < ∞.

The aim is to show is that both Xn
L2

→ µ where µ = EX1 and Xn
a.s.→ µ.

(a) Show the L2 convergence.
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(b) Use Chebychev’s inequality to show that
∑
n P(|Xn2 − µ| > ε) <∞

and deduce from a wellknown lemma that Xn2
a.s.→ µ.

(c) Show the almost sure convergence of Xn by ”filling the gaps”.

20. Let α > 1 and βk = [αk]. Show that

(a) βk ≥ αk(1− 1
α )

(b)
∑∞
k=m

1
β2

k
≤ ( α

α−1 )4 1
β2

m
.

(c) βk+1
βk
→ α.

21. Let X1, X2, . . . be real random variables and g : R → R a uniformly
continuous function. Show that g(Xn) P→ g(X) if Xn

P→ X. What can be
said of the g(Xn) if Xn

a.s.→ X?

22. Let xn be real numbers with xn → x. Let yn = 1
n

∑n
i=1 xi. Show that

yn → x.

23. Let X1, Y1, X2, Y2, . . . be an i.i.d. sequence whose members have a uniform
distribution on [0, 1] and let f : [0, 1] → [0, 1] be continuous. Define
Zi = 1{f(Xi)>Yi}.

(a) Show that 1
n

∑n
i=1 Zi →

∫ 1

0
f(x) dx a.s.

(b) Show that E ( 1
n

∑n
i=1 Zi −

∫ 1

0
f(x) dx)2 ≤ 1

4n .

(c) Explain why these two results are useful.

24. If Xn
P→ X and g is a continuous function, then also g(Xn) P→ g(X). Show

this.

25. Let X be a random variable with EX2 <∞ and let φ(θ) = E eiθX . Show
that φ′′(0) = −EX2.

26. Let X be a random variable with values in Z and φ its characteristic
function. Show that P(X = k) = 1

2π

∫ π
−π φ(θ)e−kiθ dθ for k ∈ Z. Is∫

R
|φ(θ)| dθ <∞?

27. Verify the formulas for the characteristic functions in each of the following
cases.

(a) φN(0,1)(θ) = exp(−1
2θ

2)

(b) φN(µ,σ2)(θ) = exp(iθµ− 1
2σ

2θ2)

(c) If X has an exponential distribution with parameter λ, then φX(θ) =
λ/(λ− iθ).

(d) If X has a Cauchy distribution, then φX(θ) = exp(−|θ|).
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28. Read the proof of the Helly-Bray lemma. Show that the function F defined
on page 184 is (a) right-continuous and that (b) limFni(x) = F (x) for all
x where F is continuous. Hint: Fix x and ε > 0. Then there is c ∈ Q such
that F (x) ≤ H(c) < F (x) + ε. If F is continuous at x, then there exists
also c′ < c ∈ Q and y < x such that F (x)− ε ≤ F (y) ≤ H(c′) ≤ H(c).

29. Let (Fn) be a sequence of distribution functions on R such that limn→∞ Fn(x) =
F (x) for all x where the distribution function F is continuous. Show that
limn→∞

∫
R
h dFn =

∫
R
h dF for all bounded and continuous h : R→ R.

30. Let X,X1,X2, . . . be real-valued random variables with FXn

w→ FX . Let
h : R → R be continuous and put Y = h(X) and Yn = h(Xn) for every
n ∈ N. Show that FYn

w→ FY .

31. Suppose that X,X1, X2, . . . are real valued random variables, defined on
one the same probability space, with Xn → X in probability. Show that
FXn

w→ FX . Hint: use exercise 16.

32. Let µ, µ1, µ2, . . . be probability measures on R and suppose that for any
open G ⊂ R that lim inf µn(G) ≥ µ(G). Then µn → µ.Show this as
follows. Let h be a bounded continuous function on R. Assume w.l.og.
that 0 ≤ h < 1. Let k ∈ N and define Fi = {x : i−1

k ≤ h(x) < i
k}. Split

µ(h) into integrals over the Fi. Then

1
k

k∑
i=1

µ(h >
i

k
) ≤ µ(h) ≤ 1

k

k∑
i=1

µ(h >
i− 1
k

)

and something similar for µn. Deduce that lim inf µn(h) ≥ µ(h) and
complete the proof with the aid of an inequality for lim supµn(h).

33. Suppose that the real random variables X,X1,X2, . . . are defined on a
common probability space and that FXn

w→ FX . Suppose that X = x0

a.s. for some x0 ∈ R. Show that Xn → X in probability.

34. Let Xn have a Bin(n, λ/n) distribution (for n > λ). Show that Xn
w→ X,

where X has a Poisson(λ) distribution.

35. Exercise 18.3

36. Show the following two statements. If Xn
a.s.→ X and Yn

a.s.→ Y , then
Xn + Yn

a.s.→ X + Y . If Xn
P→ X and Yn

P→ Y , then Xn + Yn
P→ X + Y .

37. Show that
∑∞
n=1 P(|X| ≥ n) ≤ E |X| ≤ 1 +

∑∞
n=1 P(|X| ≥ n).

38. Let X1, X2, . . . be an iid sequence of random variables with a (common)
Cauchy distribution. Find the distribution of the sample means Xn =∑n
i=1Xi/n (use characteristic functions). Do the Xn obey the strong or

weak law of large numbers? If so, what is the limit?
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39. Let N have a Poisson(λ) distribution, Y1, Y2, . . . be an iid sequence, inde-
pendent of N . Show that φX = exp(λ(φY − 1)).

5


