Opgaven kansrekening 2003-2004

- 1. Let $\{Y_{\gamma} : \gamma \in C\}$ be an arbitrary collection of random variables and $\{X_n : n \in \mathbb{N}\}$ be a countable collection of random variables, all defined on the same probability space.
 - (a) Show that $\sigma\{Y_{\gamma}: \gamma \in C\} = \sigma\{Y_{\gamma}^{-1}(B): \gamma \in C, B \in \mathcal{B}\}.$
 - (b) Let $\mathcal{X}_n = \sigma\{X_1, \ldots, X_n\}$ $(n \in \mathbb{N})$ and $\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{X}_n$. Show that \mathcal{A} is an algebra and that $\sigma(\mathcal{A}) = \sigma\{X_n : n \in \mathbb{N}\}$.
- 2. Let \mathcal{F} be a σ -algebra on Ω with the property that for all $F \in \mathcal{F}$ it holds that $\mathbb{P}(F) \in \{0, 1\}$. Let $X : \Omega \to \mathbb{R}$ be \mathcal{F} -measurable. Show that for some $c \in \mathbb{R}$ one has $\mathbb{P}(X = c) = 1$. (*Hint*: $\mathbb{P}(X \le x) \in \{0, 1\}$ for all x.)
- 3. Let X be a (real) random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define $\Lambda(B) = \mathbb{P}(X^{-1}[B])$ for every $B \in \mathcal{B}(\mathbb{R})$ and $F(x) = \Lambda((-\infty, x])$, $x \in \mathbb{R}$. Prove the following.
 - (a) Λ is a probability measure on $\mathcal{B}(\mathbb{R})$.
 - (b) F is increasing with $\lim_{x\to\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$ and F is right continuous.
 - (c) For every $d \in \mathbb{R}$ we have $\mathbb{P}(X = d) = F(d) F(d-)$ (where $F(d-) = \lim_{x \uparrow d} F(x)$). Show that the set $D = \{d \in \mathbb{R} : \mathbb{P}(X = d) > 0\}$ is at most countable.
- 4. If c is convex on a convex set $G \subset \mathbb{R}$, then for all u < v < w in G one has

$$\frac{c(v) - c(u)}{v - u} \le \frac{c(w) - c(v)}{w - v}$$

Show this inequality. Give an example of a set G and a convex function on it that is not continuous.

- 5. Let $p \ge 1$ and show that for all $x, y \in \mathbb{R}$ one has $|x+y|^p \le 2^{p-1}(|x|^p+|y|^q)$. (*Hint*: $x \mapsto x^p$ is convex on $[0, \infty)$.)
- 6. Let $X, Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Show that $XY \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and that the (Cauchy-)Schwartz inequality

$$|\mathbb{E}XY| \le \left(\mathbb{E}X^2 \mathbb{E}Y^2\right)^{1/2}$$

holds. (*Hint*: Use that $\mathbb{E}(X + aY)^2 \ge 0$, for all $a \in \mathbb{R}$.)

- 7. If Z_1, Z_2, \ldots is a sequence of nonnegative random variables, then $\mathbb{E} \sum_{k=1}^{\infty} Z_k = \sum_{k=1}^{\infty} \mathbb{E} Z_k$. Show that this follows from Fubini's theorem.
- 8. Show that $\mathbb{E} X^2 \mathbb{1}_{\{|X| > \varepsilon\}} \leq \mathbb{E} |X|^{2+\delta} \varepsilon^{-\delta}$ for all $\delta, \varepsilon > 0$.
- 9. Let $F, G : \mathbb{R} \to \mathbb{R}$ be nondecreasing and right-continuous. Use Fubini's theorem to show the integration by parts formula, valid for all a < b,

$$F(b)G(b) - F(a)G(a) = \int_{(a,b]} F(s-) \, dG(s) + \int_{(a,b]} G(s) \, dF(s)$$

Hint: integrate $1_{(a,b]^2}$ and split the square into a lower and an upper triangle.

10. Let F be the distribution function of a nonnegative random variable X and assume that $\mathbb{E} X^{\alpha} < \infty$ for some $\alpha > 0$. Use exercise 9 to show that

$$\mathbb{E} X^{\alpha} = \alpha \int_0^\infty x^{\alpha - 1} (1 - F(x)) \, dx$$

- 11. Let X be a random variable and let $\Pi(X) = \{X^{-1}(-\infty, x] : x \in \mathbb{R}\}$. Show that $\Pi(X)$ is a π -system that generates $\sigma(X)$.
- 12. Let the vector of random variables (X, Y) have a joint probability density function f. Let f_X and f_Y be the (marginal) probability density functions of X and Y respectively. Show that X and Y are independent iff f(x, y) = $f_X(x)f_Y(y)$ for all x, y except in a set of Leb×Leb-measure zero.
- 13. Let X, X_1, X_2, \ldots be random variables defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show that the set $\{\omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}$ is measurable.
- 14. Suppose that the real random variables X_1, X_2, \ldots are defined on a common probability space and that they are *iid* with a uniform distribution on [0, 1]. Let $M_n = \max\{X_1, \ldots, X_n\}$.
 - (a) Show that $M_n \xrightarrow{P} 1$.
 - (b) Show that $M_n \stackrel{a.s.}{\rightarrow} 1$.
- 15. Suppose that there are two real random variables X and X' such that a sequence X_1, X_2, \ldots converges in probability to both X and X'. Show that $\mathbb{P}(X = X') = 1$. Same question for almost sure convergence.
- 16. Let real random variables X_1, X_2, \ldots be defined on a common probability space. Prove that $X_n \xrightarrow{P} X'$ is equivalent with 'every subsequence of (X_n) has a further subsequence that converges a.s. to X'.
- 17. Give an example of a sequence of random variables that converge in probability, but not almost surely.
- 18. Let X_1, X_2, \ldots be an a.s. bounded sequence of random variables $\mathbb{P}(|X_n| \le M) = 1$, for some real number M. Assume that for some random variable X one has $X_n \xrightarrow{P} X$. Show that also $\mathbb{P}(|X| \le M) = 1$ and that for all $p \ge 1$ one has $X_n \xrightarrow{\mathcal{L}^p} X$.
- 19. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with $\mathbb{E} X_1^2 < \infty$. The aim is to show is that both $\overline{X}_n \xrightarrow{\mathcal{L}^2} \mu$ where $\mu = \mathbb{E} X_1$ and $\overline{X}_n \xrightarrow{a.s.} \mu$.
 - (a) Show the \mathcal{L}^2 convergence.

- (b) Use Chebychev's inequality to show that $\sum_{n} \mathbb{P}(|\overline{X}_{n^2} \mu| > \varepsilon) < \infty$ and deduce from a wellknown lemma that $\overline{X}_{n^2} \stackrel{a.s.}{\to} \mu$.
- (c) Show the almost sure convergence of \overline{X}_n by "filling the gaps".
- 20. Let $\alpha > 1$ and $\beta_k = [\alpha^k]$. Show that
 - (a) $\beta_k \ge \alpha^k (1 \frac{1}{\alpha})$ (b) $\sum_{k=m}^{\infty} \frac{1}{\beta_k^2} \le (\frac{\alpha}{\alpha - 1})^4 \frac{1}{\beta_m^2}$. (c) $\frac{\beta_{k+1}}{\beta_k} \to \alpha$.
- 21. Let X_1, X_2, \ldots be real random variables and $g : \mathbb{R} \to \mathbb{R}$ a uniformly continuous function. Show that $g(X_n) \xrightarrow{P} g(X)$ if $X_n \xrightarrow{P} X$. What can be said of the $g(X_n)$ if $X_n \xrightarrow{a.s.} X$?
- 22. Let x_n be real numbers with $x_n \to x$. Let $y_n = \frac{1}{n} \sum_{i=1}^n x_i$. Show that $y_n \to x$.
- 23. Let $X_1, Y_1, X_2, Y_2, \ldots$ be an i.i.d. sequence whose members have a uniform distribution on [0,1] and let $f : [0,1] \to [0,1]$ be continuous. Define $Z_i = 1_{\{f(X_i) > Y_i\}}$.
 - (a) Show that $\frac{1}{n} \sum_{i=1}^{n} Z_i \to \int_0^1 f(x) dx$ a.s.
 - (b) Show that $\mathbb{E}(\frac{1}{n}\sum_{i=1}^{n}Z_{i} \int_{0}^{1}f(x)\,dx)^{2} \leq \frac{1}{4n}$.
 - (c) Explain why these two results are useful.
- 24. If $X_n \xrightarrow{P} X$ and g is a continuous function, then also $g(X_n) \xrightarrow{P} g(X)$. Show this.
- 25. Let X be a random variable with $\mathbb{E} X^2 < \infty$ and let $\phi(\theta) = \mathbb{E} e^{i\theta X}$. Show that $\phi''(0) = -\mathbb{E} X^2$.
- 26. Let X be a random variable with values in \mathbb{Z} and ϕ its characteristic function. Show that $\mathbb{P}(X = k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\theta) e^{-ki\theta} d\theta$ for $k \in \mathbb{Z}$. Is $\int_{\mathbb{R}} |\phi(\theta)| d\theta < \infty$?
- 27. Verify the formulas for the characteristic functions in each of the following cases.
 - (a) $\phi_{N(0,1)}(\theta) = \exp(-\frac{1}{2}\theta^2)$
 - (b) $\phi_{N(\mu,\sigma^2)}(\theta) = \exp(i\theta\mu \frac{1}{2}\sigma^2\theta^2)$
 - (c) If X has an exponential distribution with parameter λ , then $\phi_X(\theta) = \lambda/(\lambda i\theta)$.
 - (d) If X has a Cauchy distribution, then $\phi_X(\theta) = \exp(-|\theta|)$.

- 28. Read the proof of the Helly-Bray lemma. Show that the function F defined on page 184 is (a) right-continuous and that (b) $\lim F_{n_i}(x) = F(x)$ for all x where F is continuous. Hint: Fix x and $\varepsilon > 0$. Then there is $c \in \mathbb{Q}$ such that $F(x) \leq H(c) < F(x) + \varepsilon$. If F is continuous at x, then there exists also $c' < c \in \mathbb{Q}$ and y < x such that $F(x) - \varepsilon \leq F(y) \leq H(c') \leq H(c)$.
- 29. Let (F_n) be a sequence of distribution functions on \mathbb{R} such that $\lim_{n\to\infty} F_n(x) = F(x)$ for all x where the distribution function F is continuous. Show that $\lim_{n\to\infty} \int_{\mathbb{R}} h \, dF_n = \int_{\mathbb{R}} h \, dF$ for all bounded and continuous $h : \mathbb{R} \to \mathbb{R}$.
- 30. Let X, X_1, X_2, \ldots be real-valued random variables with $F_{X_n} \xrightarrow{w} F_X$. Let $h : \mathbb{R} \to \mathbb{R}$ be continuous and put Y = h(X) and $Y_n = h(X_n)$ for every $n \in \mathbb{N}$. Show that $F_{Y_n} \xrightarrow{w} F_Y$.
- 31. Suppose that X, X_1, X_2, \ldots are real valued random variables, defined on one the same probability space, with $X_n \to X$ in probability. Show that $F_{X_n} \xrightarrow{w} F_X$. Hint: use exercise 16.
- 32. Let $\mu, \mu_1, \mu_2, \ldots$ be probability measures on \mathbb{R} and suppose that for any open $G \subset \mathbb{R}$ that $\liminf \mu_n(G) \ge \mu(G)$. Then $\mu_n \to \mu$. Show this as follows. Let h be a bounded continuous function on \mathbb{R} . Assume w.l.og. that $0 \le h < 1$. Let $k \in \mathbb{N}$ and define $F_i = \{x : \frac{i-1}{k} \le h(x) < \frac{i}{k}\}$. Split $\mu(h)$ into integrals over the F_i . Then

$$\frac{1}{k}\sum_{i=1}^k \mu(h > \frac{i}{k}) \le \mu(h) \le \frac{1}{k}\sum_{i=1}^k \mu(h > \frac{i-1}{k})$$

and something similar for μ_n . Deduce that $\liminf \mu_n(h) \ge \mu(h)$ and complete the proof with the aid of an inequality for $\limsup \mu_n(h)$.

- 33. Suppose that the real random variables X, X_1, X_2, \ldots are defined on a common probability space and that $F_{X_n} \xrightarrow{w} F_X$. Suppose that $X = x_0$ a.s. for some $x_0 \in \mathbb{R}$. Show that $X_n \to X$ in probability.
- 34. Let X_n have a Bin $(n, \lambda/n)$ distribution (for $n > \lambda$). Show that $X_n \xrightarrow{w} X$, where X has a Poisson (λ) distribution.
- 35. Exercise 18.3
- 36. Show the following two statements. If $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$, then $X_n + Y_n \xrightarrow{a.s.} X + Y$. If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then $X_n + Y_n \xrightarrow{P} X + Y$.
- 37. Show that $\sum_{n=1}^{\infty} \mathbb{P}(|X| \ge n) \le \mathbb{E} |X| \le 1 + \sum_{n=1}^{\infty} \mathbb{P}(|X| \ge n).$
- 38. Let X_1, X_2, \ldots be an *iid* sequence of random variables with a (common) Cauchy distribution. Find the distribution of the sample means $\overline{X}_n = \sum_{i=1}^n X_i/n$ (use characteristic functions). Do the \overline{X}_n obey the strong or weak law of large numbers? If so, what is the limit?

39. Let N have a Poisson(λ) distribution, Y_1, Y_2, \ldots be an *iid* sequence, independent of N. Show that $\phi_X = \exp(\lambda(\phi_Y - 1))$.