Additional exercises

1. Consider an ARMA(p,q) process $(Y_t), \phi(B)Y = \theta(Z)$, and let $r = p \lor q$.

(a) Show that (Y_t) can be put in state space form as follows.

$$X_{t+1} = AX_t + BZ_{t+1}$$
(1)

$$Y_t = CX_t + Z_t,$$
(2)

where

$$A = \begin{pmatrix} \phi_1 & 1 & 0 & 0 & \cdots & 0 \\ \phi_2 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & & \\ \vdots & & & \ddots & \ddots & \\ \phi_{r-1} & 0 & & 0 & 1 \\ \phi_r & 0 & & & \cdots & 0 \end{pmatrix},$$
$$B = \begin{pmatrix} \phi_1 + \theta_1 \\ \vdots \\ \phi_r + \theta_r \end{pmatrix}, \ C = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}.$$

Hint: Choose the elements of X_t as $X_{k,t} = \sum_{j \ge k} \phi_j Y_{t+k-j-1} + \sum_{j \ge k} \theta_j Z_{t+k-j-1}$.

- (b) Give a condition on the ϕ -polynomial such that the matrix A is stable (all its eigenvalues are inside the unit disk).
- (c) Show that the $r \times r$ matrix

$$\mathcal{O} = \begin{pmatrix} C \\ CA \\ \vdots \\ CA^{r-1} \end{pmatrix} \tag{3}$$

is invertible.

- (d) Suppose that the equations (1) and (2) are given for certain A, B and C and that the matrix \mathcal{O} in (3) is invertible. Show that we can represent (Y_t) in ARMA form.
- 2. Consider a partitioned matrix

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

and assume that A, D are square and M and D invertible.

(a) Show the decomposition

$$M = \begin{pmatrix} I & BD^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} I & 0 \\ D^{-1}C & I \end{pmatrix}.$$

- (b) Compute M^{-1} in partitioned form, in terms of the inverse of the matrix $\Delta = A BD^{-1}C$.
- (c) Apply the preceding to quantify the loss of efficiency when estimating the AR-parameters with a too large order p as in Section 11.1.1. (Make the expression $(\Gamma_p)_{s,t=1,...,p_0}^{-1} \Gamma_{p_0} \ge 0$ precise.)
- 3. Prove the Kolmogorov-Szegö formula $\int_{-\pi}^{\pi} \log f_{\theta}(\lambda) d\lambda = 2\pi \log(\sigma^2/2\pi)$, page 224, for f_{θ} as given. Hint: take first the case p = 1 and use the Taylor expansion $\log(1-z) = \sum_{k=1} (-z)^k/k$, valid for |z| < 1. (Remark: In fact, the Kolmogorov-Szegö formula is valid in more generality for $\sigma^2 := E(X_t \prod_{t=1} X_t)^2$ and f_{θ} replaced with f, the spectral density of a stationary time series. For the causal AR case, we know that $X_t \prod_{t=1} X_t = Z_t$.)
- 4. Consider a stationary, causal and invertible ARMA(p,q) process (X_t) given by $\phi(B)X_t = \theta(B)Z_t$. Write $\theta = (\phi, \theta) = (\phi_1, \dots, \phi_p, \theta_1, \dots, \theta_q)$ and $I(\theta)$ for the Gaussian Fisher information matrix. Let J_p be the *p*-dimensional shift matrix with *ij*-element equal to $\delta_{i,j+1}$ and J_q its *q*dimensional sister. Write e_p for the first standard column basis vector of \mathbb{R}^p and likewise define e_q . Finally we have the $(p+q) \times (p+q)$ matrix

$$A(\theta) = \begin{pmatrix} J_p + e_p \phi & 0\\ 0 & J_q - e_q \theta \end{pmatrix},$$

and $B^{\top} = (e_p^{\top}, e_q^{\top})$. Show that $I(\theta)$ satisfies the linear equation

$$I(\theta) = A(\theta)I(\theta)A(\theta)^{\top} + BB^{\top}.$$