Additional exercises

1. Consider an $\operatorname{ARMA}(p, q)$ process $\left(Y_{t}\right), \phi(B) Y=\theta(Z)$, and let $r=p \vee q$.
(a) Show that $\left(Y_{t}\right)$ can be put in state space form as follows.

$$
\begin{align*}
X_{t+1} & =A X_{t}+B Z_{t+1} \tag{1}\\
Y_{t} & =C X_{t}+Z_{t}, \tag{2}
\end{align*}
$$

where

$$
\begin{gathered}
A=\left(\begin{array}{cccccc}
\phi_{1} & 1 & 0 & 0 & \cdots & 0 \\
\phi_{2} & 0 & 1 & 0 & \cdots & 0 \\
\vdots & & \ddots & \ddots & & \\
\vdots & & & \ddots & \ddots & \\
\phi_{r-1} & 0 & & & 0 & 1 \\
\phi_{r} & 0 & & & \cdots & 0
\end{array}\right), \\
B=\left(\begin{array}{c}
\phi_{1}+\theta_{1} \\
\vdots \\
\phi_{r}+\theta_{r}
\end{array}\right), C=\left(\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right) .
\end{gathered}
$$

Hint: Choose the elements of X_{t} as $X_{k, t}=\sum_{j \geq k} \phi_{j} Y_{t+k-j-1}+$ $\sum_{j \geq k} \theta_{j} Z_{t+k-j-1}$.
(b) Give a condition on the ϕ-polynomial such that the matrix A is stable (all its eigenvalues are inside the unit disk).
(c) Show that the $r \times r$ matrix

$$
\mathcal{O}=\left(\begin{array}{c}
C \tag{3}\\
C A \\
\vdots \\
C A^{r-1}
\end{array}\right)
$$

is invertible.
(d) Suppose that the equations (1) and (2) are given for certain A, B and C and that the matrix \mathcal{O} in (3) is invertible. Show that we can represent $\left(Y_{t}\right)$ in ARMA form.
2. Consider a partitioned matrix

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

and assume that A, D are square and M and D invertible.
(a) Show the decomposition

$$
M=\left(\begin{array}{cc}
I & B D^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
A-B D^{-1} C & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
D^{-1} C & I
\end{array}\right) .
$$

(b) Compute M^{-1} in partitioned form, in terms of the inverse of the matrix $\Delta=A-B D^{-1} C$.
(c) Apply the preceding to quantify the loss of efficiency when estimating the AR-parameters with a too large order p as in Section 11.1.1. (Make the expression $\left(\Gamma_{p}\right)_{s, t=1, \ldots, p_{0}}^{-1}-\Gamma_{p_{0}} \geq 0$ precise.)
3. Prove the Kolmogorov-Szegö formula $\int_{-\pi}^{\pi} \log f_{\theta}(\lambda) \mathrm{d} \lambda=2 \pi \log \left(\sigma^{2} / 2 \pi\right)$, page 224, for f_{θ} as given. Hint: take first the case $p=1$ and use the Taylor expansion $\log (1-z)=\sum_{k=1}(-z)^{k} / k$, valid for $|z|<1$.
(Remark: In fact, the Kolmogorov-Szegö formula is valid in more generality for $\sigma^{2}:=\mathrm{E}\left(X_{t}-\Pi_{t-1} X_{t}\right)^{2}$ and f_{θ} replaced with f, the spectral density of a stationary time series. For the causal AR case, we know that $\left.X_{t}-\Pi_{t-1} X_{t}=Z_{t}.\right)$
4. Consider a stationary, causal and invertible $\operatorname{ARMA}(p, q)$ process $\left(X_{t}\right)$ given by $\phi(B) X_{t}=\theta(B) Z_{t}$. Write $\theta=(\phi, \theta)=\left(\phi_{1}, \ldots, \phi_{p}, \theta_{1}, \ldots, \theta_{q}\right)$ and $I(\theta)$ for the Gaussian Fisher information matrix. Let J_{p} be the p-dimensional shift matrix with $i j$-element equal to $\delta_{i, j+1}$ and J_{q} its q dimensional sister. Write e_{p} for the first standard column basis vector of \mathbb{R}^{p} and likewise define e_{q}. Finally we have the $(p+q) \times(p+q)$ matrix

$$
A(\theta)=\left(\begin{array}{cc}
J_{p}+e_{p} \phi & 0 \\
0 & J_{q}-e_{q} \theta
\end{array}\right)
$$

and $B^{\top}=\left(e_{p}^{\top}, e_{q}^{\top}\right)$. Show that $I(\theta)$ satisfies the linear equation

$$
I(\theta)=A(\theta) I(\theta) A(\theta)^{\top}+B B^{\top}
$$

