
Chapter 2

1. In the proof of Theorem 2.10, orthogonality proved differently. Take l 6= 0
(otherwise nothing to prove) with ||l|| = 1. Let a = 〈f −Πf, l〉. Then

||f −Πf ||2 ≤ ||f − (Πf + al)||2 = ||f −Πf ||2 − |〈f −Πf, l〉|2

shows that 〈f −Πf, l〉 = 0.

2. In Example 2.25 it is said that the formula for the prediction is wrong for
φ > 1. The background of this statement is a different AR(∞) represen-
tation of Xt. Exercise: use this to compute the predictor. Alternatively,
one may use Equation (2.4). Interesting to compute the γX(h) here to
see what the solution of the equation is. This approach should also be
investigated for the non-stationary Xt = Zt +Zt−1, with independent Zt.
Possibility for new exercises.

3. Typo in Section 2.4, line 2: Pin−1Xn.

4. Page 34, definition of αX(h): add α(0) = 1 and Π0Y = 0 for Y with
EY = 0.

5. Proof of Lemma 2.33. The last four lines give an ultra short argument,
although the conclusion is correct. Careful here: for instance, the coeffi-
cients of Π2,hX1 are those of Π2,hXh+1, but in reversed order. One also
needs ||Xh+1 − Π2,hXh+1|| = ||Xh − Πh−1Xh||, but this is obvious by
stationarity.

Chapter 3

1. Page 41: finding the path xn,ln has become homework. Details of the
proof of Lemma 3.10 spelled out during class. Not mentioned that the ”if
and only if” in line 6 of the proof is actually a statement concerning the
product topology.

2. Line 4 of the proof of Theorem 4.5: Xm
t is actually (also) 2m-dependent.

Chapter 4

1. Page 53, line −4: this formula for α−1(u) is very nice, but I miss the
equivalence α−1(u) = h⇔ α(h) ≤ u ≤ α(h− 1).

2. Page 53, line –1: Why not simply defining first F−1(y) and using F−1(1−
u) later? I also missed x ≥ F−1(y) ⇔ F (x) ≥ y, which is used in the
proof of ?? (Can’t find it back.)
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3. On the proof of Theorem 4.7, page 56: I don’t see how the second in-
equality in the estimate of |γX(h)| is used and why one would need it.
”Consequently” in the next line seems to refer to the first inequality only.
Besides, there should be F−1

|X0| in the middle of the displayed inequalities.

4. Section 4.7, first line: Theorem 4.7 instead of Theorem4.7.

Chapter 5

1. Page 73, line 2: in the last term a factor n−h
n is missing.

2. Page 74, middle of the page: Should be ”the variance of
√
nY n converge

to etc.”

3. Proof of Theorem 5.7: Y mt is (2m+ h)-dependent.

Chapter 6

1. Page 84, line 3: integration should be w.r.t. Fn′ (n′ instead of n).

2. Made a remark that uniqueness of F would be known from MTP, if we
had been working with characteristic functions. But here the situation is
different, since h is integer valued. Referred to the theory of Fourier series
in some analysis course.

3. Page 94, line 23: time series’

4. Page 95, in or above Lemma 6.26: good place to introduce the notation
Z(f).

5. Page 96, line 10:
∫
fdµ should be

∫
fdZ.

6. Page 96, line 10: the convergence is convergence in L2(Ω,U ,P).

7. Page 96, display (line 13): on the left the integrals should be w.r.t. Z.

8. Page 96, line 17: uniqueness can also be established by looking at mixed
sequences, as on page 25.

Chapter 8

1. Page 114, footnote: This is a bit confusing. In the example Yt = X−t,
the second interpretation would imply that B is the forward shift. I don’t
understand the last sentence, by the way. Perhaps better to emphasize
(more) that B acting on any time series X gives a new times series X ′

with X ′t = Xt−1 (and then we write BXt instead of X ′t, resulting in the
example that then indeed BYt = Yt−1 = X−(t−1).
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2. Page 116, Definition 8.4: Perhaps to include the comments on page 119
(Warning) right after the definition. This has immediate relevance for the
proof (and perhaps the formulation) of Theorem 8.6. By the way, I like
these remarks about the subtleties involved. In the past, ARMA processes
were for me always stationary.

3. Page 119, line −10: time series’

4. Page 120, just above the display: This remark could be made just after
the proof of Theorem 8.8.

5. On the proof of Lemma 8.15(i): If
∑∞
j=0 |πj | <∞, the function z 7→ π(z)

has no poles on or inside the unit circle. But the poles of π coincide
with the zeros of θ, since φ, θ are relatively prime. Do we really need the
spectral argument?

6. Page 122, middle: It follows that the two lin spaces are the same for causal
invertible ARMA processes (just a remark).

7. Page 122, line −14: ”independently” might arise confusion, although Ex-
ercise 8.18 corrects for that.

8. Page 123, line −7 (display): here infinite sum and projections are inter-
changed, which is justified by the continuity of the projection and that
the infinite sum is L2-convergent by Lemma 1.28.

9. Page 124, line 14: replace ‘cannot be predicted’ with ‘is predicted by zero’:
Πtθ(B)Zt+s = 0.

10. Page 124, line 17: ‘vector-from’.

11. Page 124, displayed equation in the Proof: you also need s ≥ p, which
leads to minor modifications in the proof.

12. Page 124, line −9: I guess that ‖Φs‖ refers to the operator norm (also in
the proof of Theorem 8.32).

13. Page 124, line −8: there should be Y 2
s ≤ Ccs−p

∑p
i=1 Y

2
i .

14. Page 129, line 10: ‘ofr’ should be ‘for’.

15. Page 129, Corollary 8.33: Maybe good to emphasize that ‘the’ stationary
distribution depends on the distribution of the given white noise sequence,
otherwise readers may think that any stationary ARMA(p, q) process for
given polynomials φ, θ has the same distribution.
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Chapter 9

1. Page 134, line 2: . . . is A white noise sequence . . .

2. Page 135, line 1: . . . all measurable functions f(Y ) of Y for which E|Xf(Y )| <
∞. . .

3. Page 135, line −8: . . . has zero first conditional moment. . .

4. Page 136, line 6: Perhaps good to mention somewhere earlier the definition
of conditional variance (σ2

t ) and then to show that σ2
t = E(X2

t |Ft−1) for
a MDS Xt. Also, EX2

t <∞ should be included in Definition 9.2.

5. Page 136, line 9: Perhaps useful to explicitly mention θ0 = 0 (implicitly
in line 12).

6. Page 136, line −5: I still find the conventional terminology a bit confusing.
Look at σ2

t = α + θ(B)X2
t . I would either call σ2

t a moving average
(although X2

t is not a white noise), or X2
t auto-regressive (although σ2

t

isn’t a white noise either).

7. Page 136, line −3: SinEce.

8. Page 136, line −1: Perhaps good to emphasize that σ2
t ∈ Ft−1.

9. Page 137, line 11: There should be σ2
t = E(X2

t |Ft−1).

10. Page 137, line 15: Why not simply σt ∈ F0 ∨ σ(Xs, 1 ≤ s ≤ t− 1)?

11. Page 137, line −7: The GARCH equation is (9.1), better to explicitly
state this.

12. Page 138, first two displays: The derivations are a bit unclear (but com-
pletely correct). Why not the following computations? First, mention
that κ(Zt) = EZ4

t and repeat E(X2
t |Ft−1) = σ2

t . Similarly one has
EX4

t = E(σ4
t E(Z4

t |Ft−1)) = Eσ4
t EZ4

t . Then something like

κ(Xt)
κ(Zt)

=
EX4

t

(EX2
t )2 EZ4

t

=
Eσ4

t

(EX2
t )2

=
var(σ2

t ) + (EX2
t )2

(EX2
t )2

=
var(σ2

t )
(EX2

t )2
+ 1,

from which κ(Xt) ≥ κ(Zt) follows.

13. Page 138, line −16: I would start by defining Wt = X2
t − E(X2

t |Ft−1) =
X2
t − σ2

t .
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14. Page 141, below (9.5): . . . tends to zero in probability. . .

15. Page 141, add immediately after (9.6): where the infinite sum is convergent
in probability.

16. Page 141, line −12: product of expectations EAt · · ·EAt−n.

17. Page 141, line −11: there should be Z2
t−j .

18. Page 141, lines 2–4: spent a few minutes in class on the Jordan decompo-
sition.

19. Page 142, line 1: you also need φj + θj > 0 (which follows from the model
assumptions) to apply the argument.

20. Theorem 9.15: I treated only the first item, using a slightly different
argument at the end of the proof. We have E|Xt − X̃t|2 = E|σt − σ̃t|2 ≤
E|σ2

t − σ̃2
t |, since σt, σ̃t ≥ 0, and this was shown to converge to zero.

Chapter 10

1. Page 152, line 4: Perhaps ”the process randomly chooses”.

2. Page 153, beginning of Section 10.1: I also like another definition, in which
a HMM is defined as (Xt, Yt) Markov with L(Xt, Yt|Xs, Ys, s ≤ t − 1) =
L(Xt, Yt|Xt−1), or alternatively with (Xt+1, Yt) Markov.

3. Page 155, Example 10.4: There should be ARMA(q + 1, q) or in the next
line the choice p = r + 1 (preferred in view of the text that follows).

4. Page 155, line –9 and further down: I gave the students a homework exer-
cise to find a state space realization with Xt having dimension max{p, q}.

5. Page 158: The presentation of the Kalman filter is a bit messy. In view
of the huge importance of this filter in practice, it deserves a Theorem
stating that ΠtXi satisfies the recursion as in (10.5), together with the
other relevant quantities. The computations can then be given in the
proof.

6. Page 163, line 4 etc.: I couldn’t find a definition of µt−1, although it is
clear what is meant.

7. Page 167, line −2: chisquare

Chapter 11

1. Page 171: I used a bit different notation, φ for the vector of the φj , and
φ̂n for an estimator of it (no arrows).
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2. Page 172, line –7: I guess that after the ≈ there should just be γ̂n(t).

3. Page 173, line 3 (display): on the RHS the terms with Xn are missing.

4. Page 173, line 11: I don’t understand the reference to Chapter 8. Perhaps
Theorem 5.6 instead? In lines –4,–3 there seems to be referred to the proof
of that theorem.

5. Page 173, line –8: I even get OP (1/n) by rearranging a bit.

6. Page 174, line 1: funny black box at the end of the line.

7. Page 174, line –1: I asked the students to compute the difference.

8. Page 175, end of Example 11.7: I think that (loss in) efficiency is not
formally defined.

9. Page 176, line –6: The 2 in the confidence intervals come a bit out of the
blue; why not 1.96?

10. Page 186, Lemma 11.16: The map φ takes values in Rq+1.

11. Page 192, line –8: There should be Vt =
∑∞
j=0(−θ)jZt−j .

Chapter 12

1. Page 195, Exercise 12.3: I was wondering whether 1 as a vector containing
ones only has been introduced before.

2. Page 195, line –7: fucntion → function.

3. Page 196, line 2: There should be In,X−1X(λj).

4. Page 196, Eq (12.3): should have e−ihλj on the RHS.

5. Page 197, line 5: It seems to me that verification of the Lindeberg condi-
tion is a bit awkward (I made some sketch computations only).

6. Page 199, displayed formula: There should be σ2

n , and the result is also
zero if (k + l)/n or (k − l)/n are integers. To see the latter, we consider
the case (k − l)/n an integer. Write l = np+ k with p integer. Then

cos(
2π
n
kt) sin(

2π
n
lt) = cos(

2π
n
kt) sin(

2π
n
kt)

=
1
2

sin(
4π
n
kt).

Write 2k = mn + q with m, q integers and 0 ≤ q < n. Then sin( 4π
n kt) =

sin( 2π
n qt). Note that λq = 2π

n q is like a natural frequency, although λq > π
also happens. Hence, summing over t one obtains, up to a factor

√
n, the

6



imaginary part of d1(λq), which is zero. An explicit computation is as
follows. If q = 0, then sin( 2π

n qt) = 0 and there is nothing to prove. For
1 ≤ q < n and β = exp(i 2πn q) 6= 1 one has

n∑
t=1

sin(
2π
n
qt) = Im

n∑
t=1

βt = Im
β

1− β
(1− βn) = 0.

7. Page 200, Eq (12.6): I was just wondering whether this is the original
Parzen-Rosenblatt estimator.

8. Page 201, display: First equality should be ≈.

9. Page 204, line 3: Isn’t the difference between the estimators approximately
equal to X

2
?

10. Page 204, line 4: ”calculations of Chapter 5”: (similar to) those in the
proof of Theorem 5.6, I guess.

11. Page 206, line 3 (display): I was not very fond of the notation In(a), since
we also have In(λ).

Chapter 13

1. Page 210, line –13: Mean zero applies to the deviation of the estimator.
Perhaps better to write something like

√
n(θ̂n − θ) N(0, I−1

θ ).

2. Page 211, line 10 (and further down): I prefer the likelihood with capital
arguments, pθ(X1, . . . , Xn). This happens in most of the following text.

3. Page 213, line –3: Also here I would write Xt, Xt−1, . . ..

4. Page 214, (13.5): Perhaps useful to add on the right a term with the

conditional expectation, so Eθ0Eθ0 [log pθ(X1|
→
X0)|

→
X0] in view of the next

displayed relation, where it should also explained what µ is.

5. Page 214, line 8: I would write pθ(·|
→
X0) and pθ0(·|

→
X0).

6. Page 214, Lemma 13.4: strange formulation. There should be something
with two conditional distributions that are identical. E.g. that the con-

ditional laws Lθ(X1|
→
X0) and Lθ0(X1|

→
X0) are identical a.s. under the

distribution of
→
X0 with parameter θ0. (Brrrr, what a sentence!)

7. Page 214, Proof of Lemma 13.4: Isn’t it nicer to write
∫

log(pq )p dµ ≥∫
(
√
q −√p)2 dµ?

8. Page 215, line –9: Maybe good to mention that we assume that we can
differentiate under the integral to get the derivatives.
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9. Page 215, line –1: There should be Covθ(·) = Eθ(·) (Cov and E are
swapped).

10. Page 216, line 6: Maybe Pθ→.

11. page 216, line –7: see ?? (reference missing).

12. Page 219, line 6: Maybe add something on the uniqueness of θ0 as a
maximizer under identifiability conditions, as on page 214 (line –7).

13. Page 220, line –4: There should be t > p. Then in the sequel, there is some
asymmetry, the first t terms (those where the formula for the prediction is
not valid) are left out from the summation in the bottom line. One could
therefore replace in the first two terms replace n with n − p in order to
reflect that only the conditional distributions of the Xt given their past
for t > p are used.

14. Page 223, first display: X as subscript in fX is missing, and a λ in the
exponential.

15. Page 223, line 15: in the Whittle approximation I get −n log(2π) as the
first term.

16. Page 223, line –7: Lemma ??

17. Page 224, line 6: Kolmogorov-Szegö formula (See ??).

18. Page 224, first display: the first integral should be
∫
In(λ) |φ(e−iλ)|2

σ2 dλ,
and σ2 has disappeared in what follows. Since σ2 is not relevant for the
maximization w.r.t. the φk, better to have it dropped from the integral
right away.

19. Page 224, line –4: There should be fX = fθ.

20. Page 225, Example 13.16: Clash of notations, θ as a parameter and as a
polynomial. I guess we have to live with that.

21. Page 226, line –2: Maybe add something like ”in view of the zero blocks
in Jθ”.

Additional exercises

1. Consider an ARMA(p, q) process (Yt), φ(B)Y = θ(Z), and let r = p ∨ q.

(a) Show that (Yt) can be put in state space form as follows.

Xt+1 = AXt +BZt+1 (1)
Yt = CXt + Zt, (2)
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where

A =



φ1 1 0 0 · · · 0
φ2 0 1 0 · · · 0
...

. . . . . .
...

. . . . . .
φr−1 0 0 1
φr 0 · · · 0


,

B =

φ1 + θ1
...

φr + θr

 , C =
(
1 0 · · · 0

)
.

Hint: Choose the elements of Xt as Xk,t =
∑
j≥k φjYt+k−j−1 +∑

j≥k θjZt+k−j−1.

(b) Give a condition on the φ-polynomial such that the matrix A is stable
(all its eigenvalues are inside the unit disk).

(c) Show that the r × r matrix

O =


C
CA

...
CAr−1

 (3)

is invertible.

(d) Suppose that the equations (1) and (2) are given for certain A,B
and C and that the matrix O in (3) is invertible. Show that we can
represent (Yt) in ARMA form.

2. Consider a partitioned matrix

M =
(
A B
C D

)
and assume that A,D are square and M and D invertible.

(a) Show the decomposition

M =
(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
.

(b) Compute M−1 in partitioned form, in terms of the inverse of the
matrix ∆ = A−BD−1C.

(c) Apply the preceding to quantify the loss of efficiency when estimating
the AR-parameters with a too large order p as in Section 11.1.1.
(Make the expression (Γp)−1

s,t=1,...,p0
− Γp0 ≥ 0 precise.)
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3. Prove the Kolmogorov-Szegö formula
∫ π
−π log fθ(λ) dλ = 2π log(σ2/2π),

page 224, for fθ as given. Hint: take first the case p = 1 and use the
Taylor expansion log(1− z) =

∑
k=1(−z)k/k, valid for |z| < 1.

(Remark: In fact, the Kolmogorov-Szegö formula is valid in more gen-
erality for σ2 := E(Xt − Πt−1Xt)2 and fθ replaced with f , the spectral
density of a stationary time series. For the causal AR case, we know that
Xt −Πt−1Xt = Zt.)

4. Consider a stationary, causal and invertible ARMA(p, q) process (Xt)
given by φ(B)Xt = θ(B)Zt. Write θ = (φ, θ) = (φ1, . . . , φp, θ1, . . . , θq)
and I(θ) for the Gaussian Fisher information matrix. Let Jp be the
p-dimensional shift matrix with ij-element equal to δi,j+1 and Jq its q-
dimensional sister. Write ep for the first standard column basis vector of
Rp and likewise define eq. Finally we have the (p+ q)× (p+ q) matrix

A(θ) =
(
Jp + epφ 0

0 Jq − eqθ

)
,

and B> =
(
e>p , e

>
q

)
. Show that I(θ) satisfies the linear equation

I(θ) = A(θ)I(θ)A(θ)> +BB>.
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