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1 Introduction

In these notes the main topics are two proofs of the Central Limit Theorem.
One is based on smoothing by convolution and small disturbances. The other one
is based on manipulations with characteristic functions and Lévy’s continuity
theorem.

2 The Central Limit Theorem

Let (Ω,F ,P) be a probability space. We will assume that all random vari-
ables that we encounter below are defined on this space and real valued. Let
X,X1, X2, . . . be random variables and recall that Xn

w→ X was defined as

E f(Xn) → E f(X) (2.1)

for all bounded continuous functions f . As a matter of fact one can show
that weak convergence takes place, if (2.1) holds for all bounded uniformly
continuous functions (exercise 4.1). We take this as our characterization of
weak convergence. In the sequel ||f || denotes the sup norm of a function f .

Lemma 2.1 Let X and Y be random variables and f a bounded uniformly
continuous function. Then, for all ε > 0, there exists δ > 0 such that

|E f(X)− E f(X + Y )| ≤ ε+ 2||f ||P(|Y | ≥ δ). (2.2)

Proof Let ε > 0 be given and choose δ > 0 such that |f(x)−f(y)| < ε whenever
|x− y| < δ. Then

|E f(X)− E f(X + Y )| ≤ E (1{|Y |<δ}(f(X)− f(X + Y )))
+ E (1{|Y |≥δ}(f(X) + f(X + Y )))

≤ ε+ 2||f ||P(|Y | ≥ δ).

�

Lemma 2.2 Let Y,X,X1, X2, . . . be random variables such that for all σ > 0
it holds that Xn + σY

w→ X + σY . Then also Xn
w→ X (the σ = 0 case).

Proof Let a uniformly continuous function f and ε > 0 be given and choose
δ > 0 as in the previous lemma. From (2.2) it follows that

|E f(X)− E f(X + σY )| ≤ ε+ 2||f ||P(|Y | ≥ δ

σ
)

and

|E f(Xn)− E f(Xn + σY )| ≤ ε+ 2||f ||P(|Y | ≥ δ

σ
).
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Now we consider

|E f(Xn)− E f(X)| ≤ |E f(Xn)− E f(Xn + σY )|
+ |E f(Xn + σY )− E f(X + σY )|
+ |E f(X)− E f(X + σY )|

≤ 2ε+ 4||f ||P(|Y | ≥ δ

σ
)

+ |E f(Xn + σY )− E f(X + σY )|.

By assumption, the last term tends to zero for n → ∞. Letting then σ ↓ 0,
we obtain lim supn |E f(Xn)−E f(X)| ≤ 2ε, which finishes the proof, since ε is
arbitrary. �

For small σ, we view X + σY as a perturbation of X. Let us take a standard
normally distributed random variable Y , independent of X and the Xn. Notice
that Z := X + σY given X = x has a N(x, σ2) distribution. Let f be bounded
and uniformly continuous. Then E f(X + σY ) = E E [f(Z)|X] and

E [f(Z)|X = x] =
∫ ∞

−∞
f(z)

1
σ
√

2π
exp(− 1

2σ2
(z − x)2) dz =: fσ(x).

Hence

E f(X + σY ) = E fσ(X). (2.3)

Let pσ(x) = 1√
2πσ2 exp(− 1

2σ2x
2), the density of a N(0, σ2) distributed random

variable. The function fσ is obtained by convolution of f with the normal den-
sity pσ. By the Dominated Convergence Theorem, one can show (exercise 4.2)
that f has derivatives of all orders given by

f (k)
σ (x) =

∫ ∞

−∞
f(z)p(k)

σ (z − x) dz. (2.4)

Hence fσ is a smooth function. Write C∞ for the class of bounded functions
that have bounded derivatives of all orders. Examples of such function are pσ

and fσ. We have already weakened the requirement for weak convergence that
convergence is assumed to hold for expectations involving uniformly continuous
functions. The next step is to drastically reduce this class of functions.

Theorem 2.3 Let X,X1, X2, . . . be random variables. The weak convergence
Xn

w→ X takes place iff E f(Xn) → E f(X), for all f ∈ C∞.

Proof Suppose that E f(Xn) → E f(X), for all f ∈ C∞, then it holds in par-
ticular for any fσ. In view of (2.3), this means that Xn + σY

w→ X + σY for all
σ > 0. Now lemma 2.2 applies. �
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As a preparation for the proof of the Central Limit Theorem we proceed with
some analytic technicalities that eventually lead to the crucial inequality (2.8).
Let f ∈ C∞ and put

R(x, y) = f(x+ y)− f(x)− yf ′(x)− 1
2
y2f ′′(x).

Replacing x and y above by independent random variables X and Y and taking
expectations, then yields

E f(X + Y )− E f(X)− EY E f ′(X)− 1
2

EY 2 E f ′′(X)| = ER(X,Y ).

Let W be another random variable, independent of X, and assume that EW =
EY and EW 2 = EY 2. Then a similar equality is valid and we then obtain by
taking the difference the inequality

|E f(X + Y )− E f(X +W )| ≤ E |R(X,Y )|+ E |R(X,W )|. (2.5)

We are now going to find bounds on the remainder terms in this equation. The
mean value theorem yields for any x and y that R(x, y) = 1

6y
3f ′′′(θ1(x, y)) for

some θ1(x, y) between x and x + y. Alternatively, we can express R(x, y) by
another application of the mean value theorem as

R(x, y) = f(x+y)−f(x)−yf ′(x))− 1
2
y2f ′′(x) =

1
2
y2(f ′′(θ2(x, y))−f ′′(x)),

for some θ2(x, y) between x and x+ y. Let C = max{||f ′′||, 1
6 ||f

′′′||}. Then we
have the estimate |R(x, y)| ≤ C|y|3, as well as for every ε > 0 the estimate

|R(x, y)| ≤ C(|y|31{|y|<ε} + y21{|y|≥ε}) ≤ Cy2(ε+ 1{|y|≥ε}).

Hence we have the following bounds on E |R(X,Y )|:

E |R(X,Y )| ≤ CE |Y |3 (2.6)

and

E |R(X,Y )| ≤ C(εEY 2 + EY 21{|Y |≥ε}). (2.7)

The proof of the Central Limit Theorem is based on the following idea. Consider
a sum of independent random variables S =

∑n
j=1 ξj , where n is ‘big’. If we

replace one of the ξj by another random variable, then we can think of a small
perturbation of S and the expectation of f(S) will hardly change. This idea will
be repeatedly used, all the ξj that sum up to S will be step by step replaced
with other, normally distributed, random variables. We assume that the ξj are
have finite second moments and expectation zero. Let η1, . . . , ηn be independent
normal random variables, also independent of the ξj , with expectation zero and
E η2

j = E ξ2j . Put Z =
∑n

j=1 ηj and notice that also Z has a normal distribution
with variance equal to

∑n
j=1 E ξ2j . We are interested in E f(S) − E f(Z). The
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following notation is convenient. Put Xj =
∑j−1

i=1 ξi +
∑n

i=j+1 ηi. Notice that
S = Xn + ξn and Z = X1 + η1. Repetitive use of the triangle inequality and
application of (2.5) gives

|E f(S)− E f(Z)| ≤
n∑

j=1

|E f(Xj + ξj)− E f(Xj + ηj)|

≤
n∑

j=1

|ER(Xj , ξj) + ER(Xj , ηj)|. (2.8)

Theorem 2.4 (Central Limit Theorem) Let for each n ∈ N be given a
sequence ξn1, . . . , ξnkn

of independent random variables with E ξnj = 0 and∑kn

j=1 Var ξnj = 1. Let for every ε > 0

Ln(ε) =
kn∑

j=1

E|ξnj |21{|ξnj |>ε}.

Suppose that the Lindeberg condition holds: Ln(ε) → 0 as n → ∞ for every
ε > 0. Then Sn :=

∑kn

j=1 ξnj
w→ Z, where Z has a N(0,1) distribution.

Proof Let Sn =
∑kn

j=1 ξnj and let ηnj (j = 1, . . . , kn, n ∈ N) be a double array
of zero mean normal random variables, independent of all the ξnj , such that also
for every n the ηnj (j = 1, . . . , kn) are independent and such that E η2

nj = E ξ2nj .
Let Zn =

∑kn

j=1 ηnj . Notice that the distributions of the Zn are all standard
normal and thus E f(Zn) = E f(Z) for every f in C∞. Recall theorem 2.3. Take
such f ∈ C∞ and apply (2.8) to get

|E f(Sn)− E f(Z)| = |E f(Sn)− E f(Zn)|

≤
kn∑

j=1

E |R(Xnj , ξnj)|+ E |R(Xnj , ηnj)|, (2.9)

with an obvious meaning of the Xnj . For the first error terms in (2.9) we use the
estimate of (2.7) which yields E

∑kn

j=1 E |R(Xnj , ξnj)| ≤ C(ε+ Ln(ε)). In view
of the Lindeberg condition, this term can be made arbitrarily small. We now
focus on the second error term in (2.9). Let σ2

nj = E ξ2nj = E η2
nj and use (2.6)

to obtain

E
kn∑

j=1

E |R(Xnj , ηnj)| ≤ C

kn∑
j=1

E |ηnj |3 = C

kn∑
j=1

σ3
njE |N(0, 1)|3.

To finish the proof, we first observe that

max
j
σ2

nj = max
j

E ξ2nj = max
j

E ξ2nj(1{|ξnj |≤ε} + 1{|ξnj |>ε}) ≤ ε2 + Ln(ε).
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Hence (use
∑kn

j=1 σ
2
nj = 1)

kn∑
j=1

σ3
nj ≤ max

j
σnj

kn∑
j=1

σ2
nj ≤ (ε2 + Ln(ε))1/2.

And, again, this term can be made arbitrarily small, because of the Lindeberg
condition. �

3 Another proof of the Central Limit Theorem

The proof of the Central Limit Theorem that we present in this section is a
classical one, just as the proof of the previous section. It is based on properties
of characteristic functions, the first ones are contained in the following lemma.

Lemma 3.1 Let X be a random variable with EX2 < ∞ and with character-
istic function φ. Then

|φ(u)− 1| ≤ E min{2, |uX|},

|φ(u)− 1− iuEX| ≤ E min{|u||X|, 1
2
u2EX2}

and

|φ(u)− 1− iuEX +
1
2
u2EX2| ≤ E min{u2X2,

1
6
|u|3|X|3}.

Proof Let x ∈ R. Then |eix − 1| ≤ 2 and |eix − 1| = |
∫ x

0
ieiy dy| ≤ |x|. Hence

|eix − 1| ≤ min{2, |x|}. Since

eix − 1− ix =
∫ x

0

(eiy − 1) dy,

and

eix − 1− ix+
1
2
x2 = −

∫ x

0

∫ y

0

(eit − 1) dtdy,

we can for instance use the last inequality to arrive at |eix − 1 − ix + 1
2x

2| ≤
min{x2, |x|3/6}. Replacing x with uX and taking expectations yields the asser-
tions. �

We are now ready to give the announced proof of theorem 2.4.

Proof of theorem 2.4 Let φnj(u) = E exp(iuξnj) and φn(u) = E exp(iuSn).
Because of independence we have

φn(u) =
kn∏

j=1

φnj(u).
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First we show that
kn∑

j=1

(φnj(u)− 1) → −1
2
u2. (3.10)

We write
kn∑

j=1

(φnj(u)− 1) =
kn∑

j=1

(φnj(u)− 1 +
1
2
u2E ξ2nj)−

kn∑
j=1

1
2
u2E ξ2nj .

The last term gives the desired limit, so it suffices to show that the first term
converges to zero. By virtue of lemma 3.1, we can bound its absolute value by

kn∑
j=1

E min{u2ξ2nj ,
1
6
|u|3|ξnj |3}. (3.11)

But

E min{u2ξ2nj ,
1
6
|u|3|ξnj |3} ≤

1
6
|u|3εE ξ2nj1{|ξnj |≤ε} + u2E ξ2nj1{|ξnj |>ε}.

Hence we get that the expression in (3.11) is majorized by

1
6
|u|3ε

kn∑
j=1

E ξ2nj + u2Ln(ε) =
1
6
|u|3ε+ u2Ln(ε),

which tends to 1
6 |u|

3ε. Since ε is arbitrary, we have proved (3.10). It then also
follows that

exp(
kn∑

j=1

(φnj(u)− 1)) → exp(−1
2
u2). (3.12)

Recall that u 7→ exp(− 1
2u

2) is the characteristic function of N(0, 1). Hence, by
application of Lévy’s continuity theorem and (3.12), we are finished as soon as
we have shown that

kn∏
j=1

φnj(u)− exp(
kn∑

j=1

(φnj(u)− 1)) → 0. (3.13)

The displayed difference is less than

kn∑
j=1

|φnj(u)− exp((φnj(u)− 1))|, (3.14)

because of the following elementary result: if ai and bi are complex numbers
with norm less than or equal to one, then

|
n∏

i=1

ai −
n∏

i=1

bi| ≤
n∑

i=1

|ai − bi|.
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To apply this result we have to understand that the complex numbers involved
indeed have norm less than or equal to one. For the φnj(u) this is one of the
basic properties of characteristic functions. But it turns out that exp(φnj(·)−1)
is a characteristic function as well (see exercise 4.8).
Let Mn(u) = maxj |φnj(u) − 1|. Now we use the inequality |ez − 1 − z| ≤
|z|2e|z| (which easily follows from a Taylor expansion) with z = φnj(u) − 1 to
bound (3.14) by

kn∑
j=1

|φnj(u)− 1|2 exp(|φnj(u)− 1|) ≤Mn(u)eMn(u)
kn∑

j=1

|φnj(u)− 1|.

From lemma 3.1, second assertion, we get
∑kn

j=1 |φnj(u)−1| ≤ 1
2u

2
∑kn

j=1 E ξ2nj =
1
2u

2. On the other hand, we have maxj Var ξnj = maxj E ξ2nj ≤ ε2 + Ln(ε).
Hence

max
j

E ξ2nj → 0 (3.15)

and then by lemma 3.1 and Jensen’s inequality

Mn(u) = max
j
|φnj(u)− 1| ≤ max

j
|u|E |ξnj | ≤ |u|(max

j
E ξ2nj)

1/2 → 0.

This proves (3.13) and hence it completes the proof of the theorem. �

Remark 3.2 The Lindeberg condition in the theorem is almost necessary. One
can show that if (3.15) holds and if the weak convergence as in the theorem takes
place, then also the Lindeberg condition is satisfied.

4 Exercises

4.1 Show that Xn
w→ X iff Ef(Xn) → Ef(X) for all bounded uniformly contin-

uous functions f .

4.2 Show, using the Dominated Convergence Theorem, that (2.4) holds. Show
also that all the derivatives are bounded functions.

4.3 For each n we have a sequence ξn1, . . . , ξnkn
of independent random variables

with Eξnj = 0 and
∑kn

j=1 Var ξnj = 1. If
∑kn

j=1 E|ξnj |2+δ → 0 as n → ∞ for

some δ > 0, then
∑kn

j=1 ξnj
w→ N(0, 1). Show that this follows from theorem 2.4.

4.4 The classical central limit theorem says that 1
σ
√

n

∑n
j=1(Xj −µ) w→ N(0, 1),

if the Xj are iid with EXj = µ and 0 < VarXj = σ2 < ∞. Show that this
follows from theorem 2.4.

4.5 Let X and Y be independent, assume that Y has a N(0, 1) distribution.
Let σ > 0. Let φ be the characteristic function of X: φ(u) = E exp(iuX).
(a) Show that Z = X + σY has density p(z) = 1

σ
√

2π
E exp(− 1

2σ2 (z −X)2).
(b) Show that p(z) = 1

2πσ

∫
φ(−y/σ) exp(iyz/σ − 1

2y
2) dy.
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4.6 Let X,X1, X2, . . . be a sequence of random variables and Y a N(0, 1)-
distributed random variable independent of that sequence. Let φn be the char-
acteristic function of Xn and φ that of X. Let pn be the density of Xn + σY
and p the density of X + σY .
(a) If φn → φ pointwise, then pn → p pointwise. Invoke the previous exercise
and the dominated convergence theorem to show this.
(b) Let f ∈ Cb(R) be bounded by B. Show that

|Ef(Xn + σY )− Ef(X + σY )| ≤ 2B
∫

(p(z)− pn(z))+ dz.

(c) Show that |Ef(Xn + σY )− Ef(X + σY )| → 0 if φn → φ pointwise.
(d) Prove the following theorem: Xn

w→ X iff φn → φ pointwise.

4.7 Let X1, X2, . . . , Xn be an iid sequence having a distribution function F , a
continuous density (w.r.t. Lebesgue measure) f . Let m be such that F (m) = 1

2 .
Assume that f(m) > 0 and that n is odd, n = 2k − 1, say (k = 1

2 (n+ 1)).
(a) Show that m is the unique solution of the equation F (x) = 1

2 . We call m
the median of the distribution of X1.
(b) The sample median Mn of X1, . . . , Xn is by definition Xk. Show that with
Unj = 1{Xj≤m+n−1/2x} we have

P(n1/2(Mn −m) ≤ x) = P(
∑

j

Unj ≥ k).

(c) Let pn = EUnj , bn = (npn(1−pn))1/2, ξnj = (Unj−pn)/bn, Zn =
∑n

j=1 ξnj ,
tn = (k−npn)/bn. Rewrite the probabilities in the previous part as P(Zn ≥ tn)
and show that tn → t := −2xf(m).
(d) Show that P(Zn ≥ t) → 1− Φ(t), where Φ is the standard normal distribu-
tion.
(e) Show that P(Zn ≥ tn) → Φ(2f(m)x) and conclude that the Central Limit
Theorem for the sample median holds:

2f(m)n1/2(Mn −m) w→ N(0, 1).

4.8 Let X1, X2, . . . be a sequence of iid random variables and N a Poisson(λ)
distributed random variable, independent of the Xn. Put Y =

∑N
n=1Xn. Let

φ be the characteristic function of the Xn and ψ the characteristic function of
Y . Show that ψ = exp(λφ− λ).

4.9 Let Y be a random variable with a Gamma(t, 1) distribution, so it has
density 1

Γ(t)y
t−1e−y1{y>0}, where Γ(t) =

∫∞
0
yt−1e−y dy for t > 0. Put Xt =

Y−t√
t

.

(a) Show that Xt has a density on (−
√
t,∞) given by

ft(x) =
√
t

Γ(t)
(x
√
t+ t)t−1e−(x

√
t+t).
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(b) Show that the characteristic function φt(u) = E eiuXt of Xt is given by

φt(u) = e−iu
√

t 1
(1− iu√

t
)t

and conclude that φt(u) → e−
1
2 u2

as t→∞.
(c) Show that

tt−
1
2 e−t

Γ(t)
=

1
2π

∫ ∞

−∞
φt(u) du.

(d) Prove Stirling’s formula

lim
t→∞

Γ(t)√
2πe−ttt−

1
2

= 1.
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