
Exercises Measure Theoretic Probability

Chapter 1

1. Prove the following statements.

(a) The intersection of an arbitrary family of d-systems is again a d-
system.

(b) The intersection of an arbitrary family of σ-algebras is again a σ-
algebra.

(c) If C1 and C2 are collections of subsets of Ω with C1 ⊂ C2, then d(C1) ⊂
d(C2).

2. Let G and H be two σ-algebras on Ω. Let C = {G ∩H : G ∈ G, H ∈ H}.
Show that C is a π-system and that σ(C) = σ(G,H).

3. Show that D2 (Williams, page 194) is a π-system.

4. Let Ω be a countable set. Let F = 2Ω and let p : Ω → [0, 1] satisfy∑
ω∈Ω p(ω) = 1. Put P(A) =

∑
ω∈A p(ω) for A ∈ F . Show that P is a

probability measure.

5. Let Ω be a countable set. Let A be the collection of A ⊂ Ω such that A or
its complement has finite cardinality. Show that A is an algebra. What is
d(A)?

6. Show that a finitely additive map µ : Σ0 → [0,∞] is countably additive if
µ(Hn) → 0 for every decreasing sequence of sets Hn ∈ Σ0 with

⋂
n Hn = ∅.

If µ is countably additive, do we necessarily have µ(Hn) → 0 for every
decreasing sequence of sets Hn ∈ Σ0 with

⋂
n Hn = ∅?

Chapter 2

1. Exercise of section 2.9 (page 28).

Chapter 3

1. If h1 and h2 are measurable functions, then h1h2 is measurable too.

2. Let X be a random variable. Show that Π(X) := {X−1(−∞, x] : x ∈ R}
is a π-system and that it generates σ(X).

3. Let {Yγ : γ ∈ C} be an arbitrary collection of random variables and
{Xn : n ∈ N} be a countable collection of random variables, all defined on
the same probability space.

(a) Show that σ{Yγ : γ ∈ C} = σ{Y −1
γ (B) : γ ∈ C,B ∈ B}.
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(b) Let Xn = σ{X1, . . . , Xn} (n ∈ N) and A =
⋃∞

n=1 Xn. Show that A
is an algebra and that σ(A) = σ{Xn : n ∈ N}.

4. Show that the X+ and X− are measurable functions and that X+ is
right-continuous and X− is left-continuous (notation as in section 3.12).

5. Let F be a σ-algebra on Ω with the property that for all F ∈ F it holds
that P(F ) ∈ {0, 1}. Let X : Ω → R be F-measurable. Show that for some
c ∈ R one has P(X = c) = 1. (Hint: P(X ≤ x) ∈ {0, 1} for all x.)

Chapter 4

1. Williams, exercise E4.1.

2. Williams, exercise E4.6.

3. Let G1,G2, . . . be σ-algebras and let G = σ(G1 ∪ G2 ∪ . . .).

(a) Show that Π = {Gi1 ∩Gi2 ∩ . . . ∩Gik
: k ∈ N, ik ∈ N, Gij ∈ Gij} is a

π-system that generates G.

(b) Assume that G1,G2, . . . is an independent sequence. Let M and N be
disjoint subsets of N and put M = σ(Gi, i ∈ M) and N = σ(Gi, i ∈
N). Show that M and N are independent σ-algebras.

Chapter 5

1. Show that the integral is a linear operator on L1(S, Σ, µ) by showing first
that the result of section 5.5 holds true and then the general case.

2. Prove the second part of Scheffé’s lemma (see page 55).

3. Consider a measure space (S, Σ, µ). Let f ∈ (mΣ)+ and define ν(E) =∫
S

f1E dµ, E ∈ Σ. Show that ν is a measure on Σ. Show also that
h ∈ L1(S, Σ, ν) iff fh ∈ L1(S, Σ, µ) and that

∫
S

h dν =
∫

S
fh dµ. (Use the

‘standard machine’ of section 5.12).

4. Let (x1, x2, . . .) be a sequence of nonnegative real numbers, let ` : N → N
be a bijection and define the sequence (y1, y2, . . .) by yk = x`(k). Let for
each n the n-vector yn be given by yn = (y1, . . . , yn). Consider then for
each n a sequence of numbers xn defined by xn

k = xk if xk is a coordinate
of yn. Otherwise put xn

k = 0. Show that xn
k ↑ xk for every k as n → ∞.

Show that
∑∞

k=1 yk =
∑∞

k=1 xk.

5. In this exercise λ denotes Lebesgue measure on the Borel sets of [0, 1]. Let
f : [0, 1] → R be continuous. Then the Riemann integral I :=

∫ 1

0
f(x) dx

exists (this is standard Analysis). But also the Lebesgue integral of f ex-
ists. (Explain why.). Also explain why (use the definition of the Riemann
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integral) there is a decreasing sequence of simple functions Un with limit
U satisfying U ≥ f and λ(Un) ↓ I. Prove that λ(f) = I.

Chapter 6

1. Let X and Y be simple random variables. Show that E X doesn’t depend
on the chosen representation of X. Show also that E (X+Y ) = E X+E Y .

2. Show that for X ∈ L1(Ω,F , P) it holds that |E X| ≤ E |X|.

3. Let X ∈ L1(Ω,F , P). Show that limn→∞ nP(|X| > n) = 0.

4. Prove the assertions (a)-(c) of section 6.5.

5. Complete the proof of theorem 6.11: show the a.s. uniqueness of Y and
show that if X −Y ⊥ Z for all Z in K, then ||X −Y ||2 = inf{||X −Y ′||2 :
Y ′ ∈ K}.

6. Prove lemma 6.12 with the ‘standard machine’ of section 5.12. With
notation as in lemma 6.12, let Y = h(X). Show also the following equality:
E Y =

∫
R y ΛY (dy), with ΛY the law of Y .

Chapter 8

1. Prove part (b) of Fubini’s theorem in section 8.2 for f ∈ L1(S, Σ, µ)
(you already know it for f ∈ mΣ+). Explain why s1 7→ f(s1, s2) is in
L1(S1,Σ1, µ1) for all s2 outside a set N of µ2-measure zero and that If

2 is
well defined on N c.

2. If Z1, Z2, . . . is a sequence of nonnegative random variables, then

E
∞∑

k=1

Zk =
∞∑

k=1

E Zk. (1)

Show that this follows from Fubini’s theorem (as an alternative to sec-
tion 6.5). If

∑∞
k=1 E Zk < ∞, what is P(

∑∞
k=1 Zk = ∞). Formulate a

result similar to (1) for random variables Zk that may assume negative
values as well.

3. Let the vector of random variables (X, Y ) have a joint probability density
function f . Let fX and fY be the (marginal) probability density functions
of X and Y respectively. Show that X and Y are independent iff f(x, y) =
fX(x)fY (y) for all x, y except in a set of Leb×Leb-measure zero.

4. Let f be defined on R2 such that for all a ∈ R the function y 7→ f(a, y) is
Borel and such that for all b ∈ R2 the function x 7→ f(x, b) is continuous.
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Show that for all a, b, c ∈ R the function (x, y) 7→ bx + cf(a, y) is Borel-
measurable on R2. Let an

i = i/n, i ∈ Z, n ∈ N. Define

fn(x, y) =
∑

i

1(an
i−1,an

i ](x)(
an

i − x

an
i − an

i−1

f(an
i−1, y) +

x− an
i−1

an
i − an

i−1

f(an
i , y)).

Show that the fn are Borel-measurable on R2 and conclude that f is
Borel-measurable on R2.

5. Show that for t > 0 ∫ ∞

0

sinx e−tx dx =
1

1 + t2
.

Show that x 7→ sin x
x is not in L1(R,B,Leb), but that we can use Fubini’s

theorem to prove that the Riemann integral∫ ∞

0

sinx

x
dx =

π

2
.

6. Let F,G : R → R be nondecreasing and right-continuous. Use Fubini’s
theorem to show the integration by parts formula, valid for all a < b,

F (b)G(b)− F (a)G(a) =
∫

(a,b]

F (s−) dG(s) +
∫

(a,b]

G(s) dF (s).

Hint: integrate 1(a,b]2 and split the square into a lower and an upper
triangle.

7. Let F be the distribution function of a nonnegative random variable X
and assume that E Xα < ∞ for some α > 0. Use exercise 6 to show that

E Xα = α

∫ ∞

0

xα−1(1− F (x)) dx.

Chapter 9

1. Finish the proof of theorem 9.2: Take arbitrary X ∈ L1(Ω,F , P) and
show that the existence of the conditional expectation of X follows from
the existence of the conditional expectations of X+ and X−.

2. Prove the conditional version of Fatou’s lemma, property (f) on page 88
(Williams).

3. Prove the conditional Dominated Convergence theorem, property (g) on
page 88 (Williams).
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4. Let (X, Y ) have a bivariate normal distribution with E X = µX , E Y =
µY , VarX = σ2

X , VarY = σ2
Y and Cov (X, Y ) = c. Let

X̂ = µx +
c

σ2
Y

(Y − µY ).

Show that E (X − X̂)Y = 0. Show also (use a special property of the
bivariate normal distribution) that E (X − X̂)g(Y ) = 0 if g is a Borel-
measurable function such that E g(Y )2 < ∞. Conclude that X̂ is a version
of E [X|Y ].

5. Williams, Exercise E9.1.

6. Williams, Exercise E9.2

7. Let X ∈ L2(Ω,F , P) and Y ∈ L2(Ω,G, P), where G is a sub-σ-algebra of
F . Let X̂ be a version of the conditional expectation E[X|G]. Show that

E(X − Y )2 = E(X − X̂)2 + E(Y − X̂)2.

Deduce that X̂ can be viewed as an orthogonal projection of X onto
(Ω,G, P).

Chapter 10

1. Let X be an adapted process and T a stopping time that is finite. Show
that XT is F-measurable. Show also that for arbitrary stopping times T
(so the value infinity is also allowed) the stopped process XT is adapted.

2. For every n we have a measurable function fn on Rn. Let Z1, Z2, . . . be in-
dependent random variables and Fn = σ(Z1, . . . , Zn). Show that (you may
assume sufficient integrability) that Xn = fn(Z1, . . . , Zn) defines a martin-
gale under the condition that Efn(z1, . . . , zn−1, Zn) = fn−1(z1, . . . , zn−1)
for every n.

3. If S and T are stopping times, then also S + T , S ∨ T and S ∧ T are
stopping times. Show this.

4. Show that an adapted process X is a martingale iff E[Xn+m|Fn] = Xn for
all n, m ≥ 0.

5. (a) If X is a martingale is and f a convex function such that E|f(Xn)| <
∞, then Y defined by Yn = f(Xn) is a submartingale. Show this.

(b) Show that Y is a submartingale, if X is a submartingale and f is a
convex increasing function.

6. Prove Corollaries (c) and (d) on page 101.
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7. Let X1, X2, . . . be an iid sequence of Bernoulli random variables. Put
Fn = σ(X1, . . . , Xn), n ≥ 1. Let M be a martingale adapted to the
generated filtration. Show that the Martingale Representation Property
holds: there exists a constant m and a predictable process Y such that
Mn = m + (Y •X)n, n ≥ 1.

Chapter 11

1. Let X be an adapted process and a < b real numbers. Let S1 = inf{n :
Xn < a}, T1 = inf{n > S1 : Xn > b}, etc. Show that the Sk and Tk are
stopping times. Show also that the process C of section 11.1 is previsible
(synonymous for predictable).

2. Consider the probability space (Ω,F , P) with Ω = [0, 1), F the Borel sets
of [0, 1) and P the Lebesgue measure. Let In

k = [k2−n, (k +1)2−n) for k =
0, . . . , 2n−1 and Fn be the σ-algebra by the In

k for k = 0, . . . , 2n−1. Define
Xn = 1In

0
2n. Show that Xn is a martingale is and that the conditions

of theorem 11.5 are satisfied. What is X∞ in this case? Do we have

Xn
L1

→ X∞? (This has something to do with 11.6).

3. Let X be a submartingale with supn≥0 E|Xn| < ∞. Show that there exists
a random variable X∞ such that Xn → X∞ a.s.

4. Show that for a supermartingale X the condition sup{E |Xn| : n ∈ N} < ∞
is equivalent to the condition sup{E X−

n : n ∈ N} < ∞.

Chapter 12

1. Exercise 12.1.

2. Exercise 12.2

3. Let (Hn) be a predictable sequence of random variables with E H2
n <

∞ for all n. Let (εn) be a sequence with E ε2
n = 1, E εn = 0 and εn

independent of Fn−1 for all n. Let Mn =
∑

k≤n Hkεk, n ≥ 0. Compute
the conditional variance process A of (Mn). Take p > 1/2 and consider
Nn =

∑
k≤n

1
(1+Ak)p Hkεk. Show that there exists a random variable N∞

such that Nn → N∞ a.s. Show (use Kronecker’s lemma) that Mn

(1+An)p has
an a.s. finite limit.

Chapter 13

1. Let C1, . . . , Cn be uniformly integrable collections of random variables on
a common probability space. Show that

⋃n
k=1 Ck is uniformly integrable.

(In particular is a finite collection in L1 uniformly integrable).
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2. Williams, exercise E13.1.

3. Williams, exercise E13.2.

4. Let C be a uniformly integrable collection of random variables.

(a) Consider C̄, the closure of C in L1. Use E13.1 to show that also C̄ is
uniformly integrable.

(b) Let D be the convex hull of C, the smallest convex set that contains
C. Then both D and its closure in L1 are uniformly integrable

5. In this exercise you prove (fill in the details) the following characterization:
a collection C is uniformly integrable iff there exists a function G : R+ →
R+ such that limt→∞

G(t)
t = ∞ and M := sup{EG(|X|) : X ∈ C} < ∞.

The necessity you prove as follows. Let ε > 0 choose a = M/ε and c such
that G(t)

t ≥ a for all t > c. To prove uniform integrability of C you use
that |X| ≤ G(|X|)

a on the set {|X| ≥ c}.
It is less easy to prove sufficiency. Proceed as follows. Suppose that we
have a sequence (gn) with g0 = 0 and limn→∞ gn = ∞. Define g(t) =∑∞

n=0 1[n,n+1)(t)gn and G(t) =
∫ t

0
g(s)ds. Check that limt→∞

G(t)
t = ∞.

With an(X) = P(|X| > n), it holds that E G(|X|) ≤
∑∞

n=1 gnan(|X|).
Furthermore, for every k ∈ N we have

∫
|X|≥k

|X| dP ≥
∑∞

m=k am(X).
Pick for every n a constant cn ∈ N such that

∫
|X|≥cn

|X| dP ≤ 2−n. Then∑∞
m=cn

am(X) ≤ 2−n and hence
∑∞

n=1

∑∞
m=cn

am(X) ≤ 1. Choose then
the sequence (gn) as the ‘inverse’ of (cn): gn = #{k : ck ≤ n}.

6. Prove that a collection C is uniformly integrable iff there exists an increas-
ing and convex function G : R+ → R+ such that limt→∞

G(t)
t = ∞ and

M := sup{E G(|X|) : X ∈ C} < ∞. (You may use the result of exercise 5.)
Let D be the closure of the convex hull of a uniformly integrable collection
C in L1. With the function G as above we have sup{EG(|X|) : X ∈ D} =
M , whence also D is uniformly integrable.

7. Let p ≥ 1 and let X, X1, X2, . . . be random variables. Then Xn converges
to X in Lp iff the following two conditions are satisfied.

(a) Xn → X in probability,
(b) The collection {|Xn|p : n ∈ N} is uniformly integrable.

8. Exercise E13.3.

Chapter 14

1. Let Y ∈ L1, (Fn) and define for all n ∈ N the random variable Xn =
E [Y |Fn]. We know that there is X∞ such that Xn → X∞ a.s. Show that

for Y ∈ L2, we have Xn
L2

→ X∞. Find a condition such that X∞ = Y .
Give also an example in which P (X∞ = Y ) = 0.
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2. Let X = (Xn)n≤0 a (backward) supermartingale.

(a) Show equivalence of the next two properties:
(i) supn E|Xn| < ∞ and (ii) limn→−∞ EXn < ∞.
(Use that x 7→ x+ is convex and increasing.)

(b) Under the condition supn E|Xn| =: A < ∞ the supermartingale X
is uniformly integrable. To show this, you may proceed as follows
(but other solutions are equally welcome). Let ε > 0 and choose
K ∈ Z such that for all n < K one has 0 ≤ EXn − EXK < ε. It
is then sufficient to show that (Xn)n≤K is uniformly integrable. Let
c > 0 be arbitrary and Fn = {|Xn| > c}. Using the supermartingale
inequality you show that∫

Fn

|Xn| dP ≤
∫

Fn

|XK | dP + ε.

Because P(Fn) ≤ A
c you conclude the proof.

3. Show that R, defined on page 142 of Williams, is equal to qE ||Xp−1Y ||.
Show also that the hypothesis of lemma 14.10 is true for X ∧n if it is true
for X and complete the proof of this lemma.

4. Exercise E14.1.

5. Exercise E14.2. Find the error in the statement of what you have to prove
in (b).

6. Suppose that Q is a probability measure on (Ω,F) such that Q � P with
dQ/dP = M∞. Denote by Pn and Qn the restrictions of P and Q to Fn

(n ≥ 1). Show that Qn � Pn and that

dQn

dPn
= Mn,

where Mn = E P [M∞|Fn].

7. Let M be a nonnegative martingale with E Mn = 1 for all n. Define
Qn(F ) = E 1F Mn for F ∈ Fn (n ≥ 1). Show that for all n and k one has
Qn+k(F ) = Qn(F ) for F ∈ Fn. Assume that M is uniformly integrable.
Show that there exists a probability measure Q on F∞ = σ(

⋃
n Fn) that is

absolutely continuous w.r.t. P and that is such that for all n the restriction
of Q to Fn coincides with Qn. Characterize dQ/dP.

8. Consider the set up of section 14.17 (Williams). Assume that

n∏
k=1

E P

√
gk(Xk)
fk(Xk)

→ 0.

Suppose one observes X1, . . . , Xn. Consider the testing problem H0: the
densities of the Xk are the fk against H1: the densities of the Xk are the
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gk and the test that rejects H0 if Mn > cn, where P(Mn > cn) = α ∈ (0, 1)
(likelihood ratio test). Show that this test is consistent: Q(Mn ≤ cn) → 0.
(Side remark: the content of the Neyman-Pearson lemma is that this test
is most powerful among all test with significance level less than or equal
to α.)

9. Finish the proof of theorem 14.11: Show that ||Zn||p is increasing in n and
that ||Z∞||p = sup{||Zn||p : n ≥ 1}.

Chapter 17

1. Let µ, µ1, µ2, . . . be probability measures on R. Show that µn
w→ µ iff

for all bounded Lipschitz continuous functions one has
∫

f dµn →
∫

f dµ.
(Hint: for one implication the proof of lemma 17.2 is instructive.)

2. Show the ‘if part’ of lemma 17.2 without referring to the Skorohod rep-
resentation. First you take for given ε > 0 a K > 0 such that F (K) −
F (−K) > 1 − ε. Approximate a continuous f on the interval (−K, K]
with a piecewise constant function and you compute the integrals of this
approximating function and use the convergence of the Fn(x) at continuity
points x of F etc.

3. If the random variables X, X1, X2, . . . are defined on the same probability
space and if Xn

P→ X, then Xn
w→ X. Prove this.

4. Suppose that Xn
w→ X and that the collection {Xn, n ≥ 1} is uniformly

integrable (you make a minor change in the definition of this notion if
the Xn are defined on different probability spaces). Use the Skorohod
representation to show that Xn

w→ X implies EXn → EX.

5. Show the following variation on Fatou’s lemma: if Xn
w→ X, then E|X| ≤

lim infn→∞ E|Xn|.

6. Show that the weak limit of a sequence of probability measures is unique.

7. Look at the proof of the Helly-Bray lemma. You show that F is right-
continuous (use that for every ε > 0 and x ∈ R there is a c ∈ C such
that c > x and F (x) > H(c)− ε, take y ∈ (x, c)) and that Fnk

(x) (the nk

were obtained by the Cantor-type diagonalization procedure) converges to
F (x) at all continuity points x of F (take c1 < x < c2, ci ∈ C and use
that the Fnk

(ci) converge).

8. Consider the N(µn, σ2
n) distributions, where the µn are real numbers and

the σ2
n nonnegative. Show that this family is tight iff the sequences

(µn) and (σ2
n) are bounded. Under what condition do we have that the

N(µn, σ2
n) distributions converge to a (weak) limit? What is this limit?
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Central limit theorem

1. For each n we have a sequence ξn1, . . . , ξnkn of independent random vari-
ables with Eξnj = 0 and

∑kn

j=1 Var ξnj = 1. If
∑kn

j=1 E|ξnj |2+δ → 0 as

n →∞ for some δ > 0, then
∑kn

j=1 ξnj
w→ N(0, 1). Show that this follows

from the Lindeberg Central Limit Theorem.

2. The classical central limit theorem says that 1
σ
√

n

∑n
j=1(Xj−µ) w→ N(0, 1),

if the Xj are iid with EXj = µ and 0 < VarXj = σ2 < ∞. Show that this
follows from the Lindeberg Central Limit Theorem.

3. Show that Xn
w→ X iff Ef(Xn) → Ef(X) for all bounded uniformly

continuous functions f .

4. Let X and Y be independent, assume that Y has a N(0, 1) distribution.
Let σ > 0. Let φ be the characteristic function of X: φ(u) = E exp(iuX).

(a) Show that Z = X+σY has density p(z) = 1
σ
√

2π
E exp(− 1

2σ2 (z−X)2).

(b) Show that p(z) = 1
2πσ

∫
φ(−y/σ) exp(iyz/σ − 1

2y2) dy.

5. Let X, X1, X2, . . . be a sequence of random variables and Y a N(0, 1)-
distributed random variable independent of that sequence. Let φn be the
characteristic function of Xn and φ that of X. Let pn be the density of
Xn + σY and p the density of X + σY .

(a) If φn → φ pointwise, then pn → p pointwise. Invoke the previous
exercise and the dominated convergence theorem to show this.

(b) Let f ∈ Cb(R) be bounded by B. Show that |Ef(Xn +σY )−Ef(X +
σY )| ≤ 2B

∫
(p(z)− pn(z))+ dz.

(c) Show that |Ef(Xn + σY )− Ef(X + σY )| → 0 if φn → φ pointwise.

(d) Prove the following theorem: Xn
w→ X iff φn → φ pointwise.

6. Let X1, X2, . . . , Xn be an iid sequence having a distribution function F ,
a continuous density (w.r.t. Lebesgue measure) f . Let m be such that
F (m) = 1

2 . Assume that f(m) > 0 and that n is odd, n = 2k − 1, say
(k = 1

2 (n + 1)).

(a) Show that m is the unique solution of the equation F (x) = 1
2 . We

call m the median of the distribution of X1.

(b) Let X(1) = min{X1, . . . , Xn}, X(2) = min{X1, . . . , Xn} \ {X(1)}, etc.
The resulting X(1), X(2), . . . , X(n) is called the ordered sample. The
sample median Mn of X1, . . . , Xn is by definition X(k). Show that
with Unj = 1{Xj≤m+n−1/2x} we have

P(n1/2(Mn −m) ≤ x) = P(
∑

j

Unj ≥ k).
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(c) Let pn = PUnj , bn = (npn(1 − pn))1/2, ξnj = (Unj − pn)/bn, Zn =∑n
j=1 ξnj , tn = (k−npn)/bn. Rewrite the probabilities in part 6b as

P(Zn ≥ tn) and show that tn → t := −2xf(m).

(d) Show that P(Zn ≥ t) → 1 − Φ(t), where Φ is the standard normal
distribution.

(e) Show that P(Zn ≥ tn) → Φ(2f(m)x) and conclude that the Central
Limit Theorem for the sample median holds:

2f(m)n1/2(Mn −m) w→ N(0, 1).

Brownian motion

1. Consider the sequence of ‘tents’ (Xn), where Xn
t = nt for t ∈ [0, 1

2n ],
Xn

t = 1 − nt for t ∈ [ 1
2n , 1

n ], and zero elsewhere (there is no randomness
here). Show that all finite dimensional distributions of the Xn converge,
but Xn does not converge in distribution.

2. Show that ρ as in (1.1) defines a metric.

3. Suppose that the ξi of section 4 of the lecture notes are iid normally dis-
tributed random variables. Use Doob’s inequality to obtain P(maxj≤n |Sj | >
γ) ≤ 3γ−4n2.

4. Show that a finite dimensional projection on C[0,∞) (with the metric ρ)
is continuous.

5. Consider C[0,∞) with the Borel σ-algebra B induced by ρ and some prob-
ability space (Ω,F , P). If X : (Ω,F) → (C[0,∞),B) is measurable, then
all maps ω 7→ Xt(ω) are random variables. Show this, as well as its con-
verse. For the latter you need separability that allows you to say that the
Borel σ-algebra B is a product σ-algebra (see also Williams, page 82).

6. Prove proposition 2.2 of the lecture notes.
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