
Exercises Measure Theoretic Probability

2002-2003

Week 1

1. Prove the following statements.

(a) The intersection of an arbitrary family of d-systems is again a d-
system.

(b) The intersection of an arbitrary family of σ-algebras is again a σ-
algebra. Characterize σ(C) for a given collection C ⊂ 2Ω.

(c) If C1 and C2 are collections of subsets of Ω with C1 ⊂ C2, then d(C1) ⊂
d(C2).

2. Let G and H be two σ-algebras on Ω. Let C = {G ∩H : G ∈ G, H ∈ H}.
Show that C is a π-system and that σ(C) = σ(G,H).

3. Show that D2 (Williams, page 194) is a π-system.

4. If h1 and h2 are measurable functions, then h1h2 is measurable too.

5. Let Ω be a countable set. Let F = 2Ω and let p : Ω → [0, 1] satisfy∑
ω∈Ω p(ω) = 1. Put P(A) =

∑
ω∈A p(ω) for A ∈ F . Show that P is a

probability measure.

6. Let Ω be a countable set. Let A be the collection of A ⊂ Ω such that A or
its complement has finite cardinality. Show that A is an algebra. What is
d(A)?

Week 2

1. Let X be a random variable. Show that Π(X) := {X−1(−∞, x] : x ∈ R}
is a π-system and that it generates σ(X).

2. Let {Yγ : γ ∈ C} be an arbitrary collection of random variables and
{Xn : n ∈ N} be a countable collection of random variables, all defined on
the same probability space.

(a) Show that σ{Yγ : γ ∈ C} = σ{Y −1
γ (B) : γ ∈ C,B ∈ B}.

(b) Let Xn = σ{X1, . . . , Xn} (n ∈ N) and A =
⋃∞
n=1 Xn. Show that A

is an algebra and that σ(A) = σ{Xn : n ∈ N}.

3. Show that the X+ and X− are measurable functions and that X+ is
right-continuous and X− is left-continuous (notation as in section 3.12).

4. Williams, exercise E4.1.
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5. Williams, exercise E4.6.

6. Let F be a σ-algebra on Ω with the property that for all F ∈ F it holds
that P(F ) ∈ {0, 1}. Let X : Ω→ R be F-measurable. Show that for some
c ∈ R one has P(X = c) = 1. (Hint: P(X ≤ x) ∈ {0, 1} for all x.)

Week 3

1. Let X and Y be simple random variables. Show that EX doesn’t depend
on the chosen representation of X. Show also that E (X+Y ) = EX+EY .

2. Show that the expectation is a linear operator on L1(Ω,F ,P).

3. Let (Ω,F ,P) = ([0, 1],B,Leb) and let f, f1, f2, . . . be densities (nonne-
gative measurable functions that integrate to 1) on [0, 1]. Assume that
fn → f a.s. Show that for all x ∈ [0, 1] it holds that Fn(x)→ F (x), where
Fn(x) =

∫
[0,x]

fn(t) dt and F (x) =
∫

[0,t]
f(t) dx.

4. (a) Show that for X ∈ L1(Ω,F ,P) it holds that |EX| ≤ E |X|.
(b) Prove the second part of Scheffé’s lemma for random variables X and

Xn (see page 55).

5. Let X ∈ L1(Ω,F ,P). Show that limn→∞ nP(|X| > n) = 0.

Week 4

1. Prove the assertions (a)-(d) of section 5.14.

2. Prove the assertions (a)-(c) of section 6.5.

3. Prove lemma 6.12 (you find the ‘standard machine’ in section 5.12).

4. Prove part (b) of Fubini’s theorem in section 8.2.

5. Complete the proof of theorem 6.11: show the a.s. uniqueness of Y and
show that if X −Y ⊥ Z for all Z in K, then ||X −Y ||2 = inf{||X −Y ′||2 :
Y ′ ∈ K}.

Week 5

1. Finish the proof of theorem 9.2: Take arbitrary X ∈ L1(Ω,F ,P) and
show that the existence of the conditional expectation of X follows from
the existence of the conditional expectations of X+ and X−.

2. Prove the conditional version of Fatou’s lemma, property (f) on page 88.

3. Prove the conditional Dominated Convergence theorem, property (g) on
page 88.
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4. Exercise E9.1.

5. Exercise E9.2

6. Let (X,Y ) have a bivariate normal distribution with EX = µX , EY =
µY , VarX = σ2

X , VarY = σ2
Y and Cov (X,Y ) = c. Let

X̂ = µx +
c

σ2
Y

(Y − µY ).

Show that E (X − X̂)Y = 0. Show also (use a special property of the
bivariate normal distribution) that E (X − X̂)g(Y ) = 0 if g is a Borel-
measurable function such that E g(Y )2 <∞. Conclude that X̂ is a version
of E [X|Y ].

Week 6

In all exercises below we consider a probability space (Ω,F ,P) with a filtration
F.

1. Let X be an adapted process and T a stopping time that is finite. Show
that XT is F-measurable. Show also that for arbitrary stopping times T
(so the value infinity is also allowed) the stopped process XT is adapted.

2. Show that an adapted process X is a martingale iff E[Xn+m|Fn] = Xn for
all n,m ≥ 0.

3. Read first the definition of a submartingale. Let f be a convex function
on R. Suppose that X is a martingale and that E|f(Xn)| < ∞ for all n.
Show that the process (f(Xn))n≥0 is a submartingale.

4. For every n we have a measurable function fn on Rn. Let Z1, Z2, . . . be in-
dependent random variables and Fn = σ(Z1, . . . , Zn). Show that (you may
assume sufficient integrability) that Xn = fn(Z1, . . . , Zn) defines a mar-
tingale under the condition that Efn(z1, . . . , zn−1, Zn) = fn−1(z1, . . . , zn−1)
for every n.

5. If S and T are stopping times, then also S + T , S ∨ T and S ∧ T are
stopping times. Show this.

Week 7

In all exercises below we consider a probability space (Ω,F ,P) with a filtration
F.

1. (a) If X is a martingale is and f a convex function such that E|f(Xn)| <
∞, then Y defined by Yn = f(Xn) is a submartingale. Show this
(keyword: Jensen).

3



(b) Show that Y is a submartingale, if X is one and f is an increasing
function.

2. Prove Corollaries (c) and (d) on page 101.

3. Show that the process C of section 11.1 is previsible.

4. Let X be a submartingale with supn≥0 E|Xn| <∞. Show that there exists
a random variable X∞ such that Xn → X∞ a.s.

5. Show that for a supermartingaleX the condition sup{E |Xn| : n ∈ N} <∞
is equivalent to the condition sup{EX−n : n ∈ N} <∞.

6. Consider the probability space (Ω,F ,P) with Ω = [0, 1), F the Borelsets
of [0, 1) and P the Lebesgue measure. Let Ink = [k2−n, (k+ 1)2−n) for k =
0, . . . , 2n−1 and Fn be the σ-algebra by the Ink for k = 0, . . . , 2n−1. Define
Xn = 1In

0
2n. Show that Xn is a martingale is and that the conditions

of theorem 11.5 are satisfied. What is X∞ in this case? Do we have

Xn
L1

→ X∞? (This has something to do with 11.6).

Week 8

1. Let Y ∈ L1, (Fn) and define for all n ∈ N the random variable Xn =
E [Y |Fn]. We know that there is X∞ such that Xn → X∞ a.s. Show that

for Y ∈ L2, we have Xn
L2

→ X∞. Find a condition such that X∞ = Y .
Give also an example in which P (X∞ = Y ) = 0.

2. Show that every finite collection in L1 is uniformly integrable.

3. Williams, exercise E13.1.

4. Let C be a uniformly integrable collection of random variables.

(a) Consider C̄, the closure of C in L1. Use E13.1 to show that also C̄ is
uniformly integrable.

(b) Let D be the convex hull of C. Then both D and its closure in L1

are uniformly integrable

5. In this exercise you prove (fill in the details) the following characterization:
a collection C is uniformly integrable iff there exists a function G : R+ →
R

+ such that limt→∞
G(t)
t =∞ and M := sup{EG(|X|) : X ∈ C} <∞.

The necessity you prove as follows. Let ε > 0 choose a = M/ε and c such
that G(t)

t ≥ a for all t > c. To prove uniform integrability of C you use
that |X| ≤ G(|X|)

a on the set {|X| ≥ c}.
It is less easy to prove sufficieny. Proceed as follows. Suppose that we
have a sequence (gn) with g0 = 0 and limn→∞ gn = ∞. Define g(t) =∑∞
n=0 1[n,n+1)(t)gn and G(t) =

∫ t
0
g(s)ds. Check that limt→∞

G(t)
t =∞.
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With an(X) = P(|X| > n), it holds that EG(|X|) ≤
∑∞
n=1 gnan(|X|).

Furthermore, for every k ∈ N we have
∫
|X|≥k |X| dP ≥

∑∞
m=k am(X).

Pick for every n a constant cn ∈ N such that
∫
|X|≥cn

|X| dP ≤ 2−n. Then∑∞
m=cn

am(X) ≤ 2−n and hence
∑∞
n=1

∑∞
m=cn

am(X) ≤ 1. Choose then
the sequence (gn) as the ‘inverse’ of (cn): gn = #{k : ck ≤ n}.

6. Prove that a collection C is uniformly integrable iff there exists an incre-
asing and convex function G : R+ → R

+ such that limt→∞
G(t)
t =∞ and

M := sup{G(|X|) : X ∈ C} <∞.
Let D be the closure of the convex hull of a uniformly integrable collection
C in L1. With the function G as above we have sup{EG(|X|) : X ∈ D} =
M , whence also D is unifromly integrable.

7. Let p ≥ 1 and let X,X1, X2, . . . be random variables. Then Xn converges
to X in Lp iff the following two conditions are satisfied.

(a) Xn → X in probability,

(b) The collection {|Xn|p : n ∈ N} is uniformly integrable.

Week 9

1. Show that R, defined on page 142 of Williams, is equal to qE ||Xp−1Y ||.
Show also that the hypothesis of lemma 14.10 is true for X ∧n if it is true
for X and complete the proof of this lemma.

2. Exercise E14.2 of Williams.

3. Let X = (Xn)n≤0 a (backward) supermartingale.

(a) Show equivalence of the next two properties:
(i) supn E|Xn| <∞ and (ii) limn→−∞ EXn <∞.
(Use that x 7→ x+ is convex and increasing.)

(b) Under the condition supn E|Xn| =: A < ∞ the supermartingale X
is uniformly integrable. To show this, you may proceed as follows
(but other solutions are equally welcome). Let ε > 0 and choose
K ∈ Z such that for all n < K one has 0 ≤ EXn − EXK < ε. It
is then sufficient to show that (Xn)n≤K is uniformly integrable. Let
c > 0 be arbitrary and Fn = {|Xn| > c}. Using the supermartingale
inequality you show that∫

Fn

|Xn| dP ≤
∫
Fn

|XK | dP+ ε.

Because P(Fn) ≤ A
c you conclude the proof.
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Week 10

1. Let µ, µ1µ2, . . . be probability measures on R. Show that µn
w→ µ iff for all

bounded Lipschitz continuous functions one has
∫
f dµn →

∫
f dµ. (Hint:

for one implication the proof of lemma 17.2 is instructive.)

2. Show the ‘if part’ of lemma 17.2.

3. If the random variables X,X1, X2, . . . are defined on the same probability
space and if Xn

P→ X, then Xn
w→ X. Prove this.

4. Suppose that Xn
w→ X and that the collection {Xn, n ≥ 1} is uniformly

integrable (you make a minor change in the definition of this notion if
the Xn are defined on different probability spaces). Use the Skorohod
representation to show that Xn

w→ X implies EXn → EX.

5. Show the following variation on Fatou’s lemma: if Xn
w→ X, then E|X| ≤

lim infn→∞ E|Xn|.

6. Show that the weak limit of a sequence of probability measures is unique.

Week 11

1. Consider the N(µn, σ2
n) distributions, where the µn are real numbers and

the σ2
n nonnegative. Show that this family is tight iff the sequences

(µn) and (σ2
n) are bounded. Under what condition do we have that the

N(µn, σ2
n) distributions converge to a (weak) limit? What is this limit?

2. For each n we have a sequence ξn1, . . . , ξnkn of independent random va-
riables with Eξnj = 0 and

∑kn

j=1 Var ξnj = 1. If
∑kn

j=1 E|ξnj |2+δ → 0 as

n→∞ for some δ > 0, then
∑kn

j=1 ξnj
w→ N(0, 1). Show that this follows

from the Lindeberg Central Limit Theorem.

3. The classical central limit theorem says that 1
σ
√
n

∑n
j=1(Xj−µ) w→ N(0, 1),

if the Xj are iid with EXj = µ and 0 < VarXj = σ2 <∞. Show that this
follows from the Lindeberg Central Limit Theorem.

4. Show that Xn
w→ X iff Ef(Xn) → Ef(X) for all bounded uniformly

continuous functions f .

5. Let X and Y be independent, assume that Y has a N(0, 1) distribution.
Let σ > 0. Let φ be the characteristic function of X: φ(u) = E exp(iuX).

(a) Show that Z = X+σY has density p(z) = 1
σ
√

2π
E exp(− 1

2σ2 (z−X)2).

(b) Show that p(z) = 1
2πσ

∫
φ(−y/σ) exp(iyz/σ − 1

2y
2) dy.
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6. Let X,X1,X2, . . . be a sequence of random variables and Y a N(0, 1)-
distributed random variable independent of that sequence. Let φn be the
characteristic function of Xn and φ that of X. Let pn be the density of
Xn + σY and p the density of X + σY .

(a) If φn → φ pointwise, then pn → p pointwise. Invoke the previous
exercise and the dominated convergence theorem to show this.

(b) Let f ∈ Cb(R) be bounded by B. Show that |Ef(Xn+σY )−Ef(X+
σY )| ≤ 2B

∫
(p(z)− pn(z))+ dz.

(c) Show that |Ef(Xn + σY )− Ef(X + σY )| → 0 if φn → φ pointwise.

(d) Prove the following theorem: Xn
w→ X iff φn → φ pointwise.

Week 12

1. Consider the sequence of ‘tents’ (Xn), where Xn
t = nt for t ∈ [0, 1

2n ],
Xn
t = 1 − nt for t ∈ [ 1

2n ,
1
n ], and zero elsewhere (there is no randomness

here). Show that all finite dimensional distributions of the Xn converge,
but Xn does not converge in distribution.

2. Show that ρ as in (1.1) defines a metric.

3. Suppose that the ξi of section 4 are iid normally distributed random vari-
ables. Use Doob’s inequality to obtain P(maxj≤n |Sj | > γ) ≤ 3γ−4n2.

4. Show that a finite dimensional projection on C[0,∞) (with the metric ρ)
is continuous.

5. Consider C[0,∞) with the Borel σ-algebra B induced by ρ and some pro-
bability space (Ω,F ,P). If X : (Ω,F)→ (C[0,∞),B) is measurable, then
all maps ω 7→ Xt(ω) are random variables. Show this, as well as its con-
verse. For the latter you need separability that allows you to say that the
Borel σ-algebra B is a product σ-algebra (see also Williams, page 82).

6. Prove proposition 2.2 of the lecture notes.
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