Exercises Measure Theoretic Probability 2002-2003

Week 1

- 1. Prove the following statements.
 - (a) The intersection of an arbitrary family of *d*-systems is again a *d*-system.
 - (b) The intersection of an arbitrary family of σ -algebras is again a σ -algebra. Characterize $\sigma(\mathcal{C})$ for a given collection $\mathcal{C} \subset 2^{\Omega}$.
 - (c) If C_1 and C_2 are collections of subsets of Ω with $C_1 \subset C_2$, then $d(C_1) \subset d(C_2)$.
- 2. Let \mathcal{G} and \mathcal{H} be two σ -algebras on Ω . Let $\mathcal{C} = \{G \cap H : G \in \mathcal{G}, H \in \mathcal{H}\}$. Show that \mathcal{C} is a π -system and that $\sigma(\mathcal{C}) = \sigma(\mathcal{G}, \mathcal{H})$.
- 3. Show that \mathcal{D}_2 (Williams, page 194) is a π -system.
- 4. If h_1 and h_2 are measurable functions, then h_1h_2 is measurable too.
- 5. Let Ω be a countable set. Let $\mathcal{F} = 2^{\Omega}$ and let $p : \Omega \to [0, 1]$ satisfy $\sum_{\omega \in \Omega} p(\omega) = 1$. Put $\mathbb{P}(A) = \sum_{\omega \in A} p(\omega)$ for $A \in \mathcal{F}$. Show that \mathbb{P} is a probability measure.
- 6. Let Ω be a countable set. Let \mathcal{A} be the collection of $A \subset \Omega$ such that A or its complement has finite cardinality. Show that A is an algebra. What is $d(\mathcal{A})$?

- 1. Let X be a random variable. Show that $\Pi(X) := \{X^{-1}(-\infty, x] : x \in \mathbb{R}\}$ is a π -system and that it generates $\sigma(X)$.
- 2. Let $\{Y_{\gamma} : \gamma \in C\}$ be an arbitrary collection of random variables and $\{X_n : n \in \mathbb{N}\}$ be a countable collection of random variables, all defined on the same probability space.
 - (a) Show that $\sigma\{Y_{\gamma} : \gamma \in C\} = \sigma\{Y_{\gamma}^{-1}(B) : \gamma \in C, B \in \mathcal{B}\}.$
 - (b) Let $\mathcal{X}_n = \sigma\{X_1, \ldots, X_n\}$ $(n \in \mathbb{N})$ and $\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{X}_n$. Show that \mathcal{A} is an algebra and that $\sigma(\mathcal{A}) = \sigma\{X_n : n \in \mathbb{N}\}.$
- 3. Show that the X^+ and X^- are measurable functions and that X^+ is right-continuous and X^- is left-continuous (notation as in section 3.12).
- 4. Williams, exercise E4.1.

- 5. Williams, exercise E4.6.
- 6. Let \mathcal{F} be a σ -algebra on Ω with the property that for all $F \in \mathcal{F}$ it holds that $\mathbb{P}(F) \in \{0, 1\}$. Let $X : \Omega \to \mathbb{R}$ be \mathcal{F} -measurable. Show that for some $c \in \mathbb{R}$ one has $\mathbb{P}(X = c) = 1$. (*Hint*: $\mathbb{P}(X \le x) \in \{0, 1\}$ for all x.)

- 1. Let X and Y be simple random variables. Show that $\mathbb{E} X$ doesn't depend on the chosen representation of X. Show also that $\mathbb{E} (X+Y) = \mathbb{E} X + \mathbb{E} Y$.
- 2. Show that the expectation is a linear operator on $\mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$.
- 3. Let $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}, \text{Leb})$ and let f, f_1, f_2, \ldots be densities (nonnegative measurable functions that integrate to 1) on [0, 1]. Assume that $f_n \to f$ a.s. Show that for all $x \in [0, 1]$ it holds that $F_n(x) \to F(x)$, where $F_n(x) = \int_{[0,x]} f_n(t) dt$ and $F(x) = \int_{[0,t]} f(t) dx$.
- 4. (a) Show that for $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ it holds that $|\mathbb{E} X| \leq \mathbb{E} |X|$.
 - (b) Prove the second part of Scheffé's lemma for random variables X and X_n (see page 55).
- 5. Let $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Show that $\lim_{n \to \infty} n \mathbb{P}(|X| > n) = 0$.

Week 4

- 1. Prove the assertions (a)-(d) of section 5.14.
- 2. Prove the assertions (a)-(c) of section 6.5.
- 3. Prove lemma 6.12 (you find the 'standard machine' in section 5.12).
- 4. Prove part (b) of Fubini's theorem in section 8.2.
- 5. Complete the proof of theorem 6.11: show the a.s. uniqueness of Y and show that if $X Y \perp Z$ for all Z in \mathcal{K} , then $||X Y||_2 = \inf\{||X Y'||_2 : Y' \in \mathcal{K}\}$.

- 1. Finish the proof of theorem 9.2: Take arbitrary $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and show that the existence of the conditional expectation of X follows from the existence of the conditional expectations of X^+ and X^- .
- 2. Prove the conditional version of Fatou's lemma, property (f) on page 88.
- 3. Prove the conditional Dominated Convergence theorem, property (g) on page 88.

- 4. Exercise E9.1.
- 5. Exercise E9.2
- 6. Let (X, Y) have a bivariate normal distribution with $\mathbb{E} X = \mu_X$, $\mathbb{E} Y = \mu_Y$, $\operatorname{Var} X = \sigma_X^2$, $\operatorname{Var} Y = \sigma_Y^2$ and $\operatorname{Cov}(X, Y) = c$. Let

$$\hat{X} = \mu_x + \frac{c}{\sigma_Y^2} (Y - \mu_Y).$$

Show that $\mathbb{E}(X - \hat{X})Y = 0$. Show also (use a special property of the bivariate normal distribution) that $\mathbb{E}(X - \hat{X})g(Y) = 0$ if g is a Borelmeasurable function such that $\mathbb{E}g(Y)^2 < \infty$. Conclude that \hat{X} is a version of $\mathbb{E}[X|Y]$.

Week 6

In all exercises below we consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration \mathbb{F} .

- 1. Let X be an adapted process and T a stopping time that is finite. Show that X_T is \mathcal{F} -measurable. Show also that for arbitrary stopping times T (so the value infinity is also allowed) the stopped process X^T is adapted.
- 2. Show that an adapted process X is a martingale iff $\mathbb{E}[X_{n+m}|\mathcal{F}_n] = X_n$ for all $n, m \ge 0$.
- 3. Read first the definition of a submartingale. Let f be a convex function on \mathbb{R} . Suppose that X is a martingale and that $\mathbb{E}|f(X_n)| < \infty$ for all n. Show that the process $(f(X_n))_{n>0}$ is a submartingale.
- 4. For every *n* we have a measurable function f_n on \mathbb{R}^n . Let Z_1, Z_2, \ldots be independent random variables and $\mathcal{F}_n = \sigma(Z_1, \ldots, Z_n)$. Show that (you may assume sufficient integrability) that $X_n = f_n(Z_1, \ldots, Z_n)$ defines a martingale under the condition that $\mathbb{E}f_n(z_1, \ldots, z_{n-1}, Z_n) = f_{n-1}(z_1, \ldots, z_{n-1})$ for every *n*.
- 5. If S and T are stopping times, then also S + T, $S \vee T$ and $S \wedge T$ are stopping times. Show this.

Week 7

In all exercises below we consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration \mathbb{F} .

1. (a) If X is a martingale is and f a convex function such that $\mathbb{E}|f(X_n)| < \infty$, then Y defined by $Y_n = f(X_n)$ is a submartingale. Show this (keyword: Jensen).

- (b) Show that Y is a submartingale, if X is one and f is an increasing function.
- 2. Prove Corollaries (c) and (d) on page 101.
- 3. Show that the process C of section 11.1 is previsible.
- 4. Let X be a submartingale with $\sup_{n\geq 0} \mathbb{E}|X_n| < \infty$. Show that there exists a random variable X_{∞} such that $X_n \to X_{\infty}$ a.s.
- 5. Show that for a supermartingale X the condition $\sup\{\mathbb{E} |X_n| : n \in \mathbb{N}\} < \infty$ is equivalent to the condition $\sup\{\mathbb{E} X_n^- : n \in \mathbb{N}\} < \infty$.
- 6. Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega = [0, 1), \mathcal{F}$ the Borelsets of [0, 1) and \mathbb{P} the Lebesgue measure. Let $I_k^n = [k2^{-n}, (k+1)2^{-n})$ for $k = 0, \ldots, 2^n - 1$ and \mathcal{F}_n be the σ -algebra by the I_k^n for $k = 0, \ldots, 2^n - 1$. Define $X_n = 1_{I_0^n} 2^n$. Show that X_n is a martingale is and that the conditions of theorem 11.5 are satisfied. What is X_∞ in this case? Do we have $X_n \xrightarrow{\mathcal{L}^1} X_\infty$? (This has something to do with 11.6).

- 1. Let $Y \in \mathcal{L}^1$, (\mathcal{F}_n) and define for all $n \in \mathbb{N}$ the random variable $X_n = \mathbb{E}[Y|\mathcal{F}_n]$. We know that there is X_∞ such that $X_n \to X_\infty$ a.s. Show that for $Y \in \mathcal{L}^2$, we have $X_n \xrightarrow{\mathcal{L}^2} X_\infty$. Find a condition such that $X_\infty = Y$. Give also an example in which $P(X_\infty = Y) = 0$.
- 2. Show that every finite collection in \mathcal{L}^1 is uniformly integrable.
- 3. Williams, exercise E13.1.
- 4. Let \mathcal{C} be a uniformly integrable collection of random variables.
 - (a) Consider \overline{C} , the closure of C in \mathcal{L}^1 . Use E13.1 to show that also \overline{C} is uniformly integrable.
 - (b) Let \mathcal{D} be the convex hull of \mathcal{C} . Then both \mathcal{D} and its closure in \mathcal{L}^1 are uniformly integrable
- 5. In this exercise you prove (fill in the details) the following characterization: a collection C is uniformly integrable iff there exists a function $G : \mathbb{R}^+ \to \mathbb{R}^+$ such that $\lim_{t\to\infty} \frac{G(t)}{t} = \infty$ and $M := \sup\{\mathbb{E}G(|X|) : X \in C\} < \infty$. The necessity you prove as follows. Let $\varepsilon > 0$ choose $a = M/\varepsilon$ and c such that $\frac{G(t)}{t} \ge a$ for all t > c. To prove uniform integrability of C you use that $|X| \le \frac{G(|X|)}{a}$ on the set $\{|X| \ge c\}$. It is less easy to prove sufficient. Proceed as follows. Suppose that we

It is less easy to prove sufficient. Proceed as follows. Suppose that we have a sequence (g_n) with $g_0 = 0$ and $\lim_{n\to\infty} g_n = \infty$. Define $g(t) = \sum_{n=0}^{\infty} 1_{[n,n+1)}(t)g_n$ and $G(t) = \int_0^t g(s)ds$. Check that $\lim_{t\to\infty} \frac{G(t)}{t} = \infty$.

With $a_n(X) = \mathbb{P}(|X| > n)$, it holds that $\mathbb{E} G(|X|) \leq \sum_{n=1}^{\infty} g_n a_n(|X|)$. Furthermore, for every $k \in \mathbb{N}$ we have $\int_{|X| \geq k} |X| d\mathbb{P} \geq \sum_{m=k}^{\infty} a_m(X)$. Pick for every n a constant $c_n \in \mathbb{N}$ such that $\int_{|X| \geq c_n} |X| d\mathbb{P} \leq 2^{-n}$. Then $\sum_{m=c_n}^{\infty} a_m(X) \leq 2^{-n}$ and hence $\sum_{n=1}^{\infty} \sum_{m=c_n}^{\infty} a_m(X) \leq 1$. Choose then the sequence (g_n) as the 'inverse' of (c_n) : $g_n = \#\{k: c_k \leq n\}$.

- 6. Prove that a collection \mathcal{C} is uniformly integrable iff there exists an *incre-asing and convex* function $G : \mathbb{R}^+ \to \mathbb{R}^+$ such that $\lim_{t\to\infty} \frac{G(t)}{t} = \infty$ and $M := \sup\{G(|X|) : X \in \mathcal{C}\} < \infty$. Let \mathcal{D} be the closure of the convex hull of a uniformly integrable collection \mathcal{C} in \mathcal{L}^1 . With the function G as above we have $\sup\{\mathbb{E}G(|X|) : X \in \mathcal{D}\} = M$, whence also \mathcal{D} is uniformly integrable.
- 7. Let $p \ge 1$ and let X, X_1, X_2, \ldots be random variables. Then X_n converges to X in \mathcal{L}^p iff the following two conditions are satisfied.
 - (a) $X_n \to X$ in probability,
 - (b) The collection $\{|X_n|^p : n \in \mathbb{N}\}$ is uniformly integrable.

Week 9

- 1. Show that R, defined on page 142 of Williams, is equal to $q\mathbb{E} ||X^{p-1}Y||$. Show also that the hypothesis of lemma 14.10 is true for $X \wedge n$ if it is true for X and complete the proof of this lemma.
- 2. Exercise E14.2 of Williams.
- 3. Let $X = (X_n)_{n < 0}$ a (backward) supermartingale.
 - (a) Show equivalence of the next two properties: (i) $\sup_n \mathbb{E}|X_n| < \infty$ and (ii) $\lim_{n \to -\infty} \mathbb{E}X_n < \infty$. (Use that $x \mapsto x^+$ is convex and increasing.)
 - (b) Under the condition $\sup_n \mathbb{E}|X_n| =: A < \infty$ the supermartingale X is uniformly integrable. To show this, you may proceed as follows (but other solutions are equally welcome). Let $\varepsilon > 0$ and choose $K \in \mathbb{Z}$ such that for all n < K one has $0 \leq \mathbb{E}X_n - \mathbb{E}X_K < \varepsilon$. It is then sufficient to show that $(X_n)_{n \leq K}$ is uniformly integrable. Let c > 0 be arbitrary and $F_n = \{|X_n| > c\}$. Using the supermartingale inequality you show that

$$\int_{F_n} |X_n| \, d\mathbb{P} \le \int_{F_n} |X_K| \, d\mathbb{P} + \varepsilon.$$

Because $\mathbb{P}(F_n) \leq \frac{A}{c}$ you conclude the proof.

- 1. Let $\mu, \mu_1 \mu_2, \ldots$ be probability measures on \mathbb{R} . Show that $\mu_n \xrightarrow{w} \mu$ iff for all bounded Lipschitz continuous functions one has $\int f d\mu_n \to \int f d\mu$. (Hint: for one implication the proof of lemma 17.2 is instructive.)
- 2. Show the 'if part' of lemma 17.2.
- 3. If the random variables X, X_1, X_2, \ldots are defined on the same probability space and if $X_n \xrightarrow{P} X$, then $X_n \xrightarrow{w} X$. Prove this.
- 4. Suppose that $X_n \xrightarrow{w} X$ and that the collection $\{X_n, n \ge 1\}$ is uniformly integrable (you make a minor change in the definition of this notion if the X_n are defined on different probability spaces). Use the Skorohod representation to show that $X_n \xrightarrow{w} X$ implies $\mathbb{E}X_n \to \mathbb{E}X$.
- 5. Show the following variation on Fatou's lemma: if $X_n \xrightarrow{w} X$, then $\mathbb{E}|X| \leq \liminf_{n \to \infty} \mathbb{E}|X_n|$.
- 6. Show that the weak limit of a sequence of probability measures is unique.

- 1. Consider the $N(\mu_n, \sigma_n^2)$ distributions, where the μ_n are real numbers and the σ_n^2 nonnegative. Show that this family is tight iff the sequences (μ_n) and (σ_n^2) are bounded. Under what condition do we have that the $N(\mu_n, \sigma_n^2)$ distributions converge to a (weak) limit? What is this limit?
- 2. For each *n* we have a sequence $\xi_{n1}, \ldots, \xi_{nk_n}$ of independent random variables with $\mathbb{E}\xi_{nj} = 0$ and $\sum_{j=1}^{k_n} \operatorname{Var} \xi_{nj} = 1$. If $\sum_{j=1}^{k_n} \mathbb{E}|\xi_{nj}|^{2+\delta} \to 0$ as $n \to \infty$ for some $\delta > 0$, then $\sum_{j=1}^{k_n} \xi_{nj} \xrightarrow{w} N(0,1)$. Show that this follows from the Lindeberg Central Limit Theorem.
- 3. The classical central limit theorem says that $\frac{1}{\sigma\sqrt{n}}\sum_{j=1}^{n}(X_{j}-\mu) \xrightarrow{w} N(0,1)$, if the X_{j} are *iid* with $\mathbb{E}X_{j} = \mu$ and $0 < \operatorname{Var} X_{j} = \sigma^{2} < \infty$. Show that this follows from the Lindeberg Central Limit Theorem.
- 4. Show that $X_n \xrightarrow{w} X$ iff $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$ for all bounded uniformly continuous functions f.
- 5. Let X and Y be independent, assume that Y has a N(0,1) distribution. Let $\sigma > 0$. Let ϕ be the characteristic function of X: $\phi(u) = \mathbb{E} \exp(iuX)$.
 - (a) Show that $Z = X + \sigma Y$ has density $p(z) = \frac{1}{\sigma\sqrt{2\pi}} \mathbb{E} \exp(-\frac{1}{2\sigma^2}(z-X)^2)$.
 - (b) Show that $p(z) = \frac{1}{2\pi\sigma} \int \phi(-y/\sigma) \exp(iyz/\sigma \frac{1}{2}y^2) dy$.

- 6. Let X, X_1, X_2, \ldots be a sequence of random variables and Y a N(0, 1)distributed random variable independent of that sequence. Let ϕ_n be the characteristic function of X_n and ϕ that of X. Let p_n be the density of $X_n + \sigma Y$ and p the density of $X + \sigma Y$.
 - (a) If $\phi_n \to \phi$ pointwise, then $p_n \to p$ pointwise. Invoke the previous exercise and the dominated convergence theorem to show this.
 - (b) Let $f \in C_b(\mathbb{R})$ be bounded by B. Show that $|\mathbb{E}f(X_n + \sigma Y) \mathbb{E}f(X + \sigma Y)| \le 2B \int (p(z) p_n(z))^+ dz$.
 - (c) Show that $|\mathbb{E}f(X_n + \sigma Y) \mathbb{E}f(X + \sigma Y)| \to 0$ if $\phi_n \to \phi$ pointwise.
 - (d) Prove the following theorem: $X_n \xrightarrow{w} X$ iff $\phi_n \to \phi$ pointwise.

- 1. Consider the sequence of 'tents' (X^n) , where $X_t^n = nt$ for $t \in [0, \frac{1}{2n}]$, $X_t^n = 1 nt$ for $t \in [\frac{1}{2n}, \frac{1}{n}]$, and zero elsewhere (there is no randomness here). Show that all finite dimensional distributions of the X^n converge, but X^n does not converge in distribution.
- 2. Show that ρ as in (1.1) defines a metric.
- 3. Suppose that the ξ_i of section 4 are *iid* normally distributed random variables. Use Doob's inequality to obtain $\mathbb{P}(\max_{j \le n} |S_j| > \gamma) \le 3\gamma^{-4}n^2$.
- 4. Show that a finite dimensional projection on $C[0,\infty)$ (with the metric $\rho)$ is continuous.
- 5. Consider $C[0, \infty)$ with the Borel σ -algebra \mathcal{B} induced by ρ and some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. If $X : (\Omega, \mathcal{F}) \to (C[0, \infty), \mathcal{B})$ is measurable, then all maps $\omega \mapsto X_t(\omega)$ are random variables. Show this, as well as its converse. For the latter you need separability that allows you to say that the Borel σ -algebra \mathbb{B} is a product σ -algebra (see also Williams, page 82).
- 6. Prove proposition 2.2 of the lecture notes.