Exercises Measure Theoretic Probability 2003-2004

Week 1

- 1. Prove the following statements.
 - (a) The intersection of an arbitrary family of *d*-systems is again a *d*-system.
 - (b) The intersection of an arbitrary family of σ -algebras is again a σ -algebra.
 - (c) If C_1 and C_2 are collections of subsets of Ω with $C_1 \subset C_2$, then $d(C_1) \subset d(C_2)$.
- 2. Let \mathcal{G} and \mathcal{H} be two σ -algebras on Ω . Let $\mathcal{C} = \{G \cap H : G \in \mathcal{G}, H \in \mathcal{H}\}$. Show that \mathcal{C} is a π -system and that $\sigma(\mathcal{C}) = \sigma(\mathcal{G}, \mathcal{H})$.
- 3. Show that \mathcal{D}_2 (Williams, page 194) is a π -system.
- 4. If h_1 and h_2 are measurable functions, then h_1h_2 is measurable too.
- 5. Let Ω be a countable set. Let $\mathcal{F} = 2^{\Omega}$ and let $p : \Omega \to [0, 1]$ satisfy $\sum_{\omega \in \Omega} p(\omega) = 1$. Put $\mathbb{P}(A) = \sum_{\omega \in A} p(\omega)$ for $A \in \mathcal{F}$. Show that \mathbb{P} is a probability measure.
- 6. Let Ω be a countable set. Let \mathcal{A} be the collection of $A \subset \Omega$ such that A or its complement has finite cardinality. Show that A is an algebra. What is $d(\mathcal{A})$?

- 1. Let X be a random variable. Show that $\Pi(X) := \{X^{-1}(-\infty, x] : x \in \mathbb{R}\}$ is a π -system and that it generates $\sigma(X)$.
- 2. Let $\{Y_{\gamma} : \gamma \in C\}$ be an arbitrary collection of random variables and $\{X_n : n \in \mathbb{N}\}$ be a countable collection of random variables, all defined on the same probability space.
 - (a) Show that $\sigma\{Y_{\gamma}: \gamma \in C\} = \sigma\{Y_{\gamma}^{-1}(B): \gamma \in C, B \in \mathcal{B}\}.$
 - (b) Let $\mathcal{X}_n = \sigma\{X_1, \ldots, X_n\}$ $(n \in \mathbb{N})$ and $\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{X}_n$. Show that \mathcal{A} is an algebra and that $\sigma(\mathcal{A}) = \sigma\{X_n : n \in \mathbb{N}\}$.
- 3. Show that the X^+ and X^- are measurable functions and that X^+ is right-continuous and X^- is left-continuous (notation as in section 3.12).

- 4. Let \mathcal{F} be a σ -algebra on Ω with the property that for all $F \in \mathcal{F}$ it holds that $\mathbb{P}(F) \in \{0, 1\}$. Let $X : \Omega \to \mathbb{R}$ be \mathcal{F} -measurable. Show that for some $c \in \mathbb{R}$ one has $\mathbb{P}(X = c) = 1$. (*Hint*: $\mathbb{P}(X \le x) \in \{0, 1\}$ for all x.)
- 5. Let Ω be a countable set. Let \mathcal{A} be the collection of $A \subset \Omega$ such that A or its complement has finite cardinality. Show that \mathcal{A} is an algebra. What is $d(\mathcal{A})$?
- 6. Show that a finitely additive map $\mu : \Sigma_0 \to [0, \infty]$ is countably additive if $\mu(H_n) \to 0$ for every decreasing sequence of sets $H_n \in \Sigma_0$ with $\bigcap_n H_n = \emptyset$. If μ is countably additive, do we necessarily have $\mu(H_n) \to 0$ for every decreasing sequence of sets $H_n \in \Sigma_0$ with $\bigcap_n H_n = \emptyset$?

- 1. Let (S, Σ, μ) be a measure space and f a nonnegative simple function. Show that $\mu(f)$ doesn't depend on the chosen representation of f.
- 2. Show that the integral is a linear operator on $\mathcal{L}^1(S, \Sigma, \mu)$.
- 3. Prove the second part of Scheffé's lemma (see page 55).
- 4. Let $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Show that $\lim_{n \to \infty} n \mathbb{P}(|X| > n) = 0$.
- 5. Prove the assertions (a)-(c) of section 6.5.
- 6. Prove lemma 6.12 (you find the 'standard machine' in section 5.12).

Week 4

- 1. Williams, exercise E4.1.
- 2. Williams, exercise E4.6.
- 3. Prove part (b) of Fubini's theorem in section 8.2 for $f \in \mathcal{L}^1(S, \Sigma, \mu)$ (you already know it for $f \in m\Sigma^+$). Explain why $s_1 \mapsto f(s_1, s_2)$ is in $\mathcal{L}^1(S_1, \Sigma_1, \mu_1)$ for all s_2 outside a set N of μ_2 -measure zero and that I_2^f is well defined on N^c .
- 4. If Z_1, Z_2, \ldots is a sequence of nonnegative random variables, then

$$\mathbb{E}\sum_{k=1}^{\infty} Z_k = \sum_{k=1}^{\infty} \mathbb{E}Z_k.$$
 (1)

Show that this follows from Fubini's theorem. If $\sum_{k=1}^{\infty} \mathbb{E} Z_k < \infty$, what is $\mathbb{P}(\sum_{k=1}^{\infty} Z_k = \infty)$. Formulate a result similar to (1) for random variables Z_i that may assume negative values as well.

- 5. Let the vector of random variables (X, Y) have a joint probability density function f. Let f_X and f_Y be the (marginal) probability density functions of X and Y respectively. Show that X and Y are independent iff $f(x, y) = f_X(x)f_Y(y)$ for all x, y except in a set of Leb×Leb-measure zero.
- 6. Let f be defined on \mathbb{R}^2 such that for all $a \in \mathbb{R}$ the function $y \mapsto f(a, y)$ is Borel and such that for all $b \in \mathbb{R}^2$ the function $x \mapsto f(x, b)$ is continuous. Show that for all $a, b, c \in \mathbb{R}$ the function $(x, y) \mapsto bx + cf(a, y)$ is Borelmeasurable on \mathbb{R}^2 . Let $a_i^n = i/n, i \in \mathbb{Z}, n \in \mathbb{N}$. Define

$$f^{n}(x,y) = \sum_{i} 1_{(a_{i-1}^{n},a_{i}^{n}]}(x) \left(\frac{a_{i}^{n}-x}{a_{i}^{n}-a_{i-1}^{n}}f(a_{i-1}^{n},y) + \frac{x-a_{i-1}^{n}}{a_{i}^{n}-a_{i-1}^{n}}f(a_{i}^{n},y)\right).$$

Show that the f^n are Borel-measurable on \mathbb{R}^2 and conclude that f is Borel-measurable on \mathbb{R}^2 .

Week 5

- 1. Prove the conditional version of Fatou's lemma, property (f) on page 88 (Williams).
- 2. Prove the conditional Dominated Convergence theorem, property (g) on page 88 (Williams).
- 3. Let (X, Y) have a bivariate normal distribution with $\mathbb{E} X = \mu_X$, $\mathbb{E} Y = \mu_Y$, $\operatorname{Var} X = \sigma_X^2$, $\operatorname{Var} Y = \sigma_Y^2$ and $\operatorname{Cov}(X, Y) = c$. Let

$$\hat{X} = \mu_x + \frac{c}{\sigma_Y^2} (Y - \mu_Y).$$

Show that $\mathbb{E}(X - \hat{X})Y = 0$. Show also (use a special property of the bivariate normal distribution) that $\mathbb{E}(X - \hat{X})g(Y) = 0$ if g is a Borel-measurable function such that $\mathbb{E}g(Y)^2 < \infty$. Conclude that \hat{X} is a version of $\mathbb{E}[X|Y]$.

- 1. Exercise E9.1 (Williams).
- 2. Exercise E9.2 (Williams)
- 3. Let C_1, \ldots, C_n be uniformly integrable collections of random variables on a common probability space. Show that $\bigcup_{k=1}^n C_k$ is uniformly integrable. (In particular is a finite collection in \mathcal{L}^1 uniformly integrable).
- 4. Williams, exercise E13.1.
- 5. Let C be a uniformly integrable collection of random variables.

- (a) Consider \overline{C} , the closure of C in \mathcal{L}^1 . Use E13.1 to show that also \overline{C} is uniformly integrable.
- (b) Let \mathcal{D} be the convex hull of \mathcal{C} . Then both \mathcal{D} and its closure in \mathcal{L}^1 are uniformly integrable
- 6. In this exercise you prove (fill in the details) the following characterization: a collection \mathcal{C} is uniformly integrable iff there exists a function $G: \mathbb{R}^+ \to \mathbb{R}^+$ such that $\lim_{t\to\infty} \frac{G(t)}{t} = \infty$ and $M := \sup\{\mathbb{E}G(|X|): X \in \mathcal{C}\} < \infty$. The necessity you prove as follows. Let $\varepsilon > 0$ choose $a = M/\varepsilon$ and c such that $\frac{G(t)}{t} \ge a$ for all t > c. To prove uniform integrability of \mathcal{C} you use that $|X| \le \frac{G(|X|)}{a}$ on the set $\{|X| \ge c\}$. It is less easy to prove sufficieny. Proceed as follows. Suppose that we have a sequence (g_n) with $g_0 = 0$ and $\lim_{n\to\infty} g_n = \infty$. Define $g(t) = \sum_{n=0}^{\infty} \mathbb{1}_{[n,n+1)}(t)g_n$ and $G(t) = \int_0^t g(s)ds$. Check that $\lim_{t\to\infty} \frac{G(t)}{t} = \infty$. With $a_n(X) = \mathbb{P}(|X| > n)$, it holds that $\mathbb{E}G(|X|) \le \sum_{n=1}^{\infty} g_n a_n(|X|)$. Furthermore, for every $k \in \mathbb{N}$ we have $\int_{|X|\ge k} |X| d\mathbb{P} \ge \sum_{m=k}^{\infty} a_m(X)$. Pick for every n a constant $c_n \in \mathbb{N}$ such that $\int_{|X|\ge c_n} |X| d\mathbb{P} \le 2^{-n}$. Then $\sum_{m=c_n}^{\infty} a_m(X) \le 2^{-n}$ and hence $\sum_{n=1}^{\infty} \sum_{m=c_n}^{\infty} a_m(X) \le 1$. Choose then the sequence (g_n) as the 'inverse' of $(c_n): g_n = \#\{k: c_k \le n\}$.
- 7. Prove that a collection \mathcal{C} is uniformly integrable iff there exists an *increasing and convex* function $G: \mathbb{R}^+ \to \mathbb{R}^+$ such that $\lim_{t\to\infty} \frac{G(t)}{t} = \infty$ and $M := \sup\{G(|X|) : X \in \mathcal{C}\} < \infty$. Let \mathcal{D} be the closure of the convex hull of a uniformly integrable collection \mathcal{C} in \mathcal{L}^1 . With the function G as above we have $\sup\{\mathbb{E}G(|X|) : X \in \mathcal{D}\} = M$, whence also \mathcal{D} is uniformly integrable.
- 8. Let $p \ge 1$ and let X, X_1, X_2, \ldots be random variables. Then X_n converges to X in \mathcal{L}^p iff the following two conditions are satisfied.
 - (a) $X_n \to X$ in probability,
 - (b) The collection $\{|X_n|^p : n \in \mathbb{N}\}$ is uniformly integrable.

In all exercises below we consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration \mathbb{F} .

- 1. Let X be an adapted process and T a stopping time that is finite. Show that X_T is \mathcal{F} -measurable. Show also that for arbitrary stopping times T (so the value infinity is also allowed) the stopped process X^T is adapted.
- 2. For every *n* we have a measurable function f_n on \mathbb{R}^n . Let Z_1, Z_2, \ldots be independent random variables and $\mathcal{F}_n = \sigma(Z_1, \ldots, Z_n)$. Show that (you may

assume sufficient integrability) that $X_n = f_n(Z_1, \ldots, Z_n)$ defines a martingale under the condition that $\mathbb{E}f_n(z_1, \ldots, z_{n-1}, Z_n) = f_{n-1}(z_1, \ldots, z_{n-1})$ for every n.

- 3. If S and T are stopping times, then also S + T, $S \vee T$ and $S \wedge T$ are stopping times. Show this.
- 4. (a) If X is a martingale is and f a convex function such that $\mathbb{E}|f(X_n)| < \infty$, then Y defined by $Y_n = f(X_n)$ is a submartingale. Show this.
 - (b) Show that Y is a submartingale, if X is a submartingale and f is an increasing function.
- 5. Prove Corollaries (c) and (d) on page 101.
- 6. Let X be an adapted process and a < b real numbers. Let $S_1 = \inf\{n : X_n < a\}$, $T_1 = \inf\{n > S_1 : X_n > b\}$, etc. Show that the S_k and T_k are stopping times. Show also that the process C of section 11.1 is previsible (synonymous for predictable).
- 7. Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega = [0, 1)$, \mathcal{F} the Borelsets of [0, 1) and \mathbb{P} the Lebesgue measure. Let $I_k^n = [k2^{-n}, (k+1)2^{-n})$ for $k = 0, \ldots, 2^n - 1$ and \mathcal{F}_n be the σ -algebra by the I_k^n for $k = 0, \ldots, 2^n - 1$. Define $X_n = 1_{I_0^n} 2^n$. Show that X_n is a martingale is and that the conditions of theorem 11.5 are satisfied. What is X_∞ in this case? Do we have $X_n \stackrel{\mathcal{L}^1}{\longrightarrow} X_\infty$? (This has something to do with 11.6).

Week 8

In all exercises below we consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration \mathbb{F} .

- 1. Let $Y \in \mathcal{L}^1$, (\mathcal{F}_n) and define for all $n \in \mathbb{N}$ the random variable $X_n = \mathbb{E}[Y|\mathcal{F}_n]$. We know that there is X_∞ such that $X_n \to X_\infty$ a.s. Show that for $Y \in \mathcal{L}^2$, we have $X_n \xrightarrow{\mathcal{L}^2} X_\infty$. Find a condition such that $X_\infty = Y$. Give also an example in which $P(X_\infty = Y) = 0$.
- 2. Let $X = (X_n)_{n < 0}$ a (backward) supermartingale.
 - (a) Show equivalence of the next two properties: (i) $\sup_n \mathbb{E}|X_n| < \infty$ and (ii) $\lim_{n \to -\infty} \mathbb{E}X_n < \infty$. (Use that $x \mapsto x^+$ is convex and increasing.)
 - (b) Under the condition $\sup_n \mathbb{E}|X_n| =: A < \infty$ the supermartingale X is uniformly integrable. To show this, you may proceed as follows (but other solutions are equally welcome). Let $\varepsilon > 0$ and choose $K \in \mathbb{Z}$ such that for all n < K one has $0 \leq \mathbb{E}X_n - \mathbb{E}X_K < \varepsilon$. It is then sufficient to show that $(X_n)_{n < K}$ is uniformly integrable. Let

c > 0 be arbitrary and $F_n = \{|X_n| > c\}$. Using the supermartingale inequality you show that

$$\int_{F_n} |X_n| \, d\mathbb{P} \le \int_{F_n} |X_K| \, d\mathbb{P} + \varepsilon$$

Because $\mathbb{P}(F_n) \leq \frac{A}{c}$ you conclude the proof.

- 3. Finish the proof of theorem 14.11: Show that $||Z_n||_p$ is increasing in n and that $||Z_{\infty}||_p = \sup\{||Z_n||_p : n \ge 1\}.$
- 4. Exercise E13.3.
- 5. Exercise E14.1.
- 6. Exercise E14.2.

Week 9

In all exercises below we consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a filtration \mathbb{F} .

- 1. Exercise 12.1.
- 2. Exercise 12.2
- 3. Let (H_n) be a predictable sequence of random variables with $\mathbb{E} H_n^2 < \infty$ for all n. Let (ε_n) be a sequence with $\mathbb{E} \varepsilon_n^2 = 1$, $\mathbb{E} \varepsilon_n = 0$ and ε_n independent of \mathcal{F}_{n-1} for all n. Let $M_n = \sum_{k \le n} H_k \varepsilon_k$, $n \ge 0$. Compute the conditional variance process A of (M_n) . Take p > 1/2 and consider $N_n = \sum_{k \le n} \frac{1}{(1+A_k)^p} H_k \varepsilon_k$. Show that there exists a random variable N_∞ such that $N_n \to N_\infty$ a.s. Show (use Kroneckers's lemma) that $\frac{M_n}{(1+A_n)^p}$ has an a.s. finite limit.
- 4. Suppose that \mathbb{Q} is a probability measure on (Ω, \mathcal{F}) such that $\mathbb{Q} \ll \mathbb{P}$ with $d\mathbb{Q}/d\mathbb{P} = M_{\infty}$. Denote by \mathbb{P}_n and \mathbb{Q}_n the restrictions of \mathbb{P} and \mathbb{Q} to \mathcal{F}_n $(n \geq 1)$. Show that $\mathbb{Q}_n \ll \mathbb{P}_n$ and that

$$\frac{d\mathbb{Q}_n}{d\mathbb{P}_n} = M_n$$

where $M_n = \mathbb{E}_P[M_\infty | \mathcal{F}_n].$

5. Let M be a nonnegative martingale with $\mathbb{E} M_n = 1$ for all n. Define $\mathbb{Q}_n(F) = \mathbb{E} \mathbb{1}_F M_n$ for $F \in \mathcal{F}_n$ $(n \ge 1)$. Show that for all n and k one has $\mathbb{Q}_{n+k}(F) = \mathbb{Q}_n(F)$ for $F \in \mathcal{F}_n$. Assume that M is uniformly integrable. Show that there exists a probability measure \mathbb{Q} on $\mathcal{F}_{\infty} = \sigma(\bigcup_n \mathcal{F}_n)$ that is absolutely continuous w.r.t. \mathbb{P} and that is such that for all n the restriction of \mathbb{Q} to \mathcal{F}_n coincides with \mathbb{Q}_n . Characterize $d\mathbb{Q}/d\mathbb{P}$.

6. Consider the set up of section 14.17 (Williams). Assume that

$$\prod_{k=1}^{n} \mathbb{E}_{\mathbb{P}} \sqrt{\frac{g_k(X_k)}{f_k(X_k)}} \to 0.$$

Suppose one observes X_1, \ldots, X_n . Consider the testing problem H_0 : the densities of the X_k are the f_k against H_1 : the densities of the X_k are the g_k and the test that rejects H_0 if $M_n > c_n$, where $\mathbb{P}(M_n > c_n) = \alpha \in (0, 1)$ (likelihood ratio test). Show that this test is *consistent*: $\mathbb{Q}(M_n \leq c_n) \to 0$. (Side remark: the content of the Neyman-Pearson lemma is that this test is most powerful among all test with significance level less than or equal to α .)

- 1. Let $\mu, \mu_1 \mu_2, \ldots$ be probability measures on \mathbb{R} . Show that $\mu_n \xrightarrow{w} \mu$ iff for all bounded Lipschitz continuous functions one has $\int f d\mu_n \to \int f d\mu$. (Hint: for one implication the proof of lemma 17.2 is instructive.)
- 2. Show the 'if part' of lemma 17.2 without referring to the Skorohod representation. First you take for given $\varepsilon > 0$ a K > 0 such that $F(K) F(-K) > 1 \varepsilon$ (why does such a K exist?). Approximate a continuous f on the interval (-K, K] with a piecewise constant function and you compute the integrals of this approximating function and use the convergence of the $F_n(x)$ at continuity points x of F etc.
- 3. If the random variables X, X_1, X_2, \ldots are defined on the same probability space and if $X_n \xrightarrow{P} X$, then $X_n \xrightarrow{w} X$. Prove this.
- 4. Suppose that $X_n \xrightarrow{w} X$ and that the collection $\{X_n, n \ge 1\}$ is uniformly integrable (you make a minor change in the definition of this notion if the X_n are defined on different probability spaces). Use the Skorohod representation to show that $X_n \xrightarrow{w} X$ implies $\mathbb{E}X_n \to \mathbb{E}X$.
- 5. Show the following variation on Fatou's lemma: if $X_n \xrightarrow{w} X$, then $\mathbb{E}|X| \le \liminf_{n\to\infty} \mathbb{E}|X_n|$.
- 6. Show that the weak limit of a sequence of probability measures is unique.
- 7. The proof of the Helly-Bray lemma that I gave was not complete. You show that the $F_{n_k}(c_i)$ converge for all c_i (the n_k were obtained by the Cantor-type diagonalization procedure) and that $F_{n_k}(x)$ converges to F(x) at all continuity points x of F.

- 1. Consider the $N(\mu_n, \sigma_n^2)$ distributions, where the μ_n are real numbers and the σ_n^2 nonnegative. Show that this family is tight iff the sequences (μ_n) and (σ_n^2) are bounded. Under what condition do we have that the $N(\mu_n, \sigma_n^2)$ distributions converge to a (weak) limit? What is this limit?
- 2. For each *n* we have a sequence $\xi_{n1}, \ldots, \xi_{nk_n}$ of independent random variables with $\mathbb{E}\xi_{nj} = 0$ and $\sum_{j=1}^{k_n} \operatorname{Var} \xi_{nj} = 1$. If $\sum_{j=1}^{k_n} \mathbb{E}|\xi_{nj}|^{2+\delta} \to 0$ as $n \to \infty$ for some $\delta > 0$, then $\sum_{j=1}^{k_n} \xi_{nj} \xrightarrow{w} N(0, 1)$. Show that this follows from the Lindeberg Central Limit Theorem.
- 3. Show that $X_n \xrightarrow{w} X$ iff $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$ for all bounded uniformly continuous functions f.
- 4. Let X and Y be independent, assume that Y has a N(0,1) distribution. Let $\sigma > 0$. Let ϕ be the characteristic function of X: $\phi(u) = \mathbb{E} \exp(iuX)$.
 - (a) Show that $Z = X + \sigma Y$ has density $p(z) = \frac{1}{\sigma\sqrt{2\pi}} \mathbb{E} \exp(-\frac{1}{2\sigma^2}(z-X)^2)$.
 - (b) Show that $p(z) = \frac{1}{2\pi\sigma} \int \phi(-y/\sigma) \exp(iyz/\sigma \frac{1}{2}y^2) dy$.
- 5. Let X, X_1, X_2, \ldots be a sequence of random variables and Y a N(0, 1)distributed random variable independent of that sequence. Let ϕ_n be the characteristic function of X_n and ϕ that of X. Let p_n be the density of $X_n + \sigma Y$ and p the density of $X + \sigma Y$.
 - (a) If $\phi_n \to \phi$ pointwise, then $p_n \to p$ pointwise. Invoke the previous exercise and the dominated convergence theorem to show this.
 - (b) Let $f \in C_b(\mathbb{R})$ be bounded by B. Show that $|\mathbb{E}f(X_n + \sigma Y) \mathbb{E}f(X + \sigma Y)| \le 2B \int (p(z) p_n(z))^+ dz$.
 - (c) Show that $|\mathbb{E}f(X_n + \sigma Y) \mathbb{E}f(X + \sigma Y)| \to 0$ if $\phi_n \to \phi$ pointwise.
 - (d) Prove the following theorem: $X_n \xrightarrow{w} X$ iff $\phi_n \to \phi$ pointwise.
- 6. Let X_1, X_2, \ldots, X_n be an *iid* sequence having a distribution function F, a density (w.r.t. Lebesgue measure) f. Let m be such that $F(m) = \frac{1}{2}$. Assume that f(m) > 0 and that n is odd, n = 2k 1, say $(k = \frac{1}{2}(n+1))$.
 - (a) Show that m is the unique solution of the equation $F(x) = \frac{1}{2}$. We call m the median of the distribution of X_1 .
 - (b) The sample median M_n of X_1, \ldots, X_n is by definition X_k . Show that with $U_{nj} = 1_{\{X_j \le m + n^{-1/2}x\}}$ we have

$$\mathbb{P}(n^{1/2}(M_n - m) \le x) = \mathbb{P}(\sum_j U_{nj} \ge k).$$

(c) Let $p_n = \mathbb{P}U_{nj}$, $b_n = (np_n(1-p_n))^{1/2}$, $\xi_{nj} = (U_{nj}-p_n)/b_n$, $Z_n = \sum_{j=1}^n \xi_{nj}$, $t_n = (k-np_n)/b_n$. Rewrite the probabilities in part 6b as $\mathbb{P}(Z_n \ge t_n)$ and show that $t_n \to t := -2xf(m)$.

- (d) Show that $\mathbb{P}(Z_n \ge t) \to 1 \Phi(t)$, where Φ is the standard normal distribution.
- (e) Show that $\mathbb{P}(Z_n \ge t_n) \to \Phi(2f(m)x)$ and conclude that the *Central Limit Theorem for the sample median* holds:

$$2f(m)n^{1/2}(M_n - m) \xrightarrow{w} N(0, 1).$$

- 1. Consider the sequence of 'tents' (X^n) , where $X_t^n = nt$ for $t \in [0, \frac{1}{2n}]$, $X_t^n = 1 nt$ for $t \in [\frac{1}{2n}, \frac{1}{n}]$, and zero elsewhere (there is no randomness here). Show that all finite dimensional distributions of the X^n converge, but X^n does not converge in distribution.
- 2. Show that ρ as in (1.1) defines a metric.
- 3. Suppose that the ξ_i of section 4 are *iid* normally distributed random variables. Use Doob's inequality to obtain $\mathbb{P}(\max_{j \le n} |S_j| > \gamma) \le 3\gamma^{-4}n^2$.
- 4. Show that a finite dimensional projection on $C[0,\infty)$ (with the metric ρ) is continuous.
- 5. Consider $C[0, \infty)$ with the Borel σ -algebra \mathcal{B} induced by ρ and some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. If $X : (\Omega, \mathcal{F}) \to (C[0, \infty), \mathcal{B})$ is measurable, then all maps $\omega \mapsto X_t(\omega)$ are random variables. Show this, as well as its converse. For the latter you need separability that allows you to say that the Borel σ -algebra \mathbb{B} is a product σ -algebra (see also Williams, page 82).
- 6. Prove proposition 2.2 of the lecture notes.