
Exercises Measure Theoretic Probability

2003-2004

Week 1

1. Prove the following statements.

(a) The intersection of an arbitrary family of d-systems is again a d-
system.

(b) The intersection of an arbitrary family of σ-algebras is again a σ-
algebra.

(c) If C1 and C2 are collections of subsets of Ω with C1 ⊂ C2, then d(C1) ⊂
d(C2).

2. Let G and H be two σ-algebras on Ω. Let C = {G ∩H : G ∈ G, H ∈ H}.
Show that C is a π-system and that σ(C) = σ(G,H).

3. Show that D2 (Williams, page 194) is a π-system.

4. If h1 and h2 are measurable functions, then h1h2 is measurable too.

5. Let Ω be a countable set. Let F = 2Ω and let p : Ω → [0, 1] satisfy∑
ω∈Ω p(ω) = 1. Put P(A) =

∑
ω∈A p(ω) for A ∈ F . Show that P is a

probability measure.

6. Let Ω be a countable set. Let A be the collection of A ⊂ Ω such that A or
its complement has finite cardinality. Show that A is an algebra. What is
d(A)?

Week 2

1. Let X be a random variable. Show that Π(X) := {X−1(−∞, x] : x ∈ R}
is a π-system and that it generates σ(X).

2. Let {Yγ : γ ∈ C} be an arbitrary collection of random variables and
{Xn : n ∈ N} be a countable collection of random variables, all defined on
the same probability space.

(a) Show that σ{Yγ : γ ∈ C} = σ{Y −1
γ (B) : γ ∈ C,B ∈ B}.

(b) Let Xn = σ{X1, . . . , Xn} (n ∈ N) and A =
⋃∞

n=1 Xn. Show that A
is an algebra and that σ(A) = σ{Xn : n ∈ N}.

3. Show that the X+ and X− are measurable functions and that X+ is
right-continuous and X− is left-continuous (notation as in section 3.12).
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4. Let F be a σ-algebra on Ω with the property that for all F ∈ F it holds
that P(F ) ∈ {0, 1}. Let X : Ω → R be F-measurable. Show that for some
c ∈ R one has P(X = c) = 1. (Hint: P(X ≤ x) ∈ {0, 1} for all x.)

5. Let Ω be a countable set. Let A be the collection of A ⊂ Ω such that A or
its complement has finite cardinality. Show that A is an algebra. What is
d(A)?

6. Show that a finitely additive map µ : Σ0 → [0,∞] is countably additive if
µ(Hn) → 0 for every decreasing sequence of sets Hn ∈ Σ0 with

⋂
n Hn = ∅.

If µ is countably additive, do we necessarily have µ(Hn) → 0 for every
decreasing sequence of sets Hn ∈ Σ0 with

⋂
n Hn = ∅?

Week 3

1. Let (S, Σ, µ) be a measure space and f a nonnegative simple function.
Show that µ(f) doesn’t depend on the chosen representation of f .

2. Show that the integral is a linear operator on L1(S, Σ, µ).

3. Prove the second part of Scheffé’s lemma (see page 55).

4. Let X ∈ L1(Ω,F , P). Show that limn→∞ nP(|X| > n) = 0.

5. Prove the assertions (a)-(c) of section 6.5.

6. Prove lemma 6.12 (you find the ‘standard machine’ in section 5.12).

Week 4

1. Williams, exercise E4.1.

2. Williams, exercise E4.6.

3. Prove part (b) of Fubini’s theorem in section 8.2 for f ∈ L1(S, Σ, µ)
(you already know it for f ∈ mΣ+). Explain why s1 7→ f(s1, s2) is in
L1(S1,Σ1, µ1) for all s2 outside a set N of µ2-measure zero and that If

2 is
well defined on N c.

4. If Z1, Z2, . . . is a sequence of nonnegative random variables, then

E
∞∑

k=1

Zk =
∞∑

k=1

E Zk. (1)

Show that this follows from Fubini’s theorem. If
∑∞

k=1 E Zk < ∞, what is
P(

∑∞
k=1 Zk = ∞). Formulate a result similar to (1) for random variables

Zi that may assume negative values as well.
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5. Let the vector of random variables (X, Y ) have a joint probability density
function f . Let fX and fY be the (marginal) probability density functions
of X and Y respectively. Show that X and Y are independent iff f(x, y) =
fX(x)fY (y) for all x, y except in a set of Leb×Leb-measure zero.

6. Let f be defined on R2 such that for all a ∈ R the function y 7→ f(a, y) is
Borel and such that for all b ∈ R2 the function x 7→ f(x, b) is continuous.
Show that for all a, b, c ∈ R the function (x, y) 7→ bx + cf(a, y) is Borel-
measurable on R2. Let an

i = i/n, i ∈ Z, n ∈ N. Define

fn(x, y) =
∑

i

1(an
i−1,an

i ](x)(
an

i − x

an
i − an

i−1

f(an
i−1, y) +

x− an
i−1

an
i − an

i−1

f(an
i , y)).

Show that the fn are Borel-measurable on R2 and conclude that f is
Borel-measurable on R2.

Week 5

1. Prove the conditional version of Fatou’s lemma, property (f) on page 88
(Williams).

2. Prove the conditional Dominated Convergence theorem, property (g) on
page 88 (Williams).

3. Let (X, Y ) have a bivariate normal distribution with E X = µX , E Y =
µY , VarX = σ2

X , VarY = σ2
Y and Cov (X, Y ) = c. Let

X̂ = µx +
c

σ2
Y

(Y − µY ).

Show that E (X − X̂)Y = 0. Show also (use a special property of the
bivariate normal distribution) that E (X − X̂)g(Y ) = 0 if g is a Borel-
measurable function such that E g(Y )2 < ∞. Conclude that X̂ is a version
of E [X|Y ].

Week 6

1. Exercise E9.1 (Williams).

2. Exercise E9.2 (Williams)

3. Let C1, . . . , Cn be uniformly integrable collections of random variables on
a common probability space. Show that

⋃n
k=1 Ck is uniformly integrable.

(In particular is a finite collection in L1 uniformly integrable).

4. Williams, exercise E13.1.

5. Let C be a uniformly integrable collection of random variables.
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(a) Consider C̄, the closure of C in L1. Use E13.1 to show that also C̄ is
uniformly integrable.

(b) Let D be the convex hull of C. Then both D and its closure in L1

are uniformly integrable

6. In this exercise you prove (fill in the details) the following characterization:
a collection C is uniformly integrable iff there exists a function G : R+ →
R+ such that limt→∞

G(t)
t = ∞ and M := sup{EG(|X|) : X ∈ C} < ∞.

The necessity you prove as follows. Let ε > 0 choose a = M/ε and c such
that G(t)

t ≥ a for all t > c. To prove uniform integrability of C you use
that |X| ≤ G(|X|)

a on the set {|X| ≥ c}.
It is less easy to prove sufficieny. Proceed as follows. Suppose that we
have a sequence (gn) with g0 = 0 and limn→∞ gn = ∞. Define g(t) =∑∞

n=0 1[n,n+1)(t)gn and G(t) =
∫ t

0
g(s)ds. Check that limt→∞

G(t)
t = ∞.

With an(X) = P(|X| > n), it holds that E G(|X|) ≤
∑∞

n=1 gnan(|X|).
Furthermore, for every k ∈ N we have

∫
|X|≥k

|X| dP ≥
∑∞

m=k am(X).
Pick for every n a constant cn ∈ N such that

∫
|X|≥cn

|X| dP ≤ 2−n. Then∑∞
m=cn

am(X) ≤ 2−n and hence
∑∞

n=1

∑∞
m=cn

am(X) ≤ 1. Choose then
the sequence (gn) as the ‘inverse’ of (cn): gn = #{k : ck ≤ n}.

7. Prove that a collection C is uniformly integrable iff there exists an incre-
asing and convex function G : R+ → R+ such that limt→∞

G(t)
t = ∞ and

M := sup{G(|X|) : X ∈ C} < ∞.
Let D be the closure of the convex hull of a uniformly integrable collection
C in L1. With the function G as above we have sup{EG(|X|) : X ∈ D} =
M , whence also D is uniformly integrable.

8. Let p ≥ 1 and let X, X1, X2, . . . be random variables. Then Xn converges
to X in Lp iff the following two conditions are satisfied.

(a) Xn → X in probability,

(b) The collection {|Xn|p : n ∈ N} is uniformly integrable.

Week 7

In all exercises below we consider a probability space (Ω,F , P) with a filtration
F.

1. Let X be an adapted process and T a stopping time that is finite. Show
that XT is F-measurable. Show also that for arbitrary stopping times T
(so the value infinity is also allowed) the stopped process XT is adapted.

2. For every n we have a measurable function fn on Rn. Let Z1, Z2, . . . be in-
dependent random variables and Fn = σ(Z1, . . . , Zn). Show that (you may
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assume sufficient integrability) that Xn = fn(Z1, . . . , Zn) defines a mar-
tingale under the condition that Efn(z1, . . . , zn−1, Zn) = fn−1(z1, . . . , zn−1)
for every n.

3. If S and T are stopping times, then also S + T , S ∨ T and S ∧ T are
stopping times. Show this.

4. (a) If X is a martingale is and f a convex function such that E|f(Xn)| <
∞, then Y defined by Yn = f(Xn) is a submartingale. Show this.

(b) Show that Y is a submartingale, if X is a submartingale and f is an
increasing function.

5. Prove Corollaries (c) and (d) on page 101.

6. Let X be an adapted process and a < b real numbers. Let S1 = inf{n :
Xn < a}, T1 = inf{n > S1 : Xn > b}, etc. Show that the Sk and Tk are
stopping times. Show also that the process C of section 11.1 is previsible
(synonymous for predictable).

7. Consider the probability space (Ω,F , P) with Ω = [0, 1), F the Borelsets
of [0, 1) and P the Lebesgue measure. Let In

k = [k2−n, (k +1)2−n) for k =
0, . . . , 2n−1 and Fn be the σ-algebra by the In

k for k = 0, . . . , 2n−1. Define
Xn = 1In

0
2n. Show that Xn is a martingale is and that the conditions

of theorem 11.5 are satisfied. What is X∞ in this case? Do we have

Xn
L1

→ X∞? (This has something to do with 11.6).

Week 8

In all exercises below we consider a probability space (Ω,F , P) with a filtration
F.

1. Let Y ∈ L1, (Fn) and define for all n ∈ N the random variable Xn =
E [Y |Fn]. We know that there is X∞ such that Xn → X∞ a.s. Show that

for Y ∈ L2, we have Xn
L2

→ X∞. Find a condition such that X∞ = Y .
Give also an example in which P (X∞ = Y ) = 0.

2. Let X = (Xn)n≤0 a (backward) supermartingale.

(a) Show equivalence of the next two properties:
(i) supn E|Xn| < ∞ and (ii) limn→−∞ EXn < ∞.
(Use that x 7→ x+ is convex and increasing.)

(b) Under the condition supn E|Xn| =: A < ∞ the supermartingale X
is uniformly integrable. To show this, you may proceed as follows
(but other solutions are equally welcome). Let ε > 0 and choose
K ∈ Z such that for all n < K one has 0 ≤ EXn − EXK < ε. It
is then sufficient to show that (Xn)n≤K is uniformly integrable. Let

5



c > 0 be arbitrary and Fn = {|Xn| > c}. Using the supermartingale
inequality you show that∫

Fn

|Xn| dP ≤
∫

Fn

|XK | dP + ε.

Because P(Fn) ≤ A
c you conclude the proof.

3. Finish the proof of theorem 14.11: Show that ||Zn||p is increasing in n and
that ||Z∞||p = sup{||Zn||p : n ≥ 1}.

4. Exercise E13.3.

5. Exercise E14.1.

6. Exercise E14.2.

Week 9

In all exercises below we consider a probability space (Ω,F , P) with a filtration
F.

1. Exercise 12.1.

2. Exercise 12.2

3. Let (Hn) be a predictable sequence of random variables with E H2
n <

∞ for all n. Let (εn) be a sequence with E ε2
n = 1, E εn = 0 and εn

independent of Fn−1 for all n. Let Mn =
∑

k≤n Hkεk, n ≥ 0. Compute
the conditional variance process A of (Mn). Take p > 1/2 and consider
Nn =

∑
k≤n

1
(1+Ak)p Hkεk. Show that there exists a random variable N∞

such that Nn → N∞ a.s. Show (use Kroneckers’s lemma) that Mn

(1+An)p

has an a.s. finite limit.

4. Suppose that Q is a probability measure on (Ω,F) such that Q � P with
dQ/dP = M∞. Denote by Pn and Qn the restrictions of P and Q to Fn

(n ≥ 1). Show that Qn � Pn and that

dQn

dPn
= Mn,

where Mn = E P [M∞|Fn].

5. Let M be a nonnegative martingale with E Mn = 1 for all n. Define
Qn(F ) = E 1F Mn for F ∈ Fn (n ≥ 1). Show that for all n and k one has
Qn+k(F ) = Qn(F ) for F ∈ Fn. Assume that M is uniformly integrable.
Show that there exists a probability measure Q on F∞ = σ(

⋃
n Fn) that is

absolutely continuous w.r.t. P and that is such that for all n the restriction
of Q to Fn coincides with Qn. Characterize dQ/dP.
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6. Consider the set up of section 14.17 (Williams). Assume that

n∏
k=1

E P

√
gk(Xk)
fk(Xk)

→ 0.

Suppose one observes X1, . . . , Xn. Consider the testing problem H0: the
densities of the Xk are the fk against H1: the densities of the Xk are the
gk and the test that rejects H0 if Mn > cn, where P(Mn > cn) = α ∈ (0, 1)
(likelihood ratio test). Show that this test is consistent: Q(Mn ≤ cn) → 0.
(Side remark: the content of the Neyman-Pearson lemma is that this test
is most powerful among all test with significance level less than or equal
to α.)

Week 10

1. Let µ, µ1µ2, . . . be probability measures on R. Show that µn
w→ µ iff for all

bounded Lipschitz continuous functions one has
∫

f dµn →
∫

f dµ. (Hint:
for one implication the proof of lemma 17.2 is instructive.)

2. Show the ‘if part’ of lemma 17.2 without referring to the Skorohod re-
presentation. First you take for given ε > 0 a K > 0 such that F (K) −
F (−K) > 1− ε (why does such a K exist?). Approximate a continuous f
on the interval (−K, K] with a piecewise constant function and you com-
pute the integrals of this approximating function and use the convergence
of the Fn(x) at continuity points x of F etc.

3. If the random variables X, X1, X2, . . . are defined on the same probability
space and if Xn

P→ X, then Xn
w→ X. Prove this.

4. Suppose that Xn
w→ X and that the collection {Xn, n ≥ 1} is uniformly

integrable (you make a minor change in the definition of this notion if
the Xn are defined on different probability spaces). Use the Skorohod
representation to show that Xn

w→ X implies EXn → EX.

5. Show the following variation on Fatou’s lemma: if Xn
w→ X, then E|X| ≤

lim infn→∞ E|Xn|.

6. Show that the weak limit of a sequence of probability measures is unique.

7. The proof of the Helly-Bray lemma that I gave was not complete. You
show that the Fnk

(ci) converge for all ci (the nk were obtained by the
Cantor-type diagonalization procedure) and that Fnk

(x) converges to F (x)
at all continuity points x of F .
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Week 11

1. Consider the N(µn, σ2
n) distributions, where the µn are real numbers and

the σ2
n nonnegative. Show that this family is tight iff the sequences

(µn) and (σ2
n) are bounded. Under what condition do we have that the

N(µn, σ2
n) distributions converge to a (weak) limit? What is this limit?

2. For each n we have a sequence ξn1, . . . , ξnkn
of independent random va-

riables with Eξnj = 0 and
∑kn

j=1 Var ξnj = 1. If
∑kn

j=1 E|ξnj |2+δ → 0 as

n →∞ for some δ > 0, then
∑kn

j=1 ξnj
w→ N(0, 1). Show that this follows

from the Lindeberg Central Limit Theorem.

3. Show that Xn
w→ X iff Ef(Xn) → Ef(X) for all bounded uniformly

continuous functions f .

4. Let X and Y be independent, assume that Y has a N(0, 1) distribution.
Let σ > 0. Let φ be the characteristic function of X: φ(u) = E exp(iuX).

(a) Show that Z = X+σY has density p(z) = 1
σ
√

2π
E exp(− 1

2σ2 (z−X)2).

(b) Show that p(z) = 1
2πσ

∫
φ(−y/σ) exp(iyz/σ − 1

2y2) dy.

5. Let X, X1, X2, . . . be a sequence of random variables and Y a N(0, 1)-
distributed random variable independent of that sequence. Let φn be the
characteristic function of Xn and φ that of X. Let pn be the density of
Xn + σY and p the density of X + σY .

(a) If φn → φ pointwise, then pn → p pointwise. Invoke the previous
exercise and the dominated convergence theorem to show this.

(b) Let f ∈ Cb(R) be bounded by B. Show that |Ef(Xn +σY )−Ef(X +
σY )| ≤ 2B

∫
(p(z)− pn(z))+ dz.

(c) Show that |Ef(Xn + σY )− Ef(X + σY )| → 0 if φn → φ pointwise.

(d) Prove the following theorem: Xn
w→ X iff φn → φ pointwise.

6. Let X1, X2, . . . , Xn be an iid sequence having a distribution function F ,
a density (w.r.t. Lebesgue measure) f . Let m be such that F (m) = 1

2 .
Assume that f(m) > 0 and that n is odd, n = 2k− 1, say (k = 1

2 (n + 1)).

(a) Show that m is the unique solution of the equation F (x) = 1
2 . We

call m the median of the distribution of X1.
(b) The sample median Mn of X1, . . . , Xn is by definition Xk. Show that

with Unj = 1{Xj≤m+n−1/2x} we have

P(n1/2(Mn −m) ≤ x) = P(
∑

j

Unj ≥ k).

(c) Let pn = PUnj , bn = (npn(1 − pn))1/2, ξnj = (Unj − pn)/bn, Zn =∑n
j=1 ξnj , tn = (k−npn)/bn. Rewrite the probabilities in part 6b as

P(Zn ≥ tn) and show that tn → t := −2xf(m).
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(d) Show that P(Zn ≥ t) → 1 − Φ(t), where Φ is the standard normal
distribution.

(e) Show that P(Zn ≥ tn) → Φ(2f(m)x) and conclude that the Central
Limit Theorem for the sample median holds:

2f(m)n1/2(Mn −m) w→ N(0, 1).

Week 12

1. Consider the sequence of ‘tents’ (Xn), where Xn
t = nt for t ∈ [0, 1

2n ],
Xn

t = 1 − nt for t ∈ [ 1
2n , 1

n ], and zero elsewhere (there is no randomness
here). Show that all finite dimensional distributions of the Xn converge,
but Xn does not converge in distribution.

2. Show that ρ as in (1.1) defines a metric.

3. Suppose that the ξi of section 4 are iid normally distributed random va-
riables. Use Doob’s inequality to obtain P(maxj≤n |Sj | > γ) ≤ 3γ−4n2.

4. Show that a finite dimensional projection on C[0,∞) (with the metric ρ)
is continuous.

5. Consider C[0,∞) with the Borel σ-algebra B induced by ρ and some pro-
bability space (Ω,F , P). If X : (Ω,F) → (C[0,∞),B) is measurable, then
all maps ω 7→ Xt(ω) are random variables. Show this, as well as its con-
verse. For the latter you need separability that allows you to say that the
Borel σ-algebra B is a product σ-algebra (see also Williams, page 82).

6. Prove proposition 2.2 of the lecture notes.
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