- Page 18: The map μ_{0} is called countably additive (or σ-additive) if $\mu(0)=0$ and. Should be: $\mu_{0}(0)=0$;
- Page 27: using $(1.9, b)$ and $(1.10, a)$. Should be $(1.10, b)$;
- Page 47: $\left\{\omega: X_{i}(\omega) \leq x_{i}: 1 \leq k \leq n\right\}$ should be $\left\{\omega: X_{i}(\omega) \leq x_{i}: 1 \leq i \leq n\right\}$;
- Page 54: where $\mu(g)<\infty$. This is needless, because $g \in L^{1}(S, \Sigma, \mu)^{+}$.
- Page 69: In the language of section 5.12 , could be section 5.14
- Page 78: then equation (a), should be: then equation (b);
- Page 96: C_{n} is \mathcal{F}_{n-1}-measurable;
- Page 97: In $10.7(i):\left|C_{n}(\omega)\right| \leq K$, absolute value is not needed, because C is non-negative.
- Page 97: In 10.7(ii): The brackets around $C \bullet X$ are not needed;
- Page 180: $\mu_{n}(h)=\mathbb{E}\left(X_{n}\right) \rightarrow \mathbb{E}(X)=\mu(h)$. Should be $\mu_{n}(h)=\mathbb{E}\left(h\left(X_{n}\right)\right) \rightarrow \mathbb{E}(h(X))=\mu(h)$;
- Page 184: $\mu_{n}[-K, K]=F(K)-F(-K-)>1-\varepsilon$ should be $\mu_{n}[-K, K]=F_{n}(K)-F_{n}(-K-)>1-\varepsilon$
- Page 184: The lemma is Prohorov's Theorem.

