- Page 18: The map μ_0 is called countably additive (or σ -additive) if $\mu(\emptyset) = 0$ and. Should be: $\mu_0(\emptyset) = 0$;
- Page 27: using (1.9, *b*) and (1.10, *a*). Should be (1.10, *b*);
- Page 47: { ω : $X_i(\omega) \le x_i$: $1 \le k \le n$ } should be { ω : $X_i(\omega) \le x_i$: $1 \le i \le n$ };
- Page 54: where $\mu(g) < \infty$. This is needless, because $g \in \mathcal{L}^1(S, \Sigma, \mu)^+$.
- Page 69: In the language of section 5.12, could be section 5.14
- Page 78: then equation (*a*), should be: then equation (*b*);
- Page 96: C_n is \mathcal{F}_{n-1} -measurable;
- Page 97: In 10.7(*i*): $|C_n(\omega)| \le K$, absolute value is not needed, because C is non-negative.
- Page 97: In 10.7(*ii*): The brackets around $C \bullet X$ are not needed;
- Page 180: $\mu_n(h) = \mathbb{E}(X_n) \to \mathbb{E}(X) = \mu(h)$. Should be $\mu_n(h) = \mathbb{E}(h(X_n)) \to \mathbb{E}(h(X)) = \mu(h)$;
- Page 184: $\mu_n[-K,K] = F(K) F(-K-) > 1 \varepsilon$ should be $\mu_n[-K,K] = F_n(K) F_n(-K-) > 1 \varepsilon$
- Page 184: The lemma is Prohorov's Theorem.