Exam Measure Theoretic Probability 14 January 2009

1. Formulate and prove the Monotone Class Theorem.
2. Formulate and prove Hölder's inequality.
3. Let X, Y be a two random variables defined on some $(\Omega, \mathcal{F}, \mathbb{P})$. There always exists a measure μ on $(\mathbb{R}, \mathcal{B})$ such that the laws \mathbb{P}^{X} and \mathbb{P}^{Y} of X and Y are both absolutely continuous w.r.t. μ. Denote by f_{X} and f_{Y} their Radon-Nikodym derivatives.
(a) Give an example of such a μ in terms of \mathbb{P}^{X} and \mathbb{P}^{Y}.
(b) Assume that X and Y are independent. Show that $\mathbb{P}^{X, Y}$, the law of (X, Y), is absolutely continuous w.r.t. $\mu \times \mu$ and that $\frac{\mathbb{d P}^{X}, Y}{\mathrm{~d}(\mu \times \mu)}(x, y)=f_{X}(x) f_{Y}(y)$.
(c) In general $\mathbb{P}^{X, Y}$ is not absolutely continuous w.r.t. the product measure $\mu \times \mu$. Give a counter example, where μ is Lebesgue measure.
(d) Assume that $\frac{\mathrm{dP}^{X, Y}}{\mathrm{~d}(\mu \times \mu)}(x, y)=f_{X}(x) f_{Y}(y)$. Show that X and Y are independent random variables.
4. Consider a family of Poisson (λ) distributions, for $\lambda \in \Lambda \subset \mathbb{R}^{+}$. Write ϕ_{λ} for the corresponding characteristic functions.
(a) Compute $\phi_{\lambda}(u)$ for $u \in \mathbb{R}$.
(b) Show that tightness of the family of Poisson (λ) distributions $(\lambda \in$ Λ) implies that Λ is bounded.
(c) Show that this family is tight, if Λ is a bounded set.

Let $\Lambda=(0, \infty)$ and X have a Poisson (λ) distribution and put $Z_{\lambda}=$ $\lambda^{-1 / 2}(X-\lambda)$.
(d) Find the characteristic function of Z_{λ}, call it ψ_{λ} and compute $\lim _{\lambda \rightarrow \infty} \psi_{\lambda}(u)$.
(e) If \mathbb{P}^{λ} is the distribution of Z_{λ}, what is the weak limit of the \mathbb{P}^{λ} for $\lambda \rightarrow \infty$.
5. Let X_{1}, X_{2}, \ldots be an iid sequence of Bernoulli random variables with $\mathbb{P}\left(X_{k}=0\right)=1-\mathbb{P}\left(X_{k}=1\right)=1-p, p \in[0,1]$. Let $M_{n}=\sum_{k=1}^{n}\left(X_{k}-p\right)$ and let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.
(a) Show that $\left(M_{n}\right)$ is a martingale.

Let \tilde{M} be another martingale adapted to the filtration and $m=\mathbb{E} \tilde{M}_{1}$. Since \tilde{M} is adapted, it is known that there exist functions f_{n} such that $\tilde{M}_{n}=f_{n}\left(X_{1}, \ldots, X_{n}\right)$.
(b) Show that the f_{n} obey the backward recursion (for $x_{i} \in\{0,1\}$, $i \geq 1$)

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right)=(1-p) f_{n+1}\left(x_{1}, \ldots, x_{n}, 0\right)+p f_{n+1}\left(x_{1}, \ldots, x_{n}, 1\right) .
$$

(c) Let $Y_{n}=f_{n}\left(X_{1}, \ldots, X_{n-1}, 1\right)-f_{n}\left(X_{1}, \ldots, X_{n-1}, 0\right)$. Show that

$$
\tilde{M}_{n}=m+(Y \cdot M)_{n},
$$

meaning $\tilde{M}_{n}=m+\sum_{k=1}^{n} Y_{k}\left(X_{k}-p\right)$.
(d) Let $\tilde{M}_{n}=(p e+1-p)^{-n} \exp \left(\sum_{i=1}^{n} X_{i}\right), n \geq 0$. Show that \tilde{M} is martingale and that

$$
Y_{n}=\frac{e-1}{p e+1-p} \tilde{M}_{n-1} .
$$

