Exam Measure Theoretic Probability 14 January 2009

- 1. Formulate and prove the Monotone Class Theorem.
- 2. Formulate and prove Hölder's inequality.
- 3. Let X, Y be a two random variables defined on some $(\Omega, \mathcal{F}, \mathbb{P})$. There always exists a measure μ on $(\mathbb{R}, \mathcal{B})$ such that the laws \mathbb{P}^X and \mathbb{P}^Y of X and Y are both absolutely continuous w.r.t. μ . Denote by f_X and f_Y their Radon-Nikodym derivatives.
 - (a) Give an example of such a μ in terms of \mathbb{P}^X and \mathbb{P}^Y .
 - (b) Assume that X and Y are independent. Show that $\mathbb{P}^{X,Y}$, the law of (X,Y), is absolutely continuous w.r.t. $\mu \times \mu$ and that $\frac{\mathrm{d}\mathbb{P}^{X,Y}}{\mathrm{d}(\mu \times \mu)}(x,y) = f_X(x)f_Y(y).$
 - (c) In general $\mathbb{P}^{X,Y}$ is not absolutely continuous w.r.t. the product measure $\mu \times \mu$. Give a counter example, where μ is Lebesgue measure.
 - (d) Assume that $\frac{d\mathbb{P}^{X,Y}}{d(\mu \times \mu)}(x,y) = f_X(x)f_Y(y)$. Show that X and Y are independent random variables.
- 4. Consider a family of Poisson(λ) distributions, for $\lambda \in \Lambda \subset \mathbb{R}^+$. Write ϕ_{λ} for the corresponding characteristic functions.
 - (a) Compute $\phi_{\lambda}(u)$ for $u \in \mathbb{R}$.
 - (b) Show that tightness of the family of $Poisson(\lambda)$ distributions ($\lambda \in \Lambda$) implies that Λ is bounded.
 - (c) Show that this family is tight, if Λ is a bounded set.

Let $\Lambda = (0, \infty)$ and X have a Poisson(λ) distribution and put $Z_{\lambda} = \lambda^{-1/2}(X - \lambda)$.

- (d) Find the characteristic function of Z_{λ} , call it ψ_{λ} and compute $\lim_{\lambda \to \infty} \psi_{\lambda}(u)$.
- (e) If \mathbb{P}^{λ} is the distribution of Z_{λ} , what is the weak limit of the \mathbb{P}^{λ} for $\lambda \to \infty$.

- 5. Let X_1, X_2, \ldots be an *iid* sequence of Bernoulli random variables with $\mathbb{P}(X_k = 0) = 1 \mathbb{P}(X_k = 1) = 1 p, p \in [0, 1]$. Let $M_n = \sum_{k=1}^n (X_k p)$ and let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$.
 - (a) Show that (M_n) is a martingale.

Let \tilde{M} be another martingale adapted to the filtration and $m = \mathbb{E} \tilde{M}_1$. Since \tilde{M} is adapted, it is known that there exist functions f_n such that $\tilde{M}_n = f_n(X_1, \ldots, X_n)$.

(b) Show that the f_n obey the backward recursion (for $x_i \in \{0, 1\}, i \ge 1$)

$$f_n(x_1,\ldots,x_n) = (1-p)f_{n+1}(x_1,\ldots,x_n,0) + pf_{n+1}(x_1,\ldots,x_n,1).$$

(c) Let $Y_n = f_n(X_1, \dots, X_{n-1}, 1) - f_n(X_1, \dots, X_{n-1}, 0)$. Show that

$$\tilde{M}_n = m + (Y \cdot M)_n,$$

meaning $\tilde{M}_n = m + \sum_{k=1}^n Y_k(X_k - p).$

(d) Let $\tilde{M}_n = (pe+1-p)^{-n} \exp(\sum_{i=1}^n X_i), n \ge 0$. Show that \tilde{M} is martingale and that

$$Y_n = \frac{e-1}{pe+1-p}\tilde{M}_{n-1}.$$