> Portfolio theory
> Errata and additional exercises

Errata and changes

1. page 5 , line - 12 : we take $\mathbb{P}^{*} \in \mathcal{P}$
2. page 7 , line -11 : due to the law of one price
3. page 9 , example at the end: $p_{1}=\frac{s_{2}-(1+r) \pi}{s_{2}-s_{1}}, p_{2}=\frac{(1+r) \pi-s_{1}}{s_{2}-s_{1}}, C\left(\omega_{i}\right)=$ $\xi_{0}(1+r)+\xi_{1} S\left(\omega_{i}\right), \xi_{0}=\frac{c_{1} s_{2}-c_{2} s_{1}}{\left(s_{2}-s_{1}\right)(1+r)}$ and $\pi^{C}=\xi_{0}+\frac{\xi_{1} \mathbb{E}^{*} S}{1+r}$
4. I changed Definition 1.13 in the sense that we always impose $C \geq 0$.
5. In Example 2.7, line 6: Note that $U\left(\alpha_{i+1}, 0\right)>U\left(\alpha_{i}, 1\right)$.
6. Proof of Theorem 2.12: The passage

First we assume without loss of generality that u_{0} and u_{1} are not attained, otherwise we replace below \mathcal{Z} with the non-empty set $\mathcal{Z} \backslash U_{0}^{-1}\left(\left\{u_{0}, u_{1}\right\}\right)$. This set is dense in $\left(\left(z^{0}, z^{1}\right)\right)$, where z^{0} and z^{1} are such that $u_{0}=U_{0}\left(z^{0}\right)$ and $u_{1}=U_{0}\left(z^{1}\right)$.
is confusing and will be rewritten.
7. Proof of Lemma 3.8, line 3: take $\mu \succ \lambda \succ \nu$.
8. In the proof of Theorem 3.9 we need the additional assumption that S is separable in order to apply Proposition A.11.
9. Proposition 5.8 : I rewrote part of the proof, hoping that it is clearer now. You can use the following text.
(b) \Rightarrow (a): Let f be continuous, bounded and increasing. We can obtain f (which is measurable) as the pointwise limit of an increasing sequence of simple functions f_{n}, that are increasing themselves. To see this, we assume for simplicity that $0 \leq f \leq 1$ and we follow the usual approximation scheme, known from measure theory.
Let $n \in \mathbb{N}$ and define $E_{n i}=\left\{(i-1) 2^{-n}<f \leq i 2^{-n}\right\}$ for $i=1, \ldots, 2^{n}$ and $E_{n 0}=\{f=0\}$. Put

$$
f_{n}=2^{-n} \sum_{i=1}^{2^{n}}(i-1) \mathbf{1}_{E_{n i}}=2^{-n} \sum_{i=2}^{2^{n}}(i-1) \mathbf{1}_{E_{n i}}
$$

Then we know that $f_{n} \uparrow f$. Using that the $E_{n i}$ are disjoint for each n, $\bigcup_{i \geq j+1} E_{n i}=\left\{f>j 2^{-n}\right\}$ and $\{f>1\}=\emptyset$, we rewrite

$$
f_{n}=2^{-n} \sum_{i=2}^{2^{n}}\left(\sum_{j=1}^{i-1} 1\right) \mathbf{1}_{E_{n i}}=2^{-n} \sum_{j=1}^{2^{n}-1} \sum_{i=j+1}^{2^{n}} \mathbf{1}_{E_{n i}}=2^{-n} \sum_{j=1}^{2^{n}} \mathbf{1}_{\left\{f>j 2^{-n}\right\}}
$$

Note that the f_{n} are also increasing functions. Since f is continuous, the sets $\left\{f>j 2^{-n}\right\}$ are open and since f is increasing, there are $a_{n j}$ such that $\left\{f>j 2^{-n}\right\}=\left(a_{n j}, \infty\right)$. Hence, $\int f_{n} \mathrm{~d} \mu=2^{-n} \sum_{j=1}^{2^{n}} \mu\left(\left(a_{n j}, \infty\right)\right)=$ $2^{-n} \sum_{j=1}^{2^{n}}\left(1-F_{\mu}\left(a_{n j}\right)\right)$. The rest of the proof is unchanged.
10. Page 41, line 3: add to ' $\xi \in \mathbb{R}^{d} \backslash\{0\}$ ' the text 'such that $\mathbb{P}(\xi \cdot Y=0)<1$ '.
11. Check for yourself that the η_{i} and M in the proof of Theorem 6.5 are finite.
12. In the proof of Theorem 6.5: at the end of the 1st paragraph two \mathbb{E} 's are missing; non-redundancy is not needed for 'existence' (2nd paragraph).
13. In the proof of $(\mathrm{b}) \Rightarrow(\mathrm{c})$ of Lemma 7.9, the integral over the set $(t, 1]$ should be over $(t, 1)$.

Additional exercises

1. Show by a direct argument (not referring to Theorem 2.6) that $[0,1]^{2}$ doesn't have a countable order dense subset for the lexicographic ordering.
2. Assume that \succ is a continuous preference relation on a connected set \mathcal{X}, which is endowed with a topology that is first-countable (this allows you to work below with sequences). Let \mathcal{Z} be a dense subset of \mathcal{X}. If $U: \mathcal{X} \rightarrow \mathbb{R}$ is continuous and its restriction to \mathcal{Z} is a numerical representation of \succ, then U is also a numerical representation of \succ on all of \mathcal{X}. To show this, one has to verify the implications (i) $x \succ y \Rightarrow U(x)>U(y)$ and (ii) $U(x)>U(y) \Rightarrow x \succ y$.
Hints: To show (i) you complete the following steps. Show that there are $z, w \in \mathcal{Z}$ such that $x \succ z \succ w \succ y$. Choose then $z_{n}, w_{n} \in \mathcal{Z}$ such that $z_{n} \rightarrow x$ and $w_{n} \rightarrow y$ and finish the proof.
For (ii) you show first that $U^{-1}(U(y), \infty) \cap U^{-1}(-\infty, U(x))$ is non-void and select $z, w \in \mathcal{Z}$ such that $U(x)>U(z)>U(w)>U(y)$. Use again convergent sequences.
