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1 The space C[0,∞)

In this section we summarize some facts concerning the space C[0,∞) of real
valued continuous functions defined on [0,∞). For x1, x2 ∈ C[0,∞) we define

ρ(x1, x2) =
∑
n≥1

2−n(max{|x1(t)− x2(t)| : 0 ≤ t ≤ n} ∧ 1). (1.1)

Then ρ defines a metric on C[0,∞) (which we use throughout these notes) and
we have

Proposition 1.1 The metric space (C[0,∞), ρ) is complete and separable.

Later on we need the relatively compact subsets of C[0,∞). To describe these
we introduce the modulus of continuity mT . For each x ∈ C[0,∞), T, δ > 0 we
define

mT (x, δ) = max{|x(t)− x(s)| : s, t ∈ [0, T ], |s− t| ≤ δ}. (1.2)

It holds that mT (·, δ) is continuous and limδ↓0 mT (x, δ) = 0 for each x and T .
The following characterization is known as the Arzelà-Ascoli theorem.

Theorem 1.2 A set A in C[0,∞) is relatively compact (has compact closure)
iff (i) sup{|x(0)| : x ∈ A} < ∞ and (ii) for all T > 0 limδ↓0 sup{mT (x, δ) : x ∈
A} = 0.

Under requirement (ii) in this proposition, the functions in A are uniformly
equicontinuous.

Cylinder sets of C[0,∞) have the typical form {x : (x(t1), . . . , x(tk)) ∈ A},
where A ∈ B(Rk) for some k ≥ 1 and t1, . . . , tk ∈ [0,∞). A finite dimensional
projection on (C[0,∞), ρ) is by definition of the following type: πt1,...,tk

(x) =
(x(t1), . . . , x(tk)), where the ti are nonnegative real numbers. It is easy to
see that any finite dimensional projection is continuous (Rk is endowed with
the ordinary metric). Note that cylinder sets are invere images under finite
dimensional projections of Borel sets of Rk (k ≥ 1). Let C be the collection of
all cylinder sets and B the Borel σ-algebra on C[0,∞) induced by the metric
ρ. Let (Ω,F) be a measurable space. A map X : Ω → C[0,∞) is called a
random element of C[0,∞) if it is F/B-measurable. It follows that πt1,...,tk

◦X
is random vector in Rk, for any finite dimensional projection πt1,...,tk

, and it is
usually denoted by (Xt1 , . . . , Xtk

). One can prove that B = σ(C) and thus that
X is a random element of C[0,∞), if all Xt are real random variables. Moreover,
if P is a probability measure on (Ω,F) and X a random element of C[0,∞),
then the distribution PX of X on (C[0,∞),B) is completely determined by the
distributions of all k-tuples (Xt1 , . . . , Xtk

) on Rk (k ≥ 1, ti ∈ [0,∞)).
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2 Weak convergence on metric spaces

Let (S, ρ) be a metric space and P, P 1, P 2, . . . be probability measures on the
Borel σ-algebra B(S). Like in the real case we say that Pn converges weakly
to P (notation Pn w→ P ) iff for all f ∈ Cb(S) one has lim Pnf = Pf . If
X, X1, X2, . . . are random variables defined on probability spaces (Ω,F , P ) and
(Ωn,Fn, Pn) (n ≥ 1) with values in one and the same (S, ρ), we say that Xn

converges in distribution to X (Xn w→ X) if the laws Pn of Xn converge weakly
to the law P of X, equivalently, iff Pnf(Xn) → Pf(X) for all f ∈ Cb(S).

A family of probability measures Π on B(S) is called tight if for every ε > 0,
there is a compact subset K of S such that inf{P (K) : P ∈ Π} > 1−ε. One can
show that any single probability measure on B(S) is tight if (S, ρ) is a separable
and complete metric space (a Polish space). A family of random variables with
values in a metric space is called tight if the family of their distributions is
tight. Like in the real case (but much harder to prove here) there is equivalence
between relative compactness (in this context it means that every sequence in a
set of probability measures has a weakly converging subsequence) and tightness,
known as Prohorov’s theorem.

Theorem 2.1 A family Π of probability measures on a complete separable met-
ric space is tight iff it is relatively compact.

We will also need the following perturbation result.

Proposition 2.2 Let X1, X2, . . . and Y 1, Y 2, . . . be random sequences in a met-
ric space (S, ρ) and defined on a single probability space. If Xn w→ X and
ρ(Y n, Xn) P→ 0, then Y n w→ X.

If we take S = C[0,∞) with the metric ρ of the previous section, we get the
following ‘stochastic version’ of the Arzelà-Ascoli theorem.

Theorem 2.3 Let P 1, P 2, . . . be a sequence of probability measures on the space
(C[0,∞),B). This sequence is tight iff

lim
λ↑∞

sup{Pn(x : |x(0)| > λ) : n ≥ 1} = 0 (2.3)

and

lim
δ↓0

sup{Pn(x : mT (x, δ) > ε) : n ≥ 1} = 0,∀T, ε > 0. (2.4)

Proof. If the sequence is tight, the result is a straightforward application of
theorem 1.2. For every ε > 0 we can find a compact K such that infn Pn(K) >
1 − ε. But then we can find λ > 0 such that for all x ∈ K we have |x(0)| < λ
and we can similarly find for given T > 0 and η > 0 a δ0 > 0 such that for all
0 < δ < δ0 we have on K that mT (x, δ) < η.

Conversely, assume (2.3) and (2.4) and let ε, T > 0, T integer, be given.
Choose λT such that supn Pn(x : |x(0)| > λT ) ≤ ε2−T−1. For each k ≥ 1 we
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can also find δk such that supn Pn(x : mT (x, δk) > 1/k) ≤ ε2−T−k−1. Notice
that the sets AT,k = {x : mT (x, δk) ≤ 1/k} and AT,0 = {x : |x(0)| ≤ λT } are
closed and so is their intersection over both k and (integer) T , call it K. From
theorem 1.2 we obtain that K has compact closure and it is thus compact itself.
Finally we compute Pn(Kc) ≤

∑
T≥1 P(Ac

T,0) +
∑

k≥1 P(Ac
T,k) ≤ ε. �

3 Finite dimensional convergence

We have seen that any finite dimensional projection is continuous. Hence, if
X, X1, X2, . . . are random elements of (C[0,∞),B) and if we assume that Xn

w→
X, then also (Xn

t1 , . . . , X
n
tk

) considered as random elements in Rk converge in
distribution to (Xt1 , . . . , Xtk

). This is then true for any finite set of ti’s and we
say that all finite dimensional distributions converge weakly. The converse does
not hold in general, unless one assumes tightness.

Theorem 3.1 Let X1, X2, . . . be random elements of C[0,∞). Assume that
their collection {P 1, P 2, . . .} of distributions is tight and that all finite dimen-
sional distributions of the Xn converge weakly. Then there exists a probability
measure P on (C[0,∞),B) such that Pn w→ P .

Proof. Every subsequence of (Pn) is tight as well and thus has a convergent
subsequence. Different subsequences have to converge to the same limit, call it
P , since the finite dimensional distributions corresponding to these sequences
converge. Hence, if (Pn) has a limit, it must be P . Suppose therefore that the
Pn don’t converge. Then there is bounded and continuous f and an ε > 0 such
that |Pnkf − Pf | > ε along a subsequence (Pnk). No further subsequence of
this can have P as a limit which contradicts what we just showed. �

4 An invariance principle

Throughout this section we work with a real valued iid sequence ξ1, ξ2, . . . with
zero mean and variance σ2 ∈ (0,∞) defined on a probability space (Ω,F , P).
Let Sk =

∑k
i=1 ξi and for each integer n and t ≥ 0

Xn
t =

1
σ
√

n
(S[nt] + (nt− [nt])ξ[nt]+1. (4.5)

The processes Xn have continuous paths and can be considered as random
elements of C[0,∞). Notice that the increments Xn

t − Xn
s of each Xn over

intervals (s, t) with s = k
n , t = l

n , k < l integers, are independent. Since for
these values of t and s we have Var (Xn

t −Xn
s ) = t−s, the central limit theorem

should be helpful to understand the limit behaviour.

Theorem 4.1 Let 0 = t0 < t1 < · · · < tk. Then the k-vector of increments
Xn

tj
−Xn

tj−1
with j = 1, . . . , k converges in distribution to a random vector with

independent elements Nj, where each Nj has a N(0, tj − tj−1) distribution.
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Proof. Since the term in (4.5) with the ξ[nt] tends to zero in probability, we can
ignore it as a consequence of proposition 2.2. But then the conclusion follows
from the ordinary Central Limit Theorem.

Denote by Pn the law of Xn. We have the following important result.

Theorem 4.2 The sequence of probability measures Pn is tight.

Combined with theorems 3.1 and 4.1 one obtains

Theorem 4.3 There exists a probability measure P ∗ on (C[0,∞),B) such that
Pn w→ P ∗.

Any process defined on some probability space that has continuous paths, that
starts in zero and that has independent increments over non-overlapping in-
tervals (s, t) with a N(0, t − s) distribution is called a Wiener process, also
called a Brownian motion. Let W denotes the coordinate mapping process on
Ω = C[0,∞), i.e. W is defined by Wt(ω) = ω(t) for all t ≥ 0. Under the measure
P ∗ this process has independent increments over non-overlapping intervals (s, t)
and these increments have a N(0, t− s) distribution. Since by definition W is a
random element of (C[0,∞),B), W is thus a Wiener process and the measure
P ∗ is called Wiener measure. Notice that P ∗ is also the law of W .

We can rephrase theorem 4.3 as

Theorem 4.4 The processes Xn of this section converge in distribution to a
Wiener process W .

Both theorems 4.3 and 4.4 are known as Donsker’s invariance principle. What
we have done in this section can be summarized by saying that we have shown
the existence of a Wiener process and we have given a Functional Central Limit
Theorem.

5 The proof of theorem 4.2

Consider the process Sn of section 4. To prove theorem 4.2 we use the following
results.

Lemma 5.1 Let γ > 0, n ≥ 1, N ≥ n and η ≥ σ
√

2(n− 1). The following
inequalities are valid.

P(max
j≤n

|Sj | > γ) ≤ 2P(|Sn| > γ − η) (5.6)

P( max
1≤j≤n
0≤k≤N

|Sj+k − Sk| > γ) ≤ (
N

n
+ 2)P(max

j≤n
|Sj | > γ/3). (5.7)
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Proof. Assume η < γ. Let τ = min{j : |Sj | > γ}. Then we have to consider
P(τ ≤ n). Split this probability up as

P(τ ≤ n, |Sn| > γ − η) + P(τ ≤ n, |Sn| ≤ γ − η) (5.8)

and work on the second probability. It can be written as
∑n−1

j=1 P(τ = j, |Sn| ≤
γ − η) and each of the probabilities in the sum is less than or equal to P(τ =
j, |Sn − Sj | > η) = P(τ = j)P(|Sn − Sj | > η). The second factor is by
Chebychev’s inequality less than 1

η2 (n − 1)σ2 ≤ 1
2 , by the assumption on η.

Therefore P(τ ≤ n, |Sn| ≤ γ − η) ≤ 1
2P(τ ≤ n − 1). From (5.8), we then get

P(τ ≤ n) ≤ P(|Sn| > γ − η) + 1
2P(τ ≤ n) and the inequality (5.6) follows.

To prove (5.7) we argue as follows. Let m = [N
n ] and consider the ‘inter-

vals’ {pn, . . . , (p + 1)n − 1}, for p = 0, . . . ,m. N belongs to the last one.
Consider j and k for which the maximum is bigger than γ. If k + j belongs
to the same interval as k, the one starting with pn, say, we certainly have
|Snp − Sk| > γ/3 or |Snp − Sk+j | > γ/3 and so in this case there is p ≤ m such
that maxj≤n |Snp−Sj | > γ/3. If k+ j lies in the interval starting with (p+1)n,
we must have |Snp−Sk| > γ/3 or |Sn(p+1)−Sk+j | > γ/3 or |Sn(p+1)−Snp| > γ/3.
Both cases are contained in the event

⋃
0≤p≤m+1{maxj≤n |Snp−Snp+j | > γ/3},

whose probability is less than or equal to
∑m+1

p=0 P(maxj≤n |Snp−Snp+j | > γ/3).
By the iid assumption all probabilities in this sum are equal to the first one and
thus the sum is equal to (m + 2)P(maxj≤n |Sj | > γ/3), which yields the result.

�

With this lemma we prove 4.2 as follows. According to theorem 2.3 it is sufficient
to show that

lim
δ↓0

sup
n≥1

P( max
|s−t|≤δ
0≤t,s≤T

|Xn
t −Xn

s | > ε) = 0 for all T, ε > 0. (5.9)

But since we only need tightness for all but finitely many n, we can as well
replace the ‘sup’ by a ‘lim sup’. Let Yt = σ

√
nXn

t/n. Each of the probabilities
in (5.9) is less than

P( max
|s−t|≤[nδ]+1
0≤t,s≤[nT ]+1

|Yt − Ys| > εσ
√

n).

But, since Y is piecewise linear between the integer values of its arguments, the
max is attained at integer numbers. Hence we consider

P( max
0≤j≤[nδ]+1
0≤k≤[nT ]+1

|Sj+k − Sk| > εσ
√

n). (5.10)

Now we apply inequality (5.7) and bound this probability by

(
[nT ] + 1
[nδ] + 1

+ 2)P( max
j≤[nδ]+1

|Sj | > εσ
√

n/3). (5.11)
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In view of (5.6) (take η = σ
√

2[nδ]) the probability in (5.11) is less than

P(|S[nδ]+1| > εσ
√

n/3− σ
√

2[nδ]).

Now we apply the central limit theorem: 1

σ
√

[nδ]
S[nδ]+1

w→ Z, where Z has

a N(0, 1) distribution. So for n → ∞ the last probability tends to P(|Z| >
ε

3
√

δ
−
√

2) which is less than δ2

(ε/3−
√

2δ)4
E Z4. Hence the lim sup in (5.11) for

n →∞ is less than Tδ+2δ2

(ε/3−
√

2δ)4
E Z4, from which we obtain (5.9). �.
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