9.8 Suppose that at each time $t \in \{0, \ldots, T\}$ an investor has a certain capital W_t at her disposal. She consumes part of this, $C_t \ge 0$ say, and invests the remaining $W_t - C_t \ge 0$. The latter she does partly, a deterministic fraction π_t , in a riskless asset with fixed return 1 + r =: R and the remaining money in a risky asset with random yield S_t . This leads to the evolution

$$W_{t+1} = (W_t - C_t) (\pi_t R + (1 - \pi_t) S_t), t = 0, \dots T - 1.$$

It is assumed that the S_t are *i.i.d.* random variables, all having the same distribution as a random variable S, and that all relevant expectations exist and are finite. Consider the utility function $u(x) = \frac{1}{\gamma}x^{\gamma}, x \ge 0$ and $\gamma < 1$. Let $\rho \in (0, 1)$ be a discount factor. The aim is to maximize $\sum_{t=0}^{T} \rho^t \mathbb{E} u(C_t)$ by appropriately selecting the $\pi_t, t = 0, \ldots, T-1$, and the consumption $C_t, t = 0, \ldots, T$. Assume $C_T = W_T$. The purpose is to characterize the optimal consumption pattern and to derive it by dynamic programming. We need more notation. We denote by π^* the solution, assumed to exist, of the equation $\mathbb{E} (\pi R + (1-\pi)S)^{\gamma-1}(R-S) = 0$, and $\xi = \rho \mathbb{E} (\pi^* R + (1-\pi^*)S)^{\gamma}$.

- (a) Look at the theory of dynamic programming and rewrite Algorithm 9.7 in terms of the variables of this exercise.
- (b) Compute the optimal consumption C_{T-1}^* at time T-1, show that $C_{T-1}^* = \alpha_{T-1}W_{T-1}$, with $\alpha_{T-1} = \frac{(\beta_T\xi)^{1/(\gamma-1)}}{1+(\beta_T\xi)^{1/(\gamma-1)}}$ for $\beta_T = 1$.
- (c) Show that the optimal value function at time T-1 is given by $v_{T-1}(w) = \rho^{T-1}\beta_{T-1}\frac{w^{\gamma}}{\gamma}$, where $\beta_{T-1} = \alpha_{T-1}^{\gamma} + \beta_T (1-\alpha_{T-1})^{\gamma} \xi$.
- (d) Show that the optimal π_t^* are the same for all $t \leq T 1$ and that the optimal consumption is given by $C_t^* = \alpha_t W_t$, where the (nonrandom) constants $\alpha_t \in (0, 1)$ are given by $\alpha_{t-1} = \frac{(\beta_t \xi)^{1/(\gamma-1)}}{1+(\beta_t \xi)^{1/(\gamma-1)}}$, and (recursively) $\beta_{t-1} = \alpha_{t-1}^{\gamma} + \beta_t (1 \alpha_{t-1})^{\gamma} \xi$. In passing you can show that the value functions are $v_t(x) = \rho^t \beta_t \frac{x^{\gamma}}{\gamma}$, t = 0, ..., T.
- (e) Note that we can write $\alpha_{t-1} = \frac{p_t}{1+p_t}$, with $p_t = (\beta_t \xi)^{1/(\gamma-1)}$. Show by a simple computation the formula $\beta_{t-1} = (\frac{p_t}{1+p_t})^{\gamma-1}$, which equals $\alpha_{t-1}^{\gamma-1}$. Show also the backward recursion $\frac{p_{t-1}}{a} = \frac{p_t}{1+p_t}$, where $a = \xi^{1/(\gamma-1)}$.
- (f) Here we do some time reversion, we put $q_k = \frac{1+p_t}{p_{T-k}} = 1 + \frac{1}{p_{T-k}}$. Show that $q_k = 1 + \frac{q_{k-1}}{a}$, leading with $q_0 = 0$ to $q_k = \sum_{j=0}^k a^{-j} = \frac{a^{k+1}-1}{a^k(a-1)}$, if $a \neq 1$ (and k+1 otherwise).
- (g) Finally, show that the optimal consumption is given by $C_t^* = \frac{1}{q_{T-t}}W_t$, $t \leq T-1$. What is $v_0(x)$?
- (h) Sketch the solution to the optimal consumption problem for the situation of logarithmic utility, $u(x) = \log x$. [For this utility function one has $u'(x) = x^{-1}$, which corresponds to $\gamma = 0$ above.]

[This exercise can be seen as a dynamic version of the situation in Proposition 4.7 and has been derived from the paper Paul A. Samuelson: Portfolio Selection By Dynamic Stochastic Programming, *The Review of Economics and Statistics* **51(3)**, 239–246, 1969.]