9.8 Suppose that at each time $t \in\{0, \ldots, T\}$ an investor has a certain capital W_{t} at her disposal. She consumes part of this, $C_{t} \geq 0$ say, and invests the remaining $W_{t}-C_{t} \geq 0$. The latter she does partly, a deterministic fraction π_{t}, in a riskless asset with fixed return $1+r=: R$ and the remaining money in a risky asset with random yield S_{t}. This leads to the evolution

$$
W_{t+1}=\left(W_{t}-C_{t}\right)\left(\pi_{t} R+\left(1-\pi_{t}\right) S_{t}\right), t=0, \ldots T-1
$$

It is assumed that the S_{t} are i.i.d. random variables, all having the same distribution as a random variable S, and that all relevant expectations exist and are finite. Consider the utility function $u(x)=\frac{1}{\gamma} x^{\gamma}, x \geq 0$ and $\gamma<1$. Let $\rho \in(0,1)$ be a discount factor. The aim is to maximize $\sum_{t=0}^{T} \rho^{t} \mathbb{E} u\left(C_{t}\right)$ by appropriately selecting the $\pi_{t}, t=0, \ldots, T-1$, and the consumption $C_{t}, t=0, \ldots, T$. Assume $C_{T}=W_{T}$. The purpose is to characterize the optimal consumption pattern and to derive it by dynamic programming. We need more notation. We denote by π^{*} the solution, assumed to exist, of the equation $\mathbb{E}(\pi R+(1-\pi) S)^{\gamma-1}(R-S)=0$, and $\xi=\rho \mathbb{E}\left(\pi^{*} R+\left(1-\pi^{*}\right) S\right)^{\gamma}$.
(a) Look at the theory of dynamic programming and rewrite Algorithm 9.7 in terms of the variables of this exercise.
(b) Compute the optimal consumption C_{T-1}^{*} at time $T-1$, show that $C_{T-1}^{*}=$ $\alpha_{T-1} W_{T-1}$, with $\alpha_{T-1}=\frac{\left(\beta_{T} \xi\right)^{1 /(\gamma-1)}}{1+\left(\beta_{T} \xi\right)^{1 /(\gamma-1)}}$ for $\beta_{T}=1$.
(c) Show that the optimal value function at time $T-1$ is given by $v_{T-1}(w)=$ $\rho^{T-1} \beta_{T-1} \frac{w^{\gamma}}{\gamma}$, where $\beta_{T-1}=\alpha_{T-1}^{\gamma}+\beta_{T}\left(1-\alpha_{T-1}\right)^{\gamma} \xi$.
(d) Show that the optimal π_{t}^{*} are the same for all $t \leq T-1$ and that the optimal consumption is given by $C_{t}^{*}=\alpha_{t} W_{t}$, where the (nonrandom) constants $\alpha_{t} \in(0,1)$ are given by $\alpha_{t-1}=\frac{\left(\beta_{t} \xi\right)^{1 /(\gamma-1)}}{1+\left(\beta_{t} \xi\right)^{1 /(\gamma-1)}}$, and (recursively) $\beta_{t-1}=\alpha_{t-1}^{\gamma}+\beta_{t}\left(1-\alpha_{t-1}\right)^{\gamma} \xi$. In passing you can show that the value functions are $v_{t}(x)=\rho^{t} \beta_{t} \frac{x^{\gamma}}{\gamma}, t=0, \ldots, T$.
(e) Note that we can write $\alpha_{t-1}=\frac{p_{t}}{1+p_{t}}$, with $p_{t}=\left(\beta_{t} \xi\right)^{1 /(\gamma-1)}$. Show by a simple computation the formula $\beta_{t-1}=\left(\frac{p_{t}}{1+p_{t}}\right)^{\gamma-1}$, which equals $\alpha_{t-1}^{\gamma-1}$. Show also the backward recursion $\frac{p_{t-1}}{a}=\frac{p_{t}}{1+p_{t}}$, where $a=\xi^{1 /(\gamma-1)}$.
(f) Here we do some time reversion, we put $q_{k}=\frac{1+p_{T-k}}{p_{T-k}}=1+\frac{1}{p_{T-k}}$. Show that $q_{k}=1+\frac{q_{k-1}}{a}$, leading with $q_{0}=0$ to $q_{k}=\sum_{j=0}^{k} a^{-j}=\frac{a^{k+1}-1}{a^{k}(a-1)}$, if $a \neq 1$ (and $k+1$ otherwise).
(g) Finally, show that the optimal consumption is given by $C_{t}^{*}=\frac{1}{q_{T-t}} W_{t}$, $t \leq T-1$. What is $v_{0}(x) ?$
(h) Sketch the solution to the optimal consumption problem for the situation of logarithmic utility, $u(x)=\log x$. [For this utility function one has $u^{\prime}(x)=$ x^{-1}, which corresponds to $\gamma=0$ above.]
[This exercise can be seen as a dynamic version of the situation in Proposition 4.7 and has been derived from the paper Paul A. Samuelson: Portfolio Selection By Dynamic Stochastic Programming, The Review of Economics and Statistics 51(3), 239-246, 1969.]

