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1 The proof of the first part of Theorem A.1 says ”one easily shows that λ ≥ 1”.
You may have noticed that in the text before that, convexity of C is not used,
and this is what is needed to establish λ ≥ 1. Define xt = tx + (1 − t)x0,
t ∈ [0, 1]. For which t is ‖xt‖ minimal? Exploit this to prove the assertion.

2 Assume that a markt admits an arbitrage opportunity. Show there exists a
ξ̄ ∈ Rd+1 such that W0 = 0, W1 ≥ 0 a.s., and P(W1 > 0) > 0. [Conversely,
such a ξ̄ is an arbitrage opportunity in the sense of Definition 1.1. Hence
Definition 1.1 has an equivalent version with W0 = 0 instead of W0 ≤ 0.]

3 Suppose that the initial price vector π̄ is different from E∗ S̄
1+r . Construct an

arbitrage opportunity.

4 Consider the sets M0 and M1 of Theorem 1.15. Show by a direct argument
that inf M1 ≥ supM0.

5 Complete the proof of Theorem 1.15, i.e. show that inf Π(C) = maxM0.

6 Complete the proof of Proposition 1.18, i.e. show that sup Π(C) /∈ Π(C).

7 Consider a probability space (Ω,F ,P) and assume Ω has three elements, Ω =
{ω1, ω2, ω3}. Suppose there is, next to the riskless S0, one risky asset S1 that
is not constant. Construct a non-attainable claim C and show that the market
extended with C is complete.

8 Let X = [0, 1] × [0, 1] endowed with the lexicographical order �. Show by a
direct argument, not referring to Theorem 2.6, that X has no countable order
dense subset.

9 I started to doubt whether the proof of Theorem 2.12 is entirely correct (under
the assumption that u0 and u1 are not attained). Perhaps there is a hidden
assumption that the set of equivalence classes for ∼ is uncountable, perhaps
this is solved by connectedness, perhaps there are hidden assumptions on the
topology.

(a) Assume X = Z. Is the statement of the Theorem still valid?

(b) Suppose that the countable dense subset is in fact finite. Is the statement
of the Theorem still valid?

10 Let f : S → R be concave, where S is an interval. Show that f is continuous
on the interior of S and give an example where f is not continuous in a boundary
point of S (which is assumed to belong to S).

11 Let u be an exponential utility function, u(x) = − exp(−αx), x ∈ R, α > 0.
Find the maximizing λ for the problem in Proposition 4.6 in each of the cases
(a) X assumes two values only, (b) X has an exponential distribution, (c) X has
a log-normal distribution. [I have not checked whether explicit solutions exist.]

12 A random variable X has a log-normal distribution with parameters α and
σ, if X = exp(α+ σZ), where σ ≥ 0 and Z has a standard normal distribution.
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(a) Compute EXp for p > 0. In particular, one has EX = exp(α+ 1
2σ

2).

(b) Let µi be log-normal distributions (i = 1, 2) with parameters αi, σi. Show
that µ1 �uni µ2 implies m(µ1) ≥ m(µ2) and σ1 ≤ σ2.

(c) Conversely, if m(µ1) ≥ m(µ2) and σ1 ≤ σ2, then µ1 �uni µ2. To prove
this, proceed as follows. Let X1 = exp(α1 +σZ1) and X2 = exp(α2 +σZ2)
(in obvious notation). Let further X3 = exp(α2−α1 +

√
σ2

2 − σ2
1Z3, where

Z3 is standard normal, independent of Z1. Verify that X1X3 has the same

distribution as X2 and that EX3 = m(µ2)
m(µ1) . Use then Jensen’s inequality

for conditional expectations to show that Eu(X2) ≤ Eu(X1).

13 Consider a market with one risky good, its value at t = 1 is S and price π
(at t = 0). Assume that S has under P a Poisson distribution with parameter
α > 0. Consider the exponential family of Definition 6.10.

(a) Show that Z(λ) <∞ for all λ ∈ R
(b) Show that S has a Poisson distribution with parameter αeλ under Pλ.

(c) Compute the minimizer of λ 7→ Z(λ) directly.

(d) Verify that the minimizer is in agreement with Proposition 6.13.

14 Let F be a distribution function and q any of its quantile functions. Let q−

and q+ be the extremal quantile functions and note that q− ≤ q+.

(a) Show that {q− = q = q+} has Lebesgue measure one. You may use
Theorem 3.10 of the MTP lecture notes.

(b) If U is a random variable with the uniform distribution on (0, 1), show that
q(U) has distribution function F .

15 Give a concrete example where the X∗ in Theorem 7.12 is different from X0.

16 The proof of Proposition 8.21 is a lot simpler if F0 is the trivial σ-algebra
{∅,Ω}. In this case all ξn is the proof are just vectors in Rd and the spaces N and
N⊥ are closed linear subspaces of Rd. Rewrite (and shorten) the proof under
this additional assumption and make clear that Lemma 8.19 and Lemma 8.20
can be circumvented by using standard analysis arguments instead.

17 Show that it follows from the proof of Proposition 8.21 that under the same
assumption also K is closed in L0.

18 If one drops the no arbitrage assumption in Proposition 8.21, the assertion
is no longer true in general. Here is an example. Assume that market contains
only one risky asset (d = 1). Let in (Ω,F ,P), Ω = [0, 1], F the Borel σ-algebra,
and P the Lebesgue measure. Assume that Y : Ω→ R is given by Y (ω) = ω.

(a) Show that the no arbitrage condition is violated.

(b) Let Z ≥ 1 be a constant. Show that Z cannot belong to C, and conclude
that C is not all of L1.

(c) Let Z ∈ L1 and define Zn = (Z+ ∧ n)1[ 1
n ,1] − Z−. Show that Zn ∈ C

(establish first that (Z+ ∧ n)1[ 1
n ,1] ≤ cnY for some constant cn) and that

Zn → Z in L1 for n→∞.
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(d) Conclude that C is not closed.

19 Prove the independence lemma, E [f(X,Y )|G] = f̂(X) with f̂(x) = E f(x, Y )
if X is G-measurable and Y independent of G, under the assumption that X
and Y are discrete.
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