Exercises Portfolio Theory

1. Give the details of the proof on the bottom of page 11 of the lecture notes. Adjust the proof for the possible case where A_{1} or A_{2} is an empty set.
2. Let \preceq be an ordering on the commodity space $\mathcal{B}=\mathbb{R}_{+}^{n}$. Assume that \preceq is transitive, complete ($=$ linear), monotone and continuous. Let $\mathbf{1}=$ $(1, \ldots, 1)^{\top}$ and consider for given $x \in \mathcal{B}$ the sets $U=\{\alpha \geq 0: \alpha x \preceq x\}$ and $L=\{\alpha \geq 0: \alpha x \succeq x\}$. Show that (i) $L \cap U \neq \emptyset$ and that (ii) actually this intersection consists of one point only
3. Assume that an ordering \preceq on the space of lotteries satisfies the independence property. Show that for all lotteries $L, L^{\prime}, L^{\prime \prime}$ and $\alpha \in(0,1)$ the following properties hold.
(a) $L \prec L^{\prime} \Leftrightarrow \alpha L+(1-\alpha) L^{\prime \prime} \prec \alpha L^{\prime}+(1-\alpha) L^{\prime \prime}$
(b) $L \approx L^{\prime} \Leftrightarrow \alpha L+(1-\alpha) L^{\prime \prime} \approx \alpha L^{\prime}+(1-\alpha) L^{\prime \prime}$
(c) If $L \prec L^{\prime}$ and $\alpha \in(0,1)$, then $L \prec \alpha L+(1-\alpha) L^{\prime} \prec L^{\prime}$.
(d) Let $L \prec L^{\prime}$ and $\alpha, \beta \in[0,1]$. Then $\beta L+(1-\beta) L^{\prime} \prec \alpha L+(1-\alpha) L^{\prime}$ iff $\beta<\alpha$.
4. Let \preceq be an ordering on the space of lotteries that satisfies the transitivity, completeness, continuity and independence properties. Assume $L \prec L^{\prime} \prec$ $L^{\prime \prime}$. Show that there exists a unique $\alpha \in[0,1]$ such that $\alpha L+(1-\alpha) L^{\prime \prime} \approx$ L^{\prime}.
5. Let V be a utility function on the space of lotteries with respect to some preference ordering. Show that V is of expected utility form if and only if it is linear (for convex combinations we have $V\left(\sum \alpha_{i} L_{i}\right)=\sum \alpha_{i} V\left(L_{i}\right)$).
6. Let $f: I \rightarrow \mathbb{R}$ be a concave function (in short: $f(t x+(1-t) y) \geq t f(x)+$ $(1-t) f(y)$, for $t \in[0,1]$. Show the following property: for all $v \in I$ there exists a constant c_{v} such that for all $x \in I$ one has $f(x) \leq f(v)+c_{v}(x-v)$. (Hint: For all $u<v<w$ it holds that

$$
\frac{f(v)-f(u)}{v-u} \geq \frac{f(w)-f(v)}{w-v}
$$

and both ratios are monotone functions of u and v respectively.) Show also that concavity of f follows if the afore mentioned property holds.
7. Assume that an ordering \preceq on the space of lotteries can be represented by an expected utility form. Show that \preceq satisfies the independence property.
8. Let U be an increasing and concave utility function $U: I \rightarrow \mathbb{R}$. Consider the fair game represented by a random variable ξ with values $x \pm \varepsilon$ in I that are attained with equal probabilities $\frac{1}{2}$. Given x, ε, the probability premium $\pi=\pi(x, \varepsilon)$ is by definition such that the lottery with the same
outcomes but with probability $\mathbb{P}(\xi=x-\varepsilon)=\frac{1}{2}-\pi$ has expected utility $U(x)$. Show that an individual with utility function U is risk averse iff $\pi(x, \varepsilon) \geq 0$ for all x, ε. Sketch a picture of the graph of U and construct $\pi(x, \varepsilon)$.
9. Consider a strictly risk averse decision maker with utility function U, who has an initial wealth of w euro. He is faced with a potential loss of ℓ euro (on some specified future date). The probability that the loss occurs is p. To protect against loss, he can by an insurance paying out 1 euro per purchased unit of insurance, if the loss occurs (otherwise nothing). The cost of the insurance is p euro per unit (check that this make the insurance fair). Suppose that he buys α units of insurance. Let $X(\alpha)$ be the (binary) random variable representing his resulting wealth on the future date. Let α^{*} be the optimal number of purchased insurance units in the sense that $\alpha \mapsto \mathbb{E} U(X(\alpha))$ is maximized at α^{*}. Show that $\alpha^{*}=\ell$. What is the (nonrandom!) resulting value of X ?
10. Let U be a twice differentiable utility function, such that the Arrow-Pratt coefficient of risk $R(x)=-U^{\prime \prime}(x) / U^{\prime}(x)$ is a constant $\alpha>0$ not depending on x.
(a) Show that there exist constants $a>0$ and b such that $U(x)=a e^{-\alpha x}+$ b.
(b) If the column vector Z has a d-dimensional multivariate normal $N(\mu, \Sigma)$ distribution, then $\mathbb{E} \exp \left(u^{\top} Z\right)=\exp \left(u^{\top} m u+\frac{1}{2} u^{\top} \Sigma u\right)$ for every $v \in \mathbb{R}^{d}$. Show this.
(c) Consider an investor with utility function U who wants to invest an initial capital X_{0}. There is one riskless asset with return r_{0} and n risky assets with random returns r_{i}. Suppose that the random vector $\left(r_{1}, \ldots, r_{n}\right)$ has a multivariate normal $N(\mu, \Sigma)$ distribution with nonsingular covariance matrix Σ. Find the optimal investment strategy π^{*} (notation of Lemma 4.10).
11. In exercise 10 the optimization problems turns out to be of the form: maximize $\mathbb{E} Z-c \operatorname{Var} Z$. This seems reasonable, if one thinks of Z as a random revenue. One wants to maximize the expected revenue and to keep the 'risk' in terms of variance low. In general such a maximization problems leads to odd results. Consider the following example. In a first lottery the random pay-off Z satisfies $\mathbb{P}(Z=1)=1$ and $\mathbb{P}(Z=0)=0$, where as in a second lottery $\mathbb{P}(Z=1)=1-\mathbb{P}(Z=0)=p>0$. Find an example of values of p and c such that the second lottery is preferred to the first one.
12. Consider a twice differentiable utility function $U: I \rightarrow \mathbb{R}$. Define for fixed x such that $t x \in I$ the function $t \mapsto v_{x}(t)=U(t x)$. A way to establish the relative risk around x can obtained by inspection of $v_{x}(t)$ in a neighbourhood of $t=1$. A measure of relative risk at x is given by
$r(x)=-v_{x}^{\prime \prime}(1) / v_{x}^{\prime}(1)$. Show that $r(x)=x R(x)(R(x)$ the Arrow-Pratt risk measure).
13. A utility function U is said to exhibit decreasing risk aversion if the function $x \mapsto R(x)$ is decreasing. Show that this property is equivalent to saying that for every $x_{1}<x_{2}$ there exists a concave function g such that $U\left(x_{2}+z\right)=g\left(U\left(x_{1}+z\right)\right)$ for all z (for which the given expressions make sense).
14. In this exercise (and the next one) on Stochastic Domination you should reply the $1+r_{i}$ and $1+r_{j}$ in Definition 5.1 with other in this context relevant random variables.
Consider a lottery with random outcome ξ. Given the outcome of this lottery the result of a second lottery with random outcome η (independent of $\xi)$ is added to it. Assume that $\mathbb{P}(\eta \geq 0)=1$. The final result is $\zeta=\xi+\eta$. Show that $\zeta \succeq_{F S D} \xi$. Conversely, show that there exists a random variable η that is independent of ξ with $\mathbb{P}(\eta \geq 0)=1$, if $\zeta \succeq_{F S D} \xi .{ }^{1}$
15. Consider the two lotteries in the previous exercise, but assume that η has mean zero, instead of being a.s. nonnegative. Show that $\xi \succeq_{S S D} \zeta$. Show that also the converse statement holds true.
16. Consider Example 3, of Korn, page 10. Solve the dual optimization problem (i.e. of the type of equation (3)) under the constraint that $\pi_{1}+\frac{3}{2} \pi_{2} \geq$ $5 / 4+\sqrt{6} / 12$. Do this both analytically and graphically. Verify the assertion of Proposition 1.
17. Requirement (14) (Korn, page 29) together with the basic model assumptions of Chapter 2 imply that $\mathbb{E} H(T) B<\infty$. Show this. Hint: Let $Z=\exp \left(-\frac{1}{2} \int_{0}^{T}\|\theta(s)\|^{2} d s-\int_{0}^{T} \theta(s)^{\top} d W(s)\right)$. Show that for any $\nu>0$ $\mathbb{E} Z^{\nu}<\infty$. Apply Hölder's inequality to $B(T) Z$.
18. Let X be a nonnegative local martingale (with $X(0)=0$). Show that X is a supermartingale. (You may want to use a famous lemma.)
19. Look at Remark 8c of Chapter 2 (Korn). The claim is that the 'hedge' portfolio process is unique (in some sense, L is Lebesgue measure on $[0, T]$). Show this. (I don't understand immediately how Korn derives the equality at the bottom of page 28.)
20. Much of the theory of section 2.3 (Korn) goes through (given all the assumptions) for the case $m>n$, with some appropriate modifications. Give a quick review of this and show that things break down in the proof of Theorem 7b.
21. About Theorem 7 b of Chapter 2 (Korn): Consider two consumption rate processes c_{1} and c_{2} satisfying the assumptions. How are the corresponding

[^0]portfolio processes π_{1} and π_{2} are related? (I have no idea what comes out of this, just give it a try).
22. Go to page 46 of Korn, step 2. There are here and there some errors in the computations. Give the correct version (of course, the final answer is correct).
23. Prove theorem C2a (Korn, page 324). Apply the Itô rule to $\tilde{v}\left(T, X_{T}\right)$, then you take expectations. Convince yourself that either the (local)martingale term has expectation zero under the assumptions of Chapter 2, or use an appropriate sequence of stopping times T_{n} to justify this property by studying $\tilde{v}\left(T_{n}, X_{T_{n}}\right)$. By similar reasoning you can also prove part b of this theorem.
24. Simple dynamic programming exercise. Printed version will be handed over.
25. I don't believe that in general Korn's statement on page 325: "Theorem C2 stays correct if in the HJB-equation we replace $L(t, x, u)$ by $L(x, u)-$ $\rho v(t, x)$ " holds true. But, show that it is true for $t=0$. If the SDE for the controlled diffusion has coefficients that are independent of time (like in equation (2), page 320), then you show that $v(t, x)=e^{-\rho t} v(0, x)$, if one considers the infinite horizon problem on page 325. Then Korn's statement applies and the HJB-equation (8) for $v(x)=v(0, x)$ holds true.
26. Show that the expectation in problem (P) (Korn, page 49) is finite for the optimal wealth process X^{*}. Try also to compute it explicitly (if this can be done within a reasonable time span).
27. Prove the assertion of Corollary 7* (page 53 in Korn).
28. The utility functions U_{γ} are for $\gamma \in(0,1)$ defined as $U_{\gamma}(x)=\frac{1}{\gamma} x^{\gamma}$ for $x>0$. Notice that $U_{\gamma}^{\prime}(x)=x^{\gamma-1}$. It is common to define (as kind of a limit) U_{0} as $U_{0}(x)=\log x$. Solve the infinite horizon optimization problem (P) on page 49 of Korn via the HJB approach .
29. Take U_{0} as in exercise 28. Solve the finite horizon problem (P) on page 55 of Korn for this case via the HJB approach.
30. Same questions as in exercises 28 and 29 for exponential utility: $U(x)=$ $\alpha-\frac{\beta}{\gamma} \exp (-\gamma x), x>0$ for positive parameters β, γ.
31. Solve the finite horizon problem (P) on page 55 for the case of power utility $\left(U_{1}(x)=U_{2}(x)=\frac{1}{\gamma} x^{\gamma}\right)$ via the Martingale approach. What is the solution for the corresponding infinite horizon problem with $U_{2}=0$?
32. Same questions as in exercise 31 for exponential utility: $U_{1}(x)=U_{2}(x)=$ $\alpha-\frac{\beta}{\gamma} \exp (-\gamma x), x>0$ for positive parameters β, γ.
33. Compute along the lines of Example 24 in Korn the optimal consumption process and optimal portfolio process when $U_{1}(t, x)=\exp (-\mu t) \log x$, $U_{2}(x)=\log x$. Check the result in the special case $\mu=0$ with Example 19.
34. Consider a Cox-Ross-Rubinstein market with time set $\{0, \ldots, T\}$. In this market the bond price evolves as $B_{t}=(1+r)^{t}$ and the stock price S satisfies $S_{t}=\prod_{s=1}^{t} Z_{s}$. The filtration is given by $\mathcal{F}_{t}=\sigma\left\{Z_{1}, \ldots, Z_{t}\right\}$. Under the risk neutral measure \mathbb{Q}, the Z_{s} are iid with $\mathbb{Q}\left(Z_{1}=u\right)=$ $q=1-\mathbb{Q}\left(Z_{s}=d\right)$ (assume that $0<d<1+r<u$ and recall that $q=(1+r-d) /(u-d))$. We consider an American put option with payoff at time t given by $f_{t}=\left(K-S_{t}\right)^{+}$. Let P_{t} be the fair price of this option at time t.
(a) Show that $P_{t}=p\left(t, S_{t}\right)$, where $p(T, x)=(K-x)^{+}$and for $t \leq T-1$ it holds that
$$
p(t, x)=\max \left\{(K-x)^{+}, \frac{\mu(t+1, x)}{1+r}\right\}
$$
where $\mu(t+1, x)=(1-q) p(t+1, x d)+q p(t+1, x u)$.
(b) Show that
$$
p(0, x)=\sup _{\tau \in \mathcal{T}} \mathbb{E}_{\mathbb{Q}}\left[(1+r)^{-\tau}\left(K-x V_{\tau}\right)^{+}\right]
$$
where \mathcal{T} is the set of stopping times bounded by T and where for fixed t the random variable V_{t} can be written as a product $V_{t}=$ $\prod_{i=1}^{t} U_{i}$ of iid under \mathbb{Q} random variables U_{i}. Give the distribution of $\left(U_{1}, \ldots, U_{T}\right)$ under \mathbb{Q}.
(c) Show that $x \mapsto p(0, x)$ is convex and non-increasing.
(d) Assume that $d<1$. Show that there exists $x^{*} \in[0, K]$ such that $p(0, x)=(K-x)^{+}$if $x \in\left[0, x^{*}\right]$ and that $p(0, x)>(K-x)^{+}$if $x \in\left(x^{*}, K d^{-T}\right]$.
(e) Suppose that you owe an American put at time $t=0$. For which values of S_{0} would you immediately exercise your option?
(f) Compute a hedge strategy for the American put for $T=2$ and the fair prices P_{t} for $t=0,1,2$.
35. Show that the function P in Lemma 8.2.8 of Elliott \& Kopp is convex and non-increasing in each of its arguments.
36. Show that the derivative $\frac{\partial}{\partial x} P$ (notation of section 8.2) exists in (t, x) such that $P(x, t)>(K-x)^{+}$.
37. Give the full proof (including details) of proposition 8.5.2.

[^0]: ${ }^{1}$ If necessary, you may assume that ξ and η are bounded.

