
Exercises Portfolio Theory

1. Give the details of the proof on the bottom of page 11 of the lecture notes.
Adjust the proof for the possible case where A1 or A2 is an empty set.

2. Let � be an ordering on the commodity space B = Rn
+. Assume that

� is transitive, complete (= linear), monotone and continuous. Let 1 =
(1, . . . , 1)> and consider for given x ∈ B the sets U = {α ≥ 0 : αx � x}
and L = {α ≥ 0 : αx � x}. Show that (i) L∩U 6= ∅ and that (ii) actually
this intersection consists of one point only.

3. Assume that an ordering � on the space of lotteries satisfies the indepen-
dence property. Show that for all lotteries L,L′, L′′ and α ∈ (0, 1) the
following properties hold.

(a) L ≺ L′ ⇔ αL + (1− α)L′′ ≺ αL′ + (1− α)L′′

(b) L ≈ L′ ⇔ αL + (1− α)L′′ ≈ αL′ + (1− α)L′′

(c) If L ≺ L′ and α ∈ (0, 1), then L ≺ αL + (1− α)L′ ≺ L′.

(d) Let L ≺ L′ and α, β ∈ [0, 1]. Then βL + (1− β)L′ ≺ αL + (1− α)L′

iff β < α.

4. Let � be an ordering on the space of lotteries that satisfies the transitivity,
completeness, continuity and independence properties. Assume L ≺ L′ ≺
L′′. Show that there exists a unique α ∈ [0, 1] such that αL+(1−α)L′′ ≈
L′.

5. Let V be a utility function on the space of lotteries with respect to some
preference ordering. Show that V is of expected utility form if and only if
it is linear (for convex combinations we have V (

∑
αiLi) =

∑
αiV (Li)).

6. Let f : I → R be a concave function (in short: f(tx + (1− t)y) ≥ tf(x) +
(1− t)f(y), for t ∈ [0, 1]. Show the following property: for all v ∈ I there
exists a constant cv such that for all x ∈ I one has f(x) ≤ f(v)+cv(x−v).
(Hint: For all u < v < w it holds that

f(v)− f(u)
v − u

≥ f(w)− f(v)
w − v

,

and both ratios are monotone functions of u and v respectively.) Show
also that concavity of f follows if the afore mentioned property holds.

7. Assume that an ordering � on the space of lotteries can be represented by
an expected utility form. Show that � satisfies the independence property.

8. Let U be an increasing and concave utility function U : I → R. Consider
the fair game represented by a random variable ξ with values x ± ε in I
that are attained with equal probabilities 1

2 . Given x, ε, the probability
premium π = π(x, ε) is by definition such that the lottery with the same

1



outcomes but with probability P(ξ = x− ε) = 1
2 − π has expected utility

U(x). Show that an individual with utility function U is risk averse iff
π(x, ε) ≥ 0 for all x, ε. Sketch a picture of the graph of U and construct
π(x, ε).

9. Consider a strictly risk averse decision maker with utility function U , who
has an initial wealth of w euro. He is faced with a potential loss of `
euro (on some specified future date). The probability that the loss occurs
is p. To protect against loss, he can by an insurance paying out 1 euro
per purchased unit of insurance, if the loss occurs (otherwise nothing).
The cost of the insurance is p euro per unit (check that this make the
insurance fair). Suppose that he buys α units of insurance. Let X(α)
be the (binary) random variable representing his resulting wealth on the
future date. Let α∗ be the optimal number of purchased insurance units
in the sense that α 7→ E U(X(α)) is maximized at α∗. Show that α∗ = `.
What is the (nonrandom!) resulting value of X?

10. Let U be a twice differentiable utility function, such that the Arrow-Pratt
coefficient of risk R(x) = −U ′′(x)/U ′(x) is a constant α > 0 not depending
on x.

(a) Show that there exist constants a > 0 and b such that U(x) = ae−αx+
b.

(b) If the column vector Z has a d-dimensional multivariate normal
N(µ,Σ) distribution, then E exp(u>Z) = exp(u>mu + 1

2u>Σu) for
every v ∈ Rd. Show this.

(c) Consider an investor with utility function U who wants to invest an
initial capital X0. There is one riskless asset with return r0 and
n risky assets with random returns ri. Suppose that the random
vector (r1, . . . , rn) has a multivariate normal N(µ,Σ) distribution
with nonsingular covariance matrix Σ. Find the optimal investment
strategy π∗ (notation of Lemma 4.10).

11. In exercise 10 the optimization problems turns out to be of the form:
maximize E Z − cVarZ. This seems reasonable, if one thinks of Z as a
random revenue. One wants to maximize the expected revenue and to
keep the ‘risk’ in terms of variance low. In general such a maximization
problems leads to odd results. Consider the following example. In a first
lottery the random pay-off Z satisfies P(Z = 1) = 1 and P(Z = 0) = 0,
where as in a second lottery P(Z = 1) = 1 − P(Z = 0) = p > 0. Find an
example of values of p and c such that the second lottery is preferred to
the first one.

12. Consider a twice differentiable utility function U : I → R. Define for
fixed x such that tx ∈ I the function t 7→ vx(t) = U(tx). A way to
establish the relative risk around x can obtained by inspection of vx(t)
in a neighbourhood of t = 1. A measure of relative risk at x is given by
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r(x) = −v′′x(1)/v′x(1). Show that r(x) = xR(x) (R(x) the Arrow-Pratt
risk measure).

13. A utility function U is said to exhibit decreasing risk aversion if the func-
tion x 7→ R(x) is decreasing. Show that this property is equivalent to
saying that for every x1 < x2 there exists a concave function g such that
U(x2 + z) = g(U(x1 + z)) for all z (for which the given expressions make
sense).

14. In this exercise (and the next one) on Stochastic Domination you should
reply the 1 + ri and 1 + rj in Definition 5.1 with other in this context
relevant random variables.
Consider a lottery with random outcome ξ. Given the outcome of this
lottery the result of a second lottery with random outcome η (independent
of ξ) is added to it. Assume that P(η ≥ 0) = 1. The final result is ζ = ξ+η.
Show that ζ �FSD ξ. Conversely, show that there exists a random variable
η that is independent of ξ with P(η ≥ 0) = 1, if ζ �FSD ξ.1

15. Consider the two lotteries in the previous exercise, but assume that η has
mean zero, instead of being a.s. nonnegative. Show that ξ �SSD ζ. Show
that also the converse statement holds true.

16. Consider Example 3, of Korn, page 10. Solve the dual optimization prob-
lem (i.e. of the type of equation (3)) under the constraint that π1 + 3

2π2 ≥
5/4 +

√
6/12. Do this both analytically and graphically. Verify the asser-

tion of Proposition 1.

17. Requirement (14) (Korn, page 29) together with the basic model assump-
tions of Chapter 2 imply that E H(T )B < ∞. Show this. Hint: Let

Z = exp(− 1
2

∫ T

0
||θ(s)||2 ds −

∫ T

0
θ(s)>dW (s)). Show that for any ν > 0

E Zν < ∞. Apply Hölder’s inequality to B(T )Z.

18. Let X be a nonnegative local martingale (with X(0) = 0). Show that X
is a supermartingale. (You may want to use a famous lemma.)

19. Look at Remark 8c of Chapter 2 (Korn). The claim is that the ‘hedge’
portfolio process is unique (in some sense, L is Lebesgue measure on [0, T ]).
Show this. (I don’t understand immediately how Korn derives the equality
at the bottom of page 28.)

20. Much of the theory of section 2.3 (Korn) goes through (given all the
assumptions) for the case m > n, with some appropriate modifications.
Give a quick review of this and show that things break down in the proof
of Theorem 7b.

21. About Theorem 7b of Chapter 2 (Korn): Consider two consumption rate
processes c1 and c2 satisfying the assumptions. How are the corresponding

1If necessary, you may assume that ξ and η are bounded.
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portfolio processes π1 and π2 are related? (I have no idea what comes out
of this, just give it a try).

22. Go to page 46 of Korn, step 2. There are here and there some errors in
the computations. Give the correct version (of course, the final answer is
correct).

23. Prove theorem C2a (Korn, page 324). Apply the Itô rule to ṽ(T,XT ), then
you take expectations. Convince yourself that either the (local)martingale
term has expectation zero under the assumptions of Chapter 2, or use
an appropriate sequence of stopping times Tn to justify this property by
studying ṽ(Tn, XTn). By similar reasoning you can also prove part b of
this theorem.

24. Simple dynamic programming exercise. Printed version will be handed
over.

25. I don’t believe that in general Korn’s statement on page 325: ”Theorem
C2 stays correct if in the HJB-equation we replace L(t, x, u) by L(x, u)−
ρv(t, x)” holds true. But, show that it is true for t = 0. If the SDE
for the controlled diffusion has coefficients that are independent of time
(like in equation (2), page 320), then you show that v(t, x) = e−ρtv(0, x),
if one considers the infinite horizon problem on page 325. Then Korn’s
statement applies and the HJB-equation (8) for v(x) = v(0, x) holds true.

26. Show that the expectation in problem (P) (Korn, page 49) is finite for the
optimal wealth process X∗. Try also to compute it explicitly (if this can
be done within a reasonable time span).

27. Prove the assertion of Corollary 7* (page 53 in Korn).

28. The utility functions Uγ are for γ ∈ (0, 1) defined as Uγ(x) = 1
γ xγ for

x > 0. Notice that U ′
γ(x) = xγ−1. It is common to define (as kind of a

limit) U0 as U0(x) = log x. Solve the infinite horizon optimization problem
(P) on page 49 of Korn via the HJB approach .

29. Take U0 as in exercise 28. Solve the finite horizon problem (P) on page
55 of Korn for this case via the HJB approach.

30. Same questions as in exercises 28 and 29 for exponential utility: U(x) =
α− β

γ exp(−γx), x > 0 for positive parameters β, γ.

31. Solve the finite horizon problem (P) on page 55 for the case of power
utility (U1(x) = U2(x) = 1

γ xγ) via the Martingale approach. What is the
solution for the corresponding infinite horizon problem with U2 = 0?

32. Same questions as in exercise 31 for exponential utility: U1(x) = U2(x) =
α− β

γ exp(−γx), x > 0 for positive parameters β, γ.
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33. Compute along the lines of Example 24 in Korn the optimal consump-
tion process and optimal portfolio process when U1(t, x) = exp(−µt) log x,
U2(x) = log x. Check the result in the special case µ = 0 with Example
19.

34. Consider a Cox-Ross-Rubinstein market with time set {0, . . . , T}. In this
market the bond price evolves as Bt = (1 + r)t and the stock price S
satisfies St =

∏t
s=1 Zs. The filtration is given by Ft = σ{Z1, . . . , Zt}.

Under the risk neutral measure Q, the Zs are iid with Q(Z1 = u) =
q = 1 − Q(Zs = d) (assume that 0 < d < 1 + r < u and recall that
q = (1+r−d)/(u−d) ). We consider an American put option with payoff
at time t given by ft = (K − St)+. Let Pt be the fair price of this option
at time t.

(a) Show that Pt = p(t, St), where p(T, x) = (K − x)+ and for t ≤ T − 1
it holds that

p(t, x) = max{(K − x)+,
µ(t + 1, x)

1 + r
},

where µ(t + 1, x) = (1− q)p(t + 1, xd) + qp(t + 1, xu).

(b) Show that

p(0, x) = sup
τ∈T

E Q[(1 + r)−τ (K − xVτ )+],

where T is the set of stopping times bounded by T and where for
fixed t the random variable Vt can be written as a product Vt =∏t

i=1 Ui of iid under Q random variables Ui. Give the distribution
of (U1, . . . , UT ) under Q.

(c) Show that x 7→ p(0, x) is convex and non-increasing.

(d) Assume that d < 1. Show that there exists x∗ ∈ [0,K] such that
p(0, x) = (K − x)+ if x ∈ [0, x∗] and that p(0, x) > (K − x)+ if
x ∈ (x∗,Kd−T ].

(e) Suppose that you owe an American put at time t = 0. For which
values of S0 would you immediately exercise your option?

(f) Compute a hedge strategy for the American put for T = 2 and the
fair prices Pt for t = 0, 1, 2.

35. Show that the function P in Lemma 8.2.8 of Elliott & Kopp is convex and
non-increasing in each of its arguments.

36. Show that the derivative ∂
∂xP (notation of section 8.2) exists in (t, x) such

that P (x, t) > (K − x)+.

37. Give the full proof (including details) of proposition 8.5.2.
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