EXERCISES PORTFOLIO THEORY

- 1. Give the details of the proof on the bottom of page 11 of the lecture notes. Adjust the proof for the possible case where A_1 or A_2 is an empty set.
- 2. Let \leq be an ordering on the commodity space $\mathcal{B} = \mathbb{R}^n_+$. Assume that \leq is transitive, complete (= linear), monotone and continuous. Let $\mathbf{1} = (1, \ldots, 1)^{\top}$ and consider for given $x \in \mathcal{B}$ the sets $U = \{\alpha \geq 0 : \alpha x \leq x\}$ and $L = \{\alpha \geq 0 : \alpha x \geq x\}$. Show that (i) $L \cap U \neq \emptyset$ and that (ii) actually this intersection consists of one point only.
- 3. Assume that an ordering \leq on the space of lotteries satisfies the *independence* property. Show that for all lotteries L, L', L'' and $\alpha \in (0, 1)$ the following properties hold.
 - (a) $L \prec L' \Leftrightarrow \alpha L + (1 \alpha)L'' \prec \alpha L' + (1 \alpha)L''$
 - (b) $L \approx L' \Leftrightarrow \alpha L + (1 \alpha)L'' \approx \alpha L' + (1 \alpha)L''$
 - (c) If $L \prec L'$ and $\alpha \in (0, 1)$, then $L \prec \alpha L + (1 \alpha)L' \prec L'$.
 - (d) Let $L \prec L'$ and $\alpha, \beta \in [0, 1]$. Then $\beta L + (1 \beta)L' \prec \alpha L + (1 \alpha)L'$ iff $\beta < \alpha$.
- 4. Let \leq be an ordering on the space of lotteries that satisfies the *transitivity*, completeness, continuity and independence properties. Assume $L \prec L' \prec L''$. Show that there exists a unique $\alpha \in [0, 1]$ such that $\alpha L + (1 \alpha)L'' \approx L'$.
- 5. Let V be a utility function on the space of lotteries with respect to some preference ordering. Show that V is of expected utility form if and only if it is linear (for convex combinations we have $V(\sum \alpha_i L_i) = \sum \alpha_i V(L_i)$).
- 6. Let $f: I \to \mathbb{R}$ be a concave function (in short: $f(tx + (1-t)y) \ge tf(x) + (1-t)f(y)$, for $t \in [0,1]$. Show the following property: for all $v \in I$ there exists a constant c_v such that for all $x \in I$ one has $f(x) \le f(v) + c_v(x-v)$. (*Hint:* For all u < v < w it holds that

$$\frac{f(v) - f(u)}{v - u} \ge \frac{f(w) - f(v)}{w - v},$$

and both ratios are monotone functions of u and v respectively.) Show also that concavity of f follows if the afore mentioned property holds.

- 7. Assume that an ordering \leq on the space of lotteries can be represented by an expected utility form. Show that \leq satisfies the *independence* property.
- 8. Let U be an increasing and concave utility function $U: I \to \mathbb{R}$. Consider the fair game represented by a random variable ξ with values $x \pm \varepsilon$ in I that are attained with equal probabilities $\frac{1}{2}$. Given x, ε , the probability premium $\pi = \pi(x, \varepsilon)$ is by definition such that the lottery with the same

outcomes but with probability $\mathbb{P}(\xi = x - \varepsilon) = \frac{1}{2} - \pi$ has expected utility U(x). Show that an individual with utility function U is risk averse iff $\pi(x,\varepsilon) \geq 0$ for all x,ε . Sketch a picture of the graph of U and construct $\pi(x,\varepsilon)$.

- 9. Consider a strictly risk averse decision maker with utility function U, who has an initial wealth of w euro. He is faced with a potential loss of ℓ euro (on some specified future date). The probability that the loss occurs is p. To protect against loss, he can by an insurance paying out 1 euro per purchased unit of insurance, if the loss occurs (otherwise nothing). The cost of the insurance is p euro per unit (check that this make the insurance *fair*). Suppose that he buys α units of insurance. Let $X(\alpha)$ be the (binary) random variable representing his resulting wealth on the future date. Let α^* be the optimal number of purchased insurance units in the sense that $\alpha \mapsto \mathbb{E} U(X(\alpha))$ is maximized at α^* . Show that $\alpha^* = \ell$. What is the (nonrandom!) resulting value of X?
- 10. Let U be a twice differentiable utility function, such that the Arrow-Pratt coefficient of risk R(x) = -U''(x)/U'(x) is a constant $\alpha > 0$ not depending on x.
 - (a) Show that there exist constants a > 0 and b such that $U(x) = ae^{-\alpha x} + b$.
 - (b) If the column vector Z has a d-dimensional multivariate normal $N(\mu, \Sigma)$ distribution, then $\mathbb{E} \exp(u^{\top} Z) = \exp(u^{\top} m u + \frac{1}{2} u^{\top} \Sigma u)$ for every $v \in \mathbb{R}^d$. Show this.
 - (c) Consider an investor with utility function U who wants to invest an initial capital X_0 . There is one riskless asset with return r_0 and n risky assets with random returns r_i . Suppose that the random vector (r_1, \ldots, r_n) has a multivariate normal $N(\mu, \Sigma)$ distribution with nonsingular covariance matrix Σ . Find the optimal investment strategy π^* (notation of Lemma 4.10).
- 11. In exercise 10 the optimization problems turns out to be of the form: maximize $\mathbb{E} Z - c \operatorname{Var} Z$. This seems reasonable, if one thinks of Z as a random revenue. One wants to maximize the expected revenue and to keep the 'risk' in terms of variance low. In general such a maximization problems leads to odd results. Consider the following example. In a first lottery the random pay-off Z satisfies $\mathbb{P}(Z = 1) = 1$ and $\mathbb{P}(Z = 0) = 0$, where as in a second lottery $\mathbb{P}(Z = 1) = 1 - \mathbb{P}(Z = 0) = p > 0$. Find an example of values of p and c such that the second lottery is preferred to the first one.
- 12. Consider a twice differentiable utility function $U : I \to \mathbb{R}$. Define for fixed x such that $tx \in I$ the function $t \mapsto v_x(t) = U(tx)$. A way to establish the *relative* risk around x can obtained by inspection of $v_x(t)$ in a neighbourhood of t = 1. A measure of relative risk at x is given by

 $r(x)=-v_x^{\prime\prime}(1)/v_x^{\prime}(1).$ Show that r(x)=xR(x) (R(x) the Arrow-Pratt risk measure).

- 13. A utility function U is said to exhibit decreasing risk aversion if the function $x \mapsto R(x)$ is decreasing. Show that this property is equivalent to saying that for every $x_1 < x_2$ there exists a concave function g such that $U(x_2 + z) = g(U(x_1 + z))$ for all z (for which the given expressions make sense).
- 14. In this exercise (and the next one) on Stochastic Domination you should reply the $1 + r_i$ and $1 + r_j$ in Definition 5.1 with other in this context relevant random variables. Consider a lottery with random outcome ξ . Given the outcome of this lottery the result of a second lottery with random outcome η (independent of ξ) is added to it. Assume that $\mathbb{P}(\eta \ge 0) = 1$. The final result is $\zeta = \xi + \eta$. Show that $\zeta \succeq_{FSD} \xi$. Conversely, show that there exists a random variable η that is independent of ξ with $\mathbb{P}(\eta \ge 0) = 1$, if $\zeta \succeq_{FSD} \xi$.¹
- 15. Consider the two lotteries in the previous exercise, but assume that η has mean zero, instead of being a.s. nonnegative. Show that $\xi \succeq_{SSD} \zeta$. Show that also the converse statement holds true.
- 16. Consider Example 3, of Korn, page 10. Solve the dual optimization problem (i.e. of the type of equation (3)) under the constraint that $\pi_1 + \frac{3}{2}\pi_2 \ge 5/4 + \sqrt{6}/12$. Do this both analytically and graphically. Verify the assertion of Proposition 1.
- 17. Requirement (14) (Korn, page 29) together with the basic model assumptions of Chapter 2 imply that $\mathbb{E} H(T)B < \infty$. Show this. Hint: Let $Z = \exp(-\frac{1}{2}\int_0^T ||\theta(s)||^2 ds \int_0^T \theta(s)^\top dW(s))$. Show that for any $\nu > 0$ $\mathbb{E} Z^{\nu} < \infty$. Apply Hölder's inequality to B(T)Z.
- 18. Let X be a nonnegative local martingale (with X(0) = 0). Show that X is a supermartingale. (You may want to use a famous lemma.)
- 19. Look at Remark 8c of Chapter 2 (*Korn*). The claim is that the 'hedge' portfolio process is unique (in some sense, L is Lebesgue measure on [0, T]). Show this. (I don't understand immediately how Korn derives the equality at the bottom of page 28.)
- 20. Much of the theory of section 2.3 (Korn) goes through (given all the assumptions) for the case m > n, with some appropriate modifications. Give a quick review of this and show that things break down in the proof of Theorem 7b.
- 21. About Theorem 7b of Chapter 2 (Korn): Consider two consumption rate processes c_1 and c_2 satisfying the assumptions. How are the corresponding

¹If necessary, you may assume that ξ and η are bounded.

portfolio processes π_1 and π_2 are related? (I have no idea what comes out of this, just give it a try).

- 22. Go to page 46 of *Korn*, step 2. There are here and there some errors in the computations. Give the correct version (of course, the final answer is correct).
- 23. Prove theorem C2a (Korn, page 324). Apply the Itô rule to $\tilde{v}(T, X_T)$, then you take expectations. Convince yourself that either the (local)martingale term has expectation zero under the assumptions of Chapter 2, or use an appropriate sequence of stopping times T_n to justify this property by studying $\tilde{v}(T_n, X_{T_n})$. By similar reasoning you can also prove part b of this theorem.
- 24. Simple dynamic programming exercise. Printed version will be handed over.
- 25. I don't believe that in general Korn's statement on page 325: "Theorem C2 stays correct if in the HJB-equation we replace L(t, x, u) by $L(x, u) \rho v(t, x)$ " holds true. But, show that it is true for t = 0. If the SDE for the controlled diffusion has coefficients that are independent of time (like in equation (2), page 320), then you show that $v(t, x) = e^{-\rho t}v(0, x)$, if one considers the *infinite horizon* problem on page 325. Then Korn's statement applies and the HJB-equation (8) for v(x) = v(0, x) holds true.
- 26. Show that the expectation in problem (P) (Korn, page 49) is finite for the optimal wealth process X^* . Try also to compute it explicitly (if this can be done within a reasonable time span).
- 27. Prove the assertion of Corollary 7* (page 53 in Korn).
- 28. The utility functions U_{γ} are for $\gamma \in (0,1)$ defined as $U_{\gamma}(x) = \frac{1}{\gamma}x^{\gamma}$ for x > 0. Notice that $U'_{\gamma}(x) = x^{\gamma-1}$. It is common to define (as kind of a limit) U_0 as $U_0(x) = \log x$. Solve the infinite horizon optimization problem (P) on page 49 of Korn via the HJB approach.
- 29. Take U_0 as in exercise 28. Solve the finite horizon problem (P) on page 55 of *Korn* for this case via the HJB approach.
- 30. Same questions as in exercises 28 and 29 for exponential utility: $U(x) = \alpha \frac{\beta}{\gamma} \exp(-\gamma x), x > 0$ for positive parameters β, γ .
- 31. Solve the finite horizon problem (P) on page 55 for the case of power utility $(U_1(x) = U_2(x) = \frac{1}{\gamma}x^{\gamma})$ via the Martingale approach. What is the solution for the corresponding infinite horizon problem with $U_2 = 0$?
- 32. Same questions as in exercise 31 for exponential utility: $U_1(x) = U_2(x) = \alpha \frac{\beta}{\gamma} \exp(-\gamma x), x > 0$ for positive parameters β, γ .

- 33. Compute along the lines of Example 24 in Korn the optimal consumption process and optimal portfolio process when $U_1(t, x) = \exp(-\mu t) \log x$, $U_2(x) = \log x$. Check the result in the special case $\mu = 0$ with Example 19.
- 34. Consider a Cox-Ross-Rubinstein market with time set $\{0, \ldots, T\}$. In this market the bond price evolves as $B_t = (1+r)^t$ and the stock price S satisfies $S_t = \prod_{s=1}^t Z_s$. The filtration is given by $\mathcal{F}_t = \sigma\{Z_1, \ldots, Z_t\}$. Under the risk neutral measure \mathbb{Q} , the Z_s are *iid* with $\mathbb{Q}(Z_1 = u) = q = 1 \mathbb{Q}(Z_s = d)$ (assume that 0 < d < 1 + r < u and recall that q = (1+r-d)/(u-d)). We consider an American put option with payoff at time t given by $f_t = (K S_t)^+$. Let P_t be the fair price of this option at time t.
 - (a) Show that $P_t = p(t, S_t)$, where $p(T, x) = (K x)^+$ and for $t \le T 1$ it holds that

$$p(t,x) = \max\{(K-x)^+, \frac{\mu(t+1,x)}{1+r}\},\$$

where $\mu(t+1, x) = (1-q)p(t+1, xd) + qp(t+1, xu).$

(b) Show that

$$p(0,x) = \sup_{\tau \in \mathcal{T}} \mathbb{E}_{\mathbb{Q}}[(1+r)^{-\tau}(K-xV_{\tau})^+],$$

where \mathcal{T} is the set of stopping times bounded by T and where for fixed t the random variable V_t can be written as a product $V_t = \prod_{i=1}^{t} U_i$ of *iid under* \mathbb{Q} random variables U_i . Give the distribution of (U_1, \ldots, U_T) under \mathbb{Q} .

- (c) Show that $x \mapsto p(0, x)$ is convex and non-increasing.
- (d) Assume that d < 1. Show that there exists $x^* \in [0, K]$ such that $p(0, x) = (K x)^+$ if $x \in [0, x^*]$ and that $p(0, x) > (K x)^+$ if $x \in (x^*, Kd^{-T}]$.
- (e) Suppose that you owe an American put at time t = 0. For which values of S_0 would you immediately exercise your option?
- (f) Compute a hedge strategy for the American put for T = 2 and the fair prices P_t for t = 0, 1, 2.
- 35. Show that the function P in Lemma 8.2.8 of Elliott & Kopp is convex and non-increasing in each of its arguments.
- 36. Show that the derivative $\frac{\partial}{\partial x}P$ (notation of section 8.2) exists in (t, x) such that $P(x,t) > (K-x)^+$.
- 37. Give the full proof (including details) of proposition 8.5.2.