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Dynamical systems and nonlinear
models

1.1 Introduction

In various situations information about a certain environment is represented as a
sequence of measurements made consecutively in time, i.e. a time series. The crucial
difference between the analysis of time series, and situations usually considered in
classical statistics, is that the measurements within a time series will be stochas-
tically dependent, while in classical statistics the fundamental assumption is that
the observations are independent.

One possible source of complex behaviour of time series is the presence of ran-
dom factors, such as measurement errors, system noise, etc. The highest degree of
randomness we can encounter would be a time series which represents a sequence of
outcomes of independent random variables, with no further structure. This, how-
ever, is not of interest for time series analysis.

The opposite of pure randomness is considered by the theory of deterministic
dynamical systems. Here the future evolution is uniquely determined by the initial
state and the evolution law. The behaviour of a deterministic system is not necessar-
ily simple. In fact, developments in the area of nonlinear dynamical systems show
the existence of deterministic time series which display highly erratic behaviour
and may look like a realisation of a random process. In this case one speaks of the
so-called chaotic dynamics. We shall consider this in more detail later.

One of the main aims of time series analysis is to model the dependence of
future observations on the previous ones. Beginning with Yule’s invention in 1927 of
linear autoregression for the analysis of sunspot data, linear models have dominated
time series analysis for about half a century. In these models the dependence of
future observations on past ones is linear. To model complex behaviour by such a
simple system, the presence of external random perturbations must be assumed.
In traditional linear models driven by noise, such as the AR and ARMA models,
a future observation is taken to be a linear combination of a certain number of
previous observations and random, mostly Gaussian, disturbances, the so-called it
innovations. However, as we shall see, there are simple examples of time series,
for instance those related to chaotic dynamical systems, for which linear models
are inadequate. This creates new problems: how to recognise such time series, and
which methods to use for their modelling and prediction. These problems motivated
many researches in the field of nonlinear time series analysis during the last decade.

The question of separating nonlinear time series from linear ones is rather complex
and cannot be answered just by visual inspection. As an example, consider the four
time series segments in Fig. 1.1-4 (A-D). Only one of them was obtained from a
linear model driven by noise and the other three have strongly nonlinear features.
We suggest to the reader to guess which one is linear.

One can see that it is difficult, even for an experienced eye, to discriminate
nonlinear time series from linear ones just by visual inspection. However, there are
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ways (graphical as well as analytical) to detect nonlinear time series and time series
arising from deterministic systems. An important recent development in the theory
of dynamical systems, the so-called state space reconstruction, assures that it is
possible to reconstruct characteristic features of the underlying dynamics from the
observed output, i.e. the actual time series. We shall consider this more in detail
later.

Other crucial developments of the last decade, which also encouraged wide-spread
interest in nonlinear methods, are the increased availability of powerful computers
and the emergence of the field of machine learning, such as neural networks. This
shifted modelling more towards data-driven methods and allowed for the explo-
ration of a larger set of potential models, including nonlinear ones.

1.2 Nonlinear models

Let a time series {y, }nen be obtained by the rule

Yn+1 = f(Yn), (1.1)

where f : R — R is a nonlinear function and y¢ € R is an initial value. Even in
this simple deterministic one-dimensional case the nonlinear function f can cause
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complex behaviour of the resulting time series such that it appears random. Perhaps
the best known example is the logistic map f : [0,1] — [0,1] given by f(z) =
Az (1—x), which is known to exhibit chaotic behaviour for certain parameter values,
e.g. A = 4. The time series A in Fig. 1.1 was generated by the logistic map

Ynt1 = 4yn(1 — yn). (1.2)

Deterministic models of the type (1.1) can be generalised to multidimensional ones
of the form
Xnp1 = F(Xy), (1.3)

where X, € R*¥, n > 0 and X is an initial value. The function F : RF — RF is
vector-valued. The difference equation (1.3) describes a discrete dynamical system
in R*, with the evolution map F.

In reality, observations rarely evolve according to the model (1.3): usually there
is some observational or measurement noise, as well as other random disturbances
may be present in the system. Moreover, a deterministic model will inevitably be
inadequate for modelling of real data. Therefore, it is more realistic to replace (1.3)
by a model

Xnt1 = F(Xnaen+1)a (1'4)

where F : R?* — R* and {e, } .en is a sequence of k-dimensional random vectors,
such that e, is independent of {X;};<, (which, too, is quite an assumption). We will
call (1.4) a (discrete) stochastic dynamical system. The sequence of random vectors
{en} is called the dynamical noise (also the system, or the intrinsic noise). For
convenience of analysis we shall further assume that the dynamic noise is additive,
so that (1.4) reduces to the model with additive noise

Xny1 = F(Xn) + ent1, (1.5)

here F : R¥* — RF¥. If we have the following vector representations:

Xn = (ynaynfla "'ayn*k-i-l)a
F(Xn) = (f(Xn);yn; ---,yn7k+2), and (16)
€n = (enaoa '"70)7

then (1.5) together with (1.6) results into

Ynt1 = FWn>Yn—1, - Yn—k+1) + €nt1, (L.7)

and the function f is nonlinear if F' is. Relation (1.7) defines a nonlinear autore-
gression model of order k for the time series {y,}. Conversely, the model (1.7)
for the time series {y,} can be written as a stochastic dynamical system (1.5) by
vectorising {y,, }.

Using the example of the time series above we introduce a common exploratory
tool for detecting the nonlinearity of a time series, the so-called delay-1 map: y, —
Yn+1. The delay-1 map will also be called return map. In practice one plots y,+1
vS. Yn. For the time series A, due to the relation (1.2) between the present and the
next value, the points of the return map (see Fig.1.5) fall on the parabola, revealing
the deterministic structure of this time series.

In most real-life situations the observational noise or other disturbances cause
points to spread out, but in many cases the character of the underlying dynamics
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and nonlinearities can still be partially deduced from the structure of the return
map. The return maps of the other three time series are shown in Fig. 1.6-8. The
return map of the time series D (Fig. 1.8) immediately reveals its nonlinear struc-
ture. This is a time series coming from the so-called Henon dynamical system (we
shall describe it later in this section).

Since the time series C is sampled with a very small time delay (i.e. the mea-
surements are made with a very short time interval), we plotted not the delay-1,
but delay-35 map, i.e. not yn1 VS. Yn, but yn i35 vs. y, (35 was taken because it
is approximately a quarter of the “pseudocycle” of this time series). The fact that
the points on Fig. 1.7 fall along a clearly visible though erratic curve indicates the
nonlinear structure of this time series. This time series comes from a laboratory
experiment of pressure measurement in a fluidized bed, which is believed to be a
good example of a low-dimensional chaotic dynamical system with a low level of
noise.

In contrast to the other three maps, the return map in Fig. 1.6 does not reveal
any familiar structure, with points spreading over the whole graph. This time series
is a realisation of a linear autoregression of order 1, driven by Gaussian noise.

The use of return maps for recognising nonlinear time series is closely related to
the technique of the state space reconstruction. This technique is based on a remark-
able result in the area of chaotic time series, the Takens reconstruction theorem [28].
We shall formulate it later, and here we try to give a flavour of the reconstruction
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technique.

When studying return maps for a time series, we are interested in the behaviour
of pairs of observations (¥,_1,¥,). In case of a nonlinear time series this can provide
a better understanding of the dynamics that generated this time series. Intuitively,
one may expect the behaviour of the vectors (y,—1,¥,) to provide more insight
into the underlying dynamics than the behaviour of the scalar observations y,,.
Consequently, for more complicated cases more information about the dynamics can
be gained by studying three-dimensional return maps, i.e. vectors (Yn—2,Yn—1,Yn),
or even k-dimensional vectors (yn— k-1, -, Yn) for some higher value of k. This is the
basic idea of reconstruction: one replaces a time series {y, } by a sequence of vectors
(Yn—k+1, ---, Yn), which are called reconstruction vectors. The reconstruction vectors
“live” in the space R¥, also called the embedding space, and its dimension k is the
embedding dimension. Note that both the space R¥, where the stochastic dynamical
system (1.5) evolves, and its dimension are naturally related to the embedding space
and the embedding dimension.

We illustrate this technique using the example of the Henon dynamical system.
This system evolves in phase space R? according to the law:

(z,y) — (1 — ax® +y, bx). (1.8)

For the values a = 1.4, b = 0.3 it is known to exhibit chaotic behaviour. In Fig. 1.9 a
trajectory of this system in the original coordinates (x, y) is shown. The correspond-
ing sequence of first coordinates {z,}, is shown in Fig. 1.4. In Fig. 1.8 we visualised
the reconstruction vectors generated by this time series. The two-dimensional em-
bedding space is in this case given by the delay coordinates (z,, z,+1). Comparing
Fig 1.8 with Fig. 1.9, we see a very similar structure in the embedding space and
in the original phase space.
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FIGURE 1.9. A trajectory of the Henon dynamical system

In contrast to this example, in most real-life situations neither an original phase
space nor a dynamical law are known. What is actually observed is a one-dimensional
time series of measurements made on some physical system. If one tries to study the
underlying system on the basis of the observed time series, a fundamental problem
arises: the physical system and the observed data live in different spaces. The origi-
nal system evolves in a multidimensional phase space, its the coordinates are given
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by the fundamental dynamical variables that describe the evolution. In practice it is
impossible to measure and record all variables that define such a multidimensional
phase space. One has at most measurements of one or a few dynamical variables,
or possibly of a function of them, i.e. some derived quantity. For example, in a
fluidized bed the mechanism of formation and movement of bubbles needs to be
described by various dynamical variables, such as position, size and velocity of all
bubbles, etc. But we only observe the series of pressure measurements at some fixed
location in a fluidized bed. It is presumed that the pressure changes are caused by
a dynamical process, but the local pressure itself is hardly a fundamental variable.

Most real-life systems by nature are processes in continuous time. In those cases
we can consider our time series (y;)icn as a realization of a continuous time pro-
cess (y¢)icr at discrete time points. Suppose we want to reconstruct the underlying
dynamics from observations on such a process. When trying to visualize the recon-
structed time series obtained from (y;), it is natural to start with two-dimensional
reconstructions, i.e. those with elements (y;,y:1s), since they can be easily viewed
on a plot. The question here is: how to choose the delay time 67 In the example of
fluidized bed time series we chose § = 35. There is an extensive literature on this
subject, the general guidelines are: one should not take too small or too large val-
ues of § (why?) but seek intermediate values for which reconstruction plot exhibits
some nontrivial structure.

The reconstruction theorem assures that a time series of only one scalar vari-
able contains enough “information” to reconstruct the dynamics in the original
multivariate phase space, without any prior knowledge of it. In particular, if the
embedding dimension k is sufficiently high, then the trajectory generated by the
series of reconstruction vectors in the embedding space mimics the evolution of the
system in the phase space. Here the question of how big k should be to allow such
reconstruction, is essential. If the original state space is d-dimensional, then the
smallest value of the embedding dimension k& which assures successful reconstruc-
tion is given by k = 2d + 1.

This criterion can be clarified by the following example. If we have a one-dimensional
object, say a loop, then to visualise it properly we may need to live in dimension
higher than one. If the loop twists into the figure 8 but is not self-intersecting, then
to visualise such object a projection onto a two-dimensional space might not suffice.
In general, to view a one-dimensional object unambiguously we need to live in R3.
By unambiguity we mean roughly that there is a one-to-one map from that object
to R* which preserves differential information.

The reconstruction technique assures that essential features of the original dy-
namics can be deduced from the behaviour of the reconstruction vectors. In turn,
this opens the way for classification of time series according to characteristics of
the underlying dynamics. Two quantities, which are often used for classification,
are the so-called correlation integral and the correlation dimension.

The correlation integral was originally defined by Grassberger and Proccacia [10]
for the classification of time series arising from deterministic dynamical systems.
They defined it via the sample correlation integral, which is the fraction of pairs
of reconstruction vectors within distance r, in a finite segment of length N of the
time series:

2 . .
OV ) = gy 1<i <G <N Xi = X flman 7}
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They then defined the correlation integral as the limit

C®(r) = lim c® ().

Of course in practice one does not have an infinite time series, but only a finite
segment. The correlation integral is then estimated by its sample analogue Cj(\f) (r).
This quantity offers one possible way of classification: we estimate the correlation
integrals and then compare the obtained estimates to distinguish different types of
time series. Initially, however, correlation integrals were used to distinguish deter-
ministic time series from stochastic ones (by a stochastic time series we mean here
those driven by noise). In this context another quantity, the correlation dimension,
is even more important.

If the correlation integral behaves as C¥) (1) ~ const - r®™ for r in some neigh-
bourhood of 0, then the exponent a(*) is called the correlation dimension of the
sequence of k-dimensional reconstruction vectors. The limit of this sequence

al® = lim o®
k— o0
is sometimes also called the correlation dimension of the time series, again, provided
such limit exists(see, for instance, [21]). The correlation dimension a(*) can be
estimated by various methods, often using the sample correlation integrals.

The correlation dimension is defined above in terms of a time series, or, more
precisely, the sequence of reconstruction vectors generated by it. It turns out that
if the time series arises from a deterministic dynamical system, then, by virtue of
the reconstruction theorem, the correlation dimension of this time series can give
an idea about the complexity of the underlying dynamics, i.e. the number of active
degrees of freedom. In fact, it coincides with the corresponding characteristic of the
underlying dynamical system, namely the correlation dimension of the subset of the
original phase space, where trajectories are concentrated (it can be, in principle,
of lower dimension than the phase space). Moreover, its numerical value is close to
other kinds of dimensions, introduced in the literature.

The basis for discrimination between time series is the study of the behaviour
of the correlation dimension a*) as a function of k. For a time series induced by
a deterministic dynamical system, when k is sufficiently large, the reconstruction
vectors will concentrate on a subset of R* of lower dimension, since the trajectories
of the reconstruction vectors replicate those in the state space where the underlying
dynamical system evolves. On the other hand, for a stochastic time series, as k grows
in some range, the reconstruction vectors will always live on the whole space R¥ (or
a k-dimensional subset of it). Thus, one expects that for deterministic time series
the estimates for correlation dimensions at some point remain constant even when
further increasing k, while for stochastic time series the estimates increase together
with the embedding dimension &.

These rather intuitive arguments have been widely used for distinguishing deter-
ministic time series and still remain a useful tools for their classification. However,
there are situations when this method can fail. According to a result of Osborne
and Provenzale [21], there are cases of stochastically generated time series for which
the sequence of correlation dimension estimates {&(k)}kzl,Q’m also converges to a
finite limit. This can happen, for example, when there is too much dependence in
a time series. Another example, particularly relevant to financial time series, was
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studied by C. Diks [9]. He discovered that ARCH-time series also exhibit lower
dimensionality, while being stochastic.

To treat such cases a modification of the method above was suggested: first

generate a linear time series driven by Gaussian noise, which has the same auto-
correlations as the time series of interest, and then compare the behaviour of the

correlation dimension estimates for these two series. A clear difference is an indi-
cation of determinism in the original time series. This is also the idea underlying
the so-called BDS-test, which tests the hypothesis of time series admitting linear
representation. Here also first a linear time series with the same autocovariance
structure is generated, and then the behaviour of the correlation integrals is com-
pared for both the original and generated series for different values of embedding
dimensions. We shall return to this test in one of the following sections.

For a numerical illustration of the phenomenon described above, let us again
consider the time series D induced by the Henon dynamical system and the linear
time series B, which is an example of a stochastic time series. We estimated the
correlation dimensions in both cases for increasing values of the embedding dimen-
sion k. Plots of the obtained estimates vs. k are shown in Fig. 1.10. Note that, for

values of k larger than 2 the correlation dimension estimates for the time series D

(Henon) stabilise around the theoretical value oo = 1.24 (see, for instance, [31]). For

the linear time series B the estimates keep on growing together with k.
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FIGURE 1.10. Estimated correlation dimension vs. embedding dimension: series D and B

This is just one of many methods of discrimination between deterministic and
stochastic time series. There are other methods introduced in the literature, such
as the BDS test mentioned above [3], Diks test for reversibility [9], classification
based on prediction [5], etc. For a good review on this subject see [27].

Knowledge of the presence of determinism and nonlinearities in a time series can
be used to build better predictors. Many nonlinear methods of prediction have been
introduced in the literature. Among these methods the local methods of prediction
are of particular importance. The main aim is to capture the local dynamics of

the time series, when the effects of nonlinearities and the amplification of noise are
not yet that strong. On a small scale the nonlinear dynamics can successfully be
approximated by a linear function. This is the basic idea behind the local linear
predictors - perhaps the most well-known prediction technique for nonlinear and
chaotic time series. Other methods are closely related with methods of computer
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learning, such as neural networks.

Prediction can also be useful for discrimination between deterministic and stochas-
tic time series. For a discussion on classification by prediction see [5]. The main ideas
behind these classification methods are often similar to the idea behind the meth-
ods based on the correlation dimension estimation. For example, one can study the
quality of local linear predictors, applied to nonlinear time series, as a function
of the order %k of the autoregression (in (1.7)), i.e. the embedding dimension. The
same reasoning as above tells us that if the time series comes from a deterministic
dynamical system, then, if k is sufficiently large, considering an autoregression of
even higher order will not bring any additional information. Therefore, an increase
of the embedding dimension does not essentially improve the forecasts. In fact,
it can even lead to worse predictions due to the growing effect of nonlinearities.
Other argument against further increase of the embedding dimension is increasing
the number of unknown parameters in the model that have to be estimated. For
stochastic time series, however, due to the presence of noise, models with higher
values of k may be required to obtain better predictions. (Here, however, the same
argument against increasing k as above holds.) Since in nonlinear stochastic time
series the effects of noise and nonlinearities are combined, an autoregression with
intermediate values of k£ would provide the best forecasts. Another, quite elegant
criterion was suggested by Casdagli [5] (the so-called DVS criterion). It is based
on finding the optimal number of neighbours that is necessary to fit a local linear
model. Tt exploits the ideas similar to those considered above. This test has been
shown to work well not only for discriminating between deterministic and stochastic
time series, but also for distinguishing nonlinear and linear stochastic models.

1.3 Chaotic dynamical systems

In this section we discuss some aspects of chaotic dynamical systems, define some
general notions and give the main assumptions. We shall focus on systems with
discrete time.

A discrete time dynamical system (X,T) is a pair consisting of the state space X
- the set of all possible values, and the time evolution map T : X — X - the law
according to which a state evolves to other states at later times. For an initial state
zo € X, the iterations of T give rise to a trajectory, or an orbit {T"zo}nen (or, if
T is invertable, n € Z).

A dynamical system is related to a time series by means of the read-out function,
or the observable function f : X — R, which assigns to each possible state in
X the recorded value when the system is in that state. (As was mentioned in the
section above, this is a particular model of a nonlinear time series.)

The problem of discrimination between deterministic and stochastic time series
does not make sense unless some conditions on the underlying dynamical system are
imposed. Without these conditions, as we shall see, the discrimination is impossible
in principle, since a dynamical system which does not satisfy these conditions can
generate any time series.

We shall assume that the state space is finite dimensional, i.e. that it is a (subset
of) a finite dimensional Euclidean space X C R?, or can be embedded into such a
vector space. Also we shall assume that all positive orbits of the dynamical system
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(i.e. those indexed by NT) {T"z},>0 are bounded. Now we present two examples
of dynamical systems which violate one of these assumptions and can generate any
time series.

First, let a state space be infinite dimensional: the vector space G of all functions
g: N — R. Let the dynamical law be the map T': G — G, which assigns to
the function g € G the function T'g defined by (T'g)(n) = g(n+1). Let the read-out
function f : G — R be given by f(g) = ¢(0). For an initial state go € G the
orbit is go, T'go, T?go, -.. , and the time series is { f(T"go) }nen = {(T"90)(0) }nen =
{go(n) }nen. Now this time series can be made anything we want by choosing an
appropriate initial state - function go.

The second example is a dynamical system with unbounded positive orbits. Let
the state space be R and let the map T': R — R be defined by Tz = x + 1. For
zg = 0 the orbit is unbounded. Let the read-out function be f : R — R. Here
we see that the corresponding time series {f(T"z¢)}nen = {f(n)}nen depends
completely on the choice of the read-out function, and therefore can be chosen
arbitrary as well.

These two conditions, together with the assumptions that both 7" and f are differ-
entiable, allow us to avoid some obvious exceptional cases, such as those mentioned
above.

A way to get an impression of the behaviour of a dynamical system is to study
what happens asymptotically as n — oo. The simplest case occurs when the
trajectories converge to a single point or limit cycle, called the attracting point or the
attracting cycle, respectively. In the latter case the limit behaviour is periodic. More
complicated limit behaviour appears as quasiperiodic motion, when the trajectories
are attracted to a d-dimensional torus. In these cases the limiting set A C X,
which is called an attractor, is a simple geometrical object. It is possible that the
attractor is none of the simple objects mentioned above, for example, it can be
some Cantor-like set with a non-integer dimension. In such cases one speaks of a
strange attractor.

There is no unique definition of attractor in the literature on dynamical systems.
Here we shall not give an entirely precise mathematical definition of it. For a thor-
ough discussion on different notions and definitions of an attractor see [19]. For our
purposes we can say that an attractor is the limiting set where the experimental
orbits {T"z}en accumulate for large n. An example of an attractor - the attractor
of Henon dynamical system - was given in Fig.1.9.

A more precise definition is that of an attracting set. The set 4 is called an
attracting set with fundamental neighbourhood U, if it satisfies the following prop-
erties:

(1) Attractivity: for every open set V : A C V we have

{T"z: z € U} CV for all sufficiently large n;

(2) Invariance: for all z € A and all n we have T"z € A.

Together with the two properties above one usually requires an attractor to be
irreducible in some sense. In practice the attracting sets defined above are generally
referred to as attractors. In what follows, when we talk about an evolution on the
attractor, we actually mean ”in a neighbourhood of the attractor”.

The notion of invariant measure is associated with a dynamical system. A finite
measure g on the Borel o-field F of X is called T-invariant if, for any set B € F,
w(T~1B) = u(B). Since p is finite, we can assume without loss of generality that
i is a probability measure, i.e. that u(X) = 1. To indicate the link between the
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dynamical system and the corresponding invariant measure, we shall sometimes
write (X, T, u) for a dynamical system.

A transformation T' (if it is a homeomorphism) always has at least one invariant
measure associated with it (if the state space is compact) [17]; in fact it can have
more. Typically, there are many invariant measures on an attractor. Of particular
interest for us are the so-called ergodic measures.

A T-invariant measure p is called ergodic if all T-invariant sets in X (i.e. all
A € F for which T-1(A) = A) have measure u(A) either 0 or 1.

It is exceptional that an attractor carries only one ergodic invariant measure.
In typical cases there are uncountably many distinct ergodic measures. Intuitively,
however, it seems that there is one natural, physical measure on an attractor pro-
duced by the evolution - the one that describes how much time a trajectory spends
on average in various parts of the attractor. A candidate for such a physical mea-
sure is the so-called SRB measure (from Sinai, Ruelle, Bowen). It can be specified
by taking a point zy at random with respect to the Lebesgue measure on X, and,
for A C X, considering the time averages

1 n—1
E Z 6Tk£170 (A)7
k=0
where ¢ is the Dirac delta-measure. Then the SRB measure p is defined for all xg
in a set B C X with Lebesgue measure m(B) > 0 by

n—1
. 1
pA) = Tim — 3 drug,(A). (1.9)
k=0

For certain dynamical systems (the so-called Aziom A systems) it has been shown
(Ruelle [24]) that the limits in (1.9) exist for all zg in a set of positive Lebesgue
measure, and provide a unique SRB measure with support on the attractor.

We shall not go into further details as to when such a measure exists on an at-
tractor, or how it is related to other ergodic measures. For a complete discussion on
these aspects see [23]. Our further investigation will concentrate more on the prop-
erties of the physical ergodic measures carried by attractors, which are naturally
defined by a dynamical evolution or the corresponding time series.

An attractor and an invariant measure carried by it provide us a global description
of the asymptotic behaviour of a dynamical system. The dynamic on the attractor
itself does not need to be simple. For some dynamical systems the evolution on
the neighbourhood of the attractor may depend sensitively on initial conditions,
i.e. the trajectories starting in nearby initial points diverge from each other at an
exponential rate and after some time can be found in totally different parts of the
attractor. This property, called the sensitive dependence on initial conditions, is the
characteristic feature of chaos.

We say that the evolution on the attractor A exhibits sensitive dependence on
initial conditions if there is a positive constant C' such that for any e > 0 and z € A,
there are ' € 4 and N > 0 such that

(1) p(z,2") < e

(2) p(TNz,TNz'") > C,
where p(-,-) is some distance on A.

Sensitive dependence on initial conditions is related to the so-called Lyapunov,
or characteristic exponents. It measures the mean exponential rate at which nearby
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trajectories diverge with time. Suppose that {z;};en is the orbit of a chaotic discrete
dynamical system corresponding to the initial condition xzg. If we slightly change the
position of the initial point: o — x¢+dx¢, the point at time n will also be different.
In general, one might expect that, if dz( is small, dz,, is also small. But, due to
the sensitive dependence on the initial condition, when n becomes large, the small
distance between the initial values grows exponentially fast: dz, ~ dzoexp(An),
where the mean rate of divergence of the trajectories A is the Lyapunov exponent.
A 1-dimensional dynamical system has exactly one Lyapunov exponent. It can

be defined as
X = B, (log [T (X)]), (1.10)

where the expectation is taken with respect to an ergodic invariant probability
measure, the existence of which is assumed. Another way is to consider

H 1 n\/!

A=A@) = lim_ >log|(T")'(z)], (1.11)
where (T™)". is the derivative of T™ evaluated at z. In the case of ergodic invariant
measure p, the ergodic theorem implies that the limit in (1.11) exists and is constant
p-almost everywhere, and, moreover, the two definition (1.10) and (1.11) of X are
equivalent.

d-dimensional dynamical system for d > 1 has a spectrum of d Lyapunov expo-
nents A\; > A2 > - > A4, measuring the exponential rate of divergence or contraction
in different directions. They are defined as logarithms of the eigenvalues of the ma-
trix

A, = lim [(D,T™)TD,T™]'/?*" (1.12)
n—r:oo
where D, T™ is the matrix of the partial derivatives of the components of T" at z.
In the case of an ergodic invariant measure u, The multiplicative ergodic theorem
of Oseledec [22] implies that the limit in (1.12) exists and is constant p-almost
everywhere if y is an ergodic measure.

For a one-dimensional dynamical system positivity of the Lyapunov exponent im-
plies sensitive dependence on initial conditions. In higher dimensions the existence
of at least one positive Lyapunov exponent is evidence for the sensitive dependence
on initial conditions, i.e. chaotic behaviour. This happens because the behaviour of
the system is essentially determined by the largest Lyapunov exponent A;. If it is
positive, then there is at least one direction in which the expansion at an exponen-
tial rate takes place. Then the neighbouring orbits diverge, which results in chaotic
behaviour. In general, the exponential rate of growth of distances in X when iterat-
ing T is given by A1, and t he rate of growth of the d-dimensional volume element
by At + A2 + -+ Ag-

The exponential divergence of trajectories means that two orbits that are so close
that they cannot be distinguished at time zero, become distinguishable after some
time. In this case we may speak of the ”creation of information”. The entropy is
another characteristic of a chaotic dynamical system. It describes the asymptotic
rate of production of information when iterating T'. The subject of entropy is outside
the scope of this manuscript, and so, we shall not define it here.

As we mentioned above, positive orbits of deterministic dynamical systems can
be attracted to low-dimensional subsets of the state space. Other quantities which
give us an idea about the complexity of the system are a dimension of the attractor
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and of an invariant measure on the attractor. Loosely speaking, a dimension is a
measure of the amount of information needed to specify points accurately. Precise
definition of a dimension can be obtained in many ways. For example, the so-called
boz-counting dimension, or capacity of the attractor A4, is defined via the minimum
number of closed balls required to cover A. Let € > 0 be small and suppose that A is
an interval in R. Then the required number of balls of diameter € needed to cover A
is approximately the reciprocal of €. If A is a rectangular plane segment in R2, then
this number is inversely proportional to €2, etc. This scaling behaviour motivates
the following definition: if the number of closed balls of radius € needed to cover a
set E scales as (1/€)?2(F) | then dp(E) is the box-counting dimension of E. Other
dimensions studied in the literature are: the Hausdorff dimension, the information
dimension, the correlation dimension; in the context of strange attractors they are
often referred to as “fractal dimension”, because non-integer values are possible.
For a good review on the question of dimensions see [7].

For purpose of statistical estimation, the correlation dimension is most appro-
priate because it characterises the invariant measure on the attractor, and it is
relatively easy to estimate. Above we defined the correlation dimension in terms of
a time series. Here we shall define the correlation dimension of an invariant measure
on the attractor. It is again defined via the correlation integral:

Clr) = (uxwW{X,Y):[| X =Y ||<r}

for r > 0, where XY are independently chosen points on the attractor. If the
correlation integral scales as C(r) ~ const - r* as r — 0, then the exponent « is
called the correlation dimension of the invariant measure p.

To give a flavour of other dimensions, we mention one more here, the so-called
limit capacity. On the contrary to correlation dimension, which is a characteristic
of an underlying invariant probability distribution, this one is a characteristic of
sets, namely of bounded subsets of the reals, or of a finite dimensional vector space.
In order to define the limit capacity of such a set S, we first introduce for each € a
number K (€) which is the minimal number of points one needs to cover S with the
e-neighbourhoods of these points. Just like in the case of correlation integral, we
expect K () to behave like e~4imension a5 ¢ — () ("verify” this by analysing simple
examples such as unit interval, unit square, unit cube), we define limit capacity in
terms of K (e) as

d=— lim In K(€)

e——0 Ine

(1.13)

provided this limit exists.

Much of the essential information about the dynamical system (X, T') is contained
in characteristics such as the fractal dimension of the attractor, the entropy or the
Lyapunov exponents. In practice the dynamical system itself is rarely known, and,
even if it is known, it is often impossible to compute these quantities precisely.
Then we face the problem of estimating these characteristics from a single orbit
of the dynamical system: (zg,Txo,T2x0,...). As we have argued above, in reality
the problem is even more complicated: what we actually observe is not the orbit in
the original state space X’ but a real-valued time series {y,}nen of measurements
made on the orbit, and all estimates must be based on {y,}. The first step toward
estimation is always the reconstruction of the original dynamics by embedding one
dimensional data into a higher-dimensional space.
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1.4 State space reconstruction

The technique of state space reconstruction is based on the reconstruction theorem
of Takens [28]. It enables us to reconstruct the dynamics of a system from an
observed time series.

Let (X,T) be a dynamical system with finite-dimensional state space X and
bounded positive orbits {T"z},>0. To relate a dynamical system to a time series,
we introduced a read-out function f : X — R. Usually f(z) represents a real-
valued measurement made on a point z € X. If (zg, Txo,T%x0,...) is an orbit of
the dynamical system with initial state xg, then the corresponding time series is
obtained by applying f to each point of the orbit: (f(zo), f(Txo), f(T?xo), --.)-

Let both T and f be continuously differentiable (or T, f € C!). Define the vector-
valued reconstruction map Recy, : X — R¥ by

Rec(z) = (f(z), f(Tx), ..., f(T*1x)) € RF. (1.14)

Theorem (Takens, [28]) In the Cartesian product of the space of C'-mappings on
X and the space of C*-functions from X to R there exists an open and dense subset
U, such that if (T, f) € U, then the reconstruction map Recy, defined in (1.14), is
an embedding, whenever k > 2 - dim(X).

We give some remarks to clarify this statement and its consequences.

1. The interpretation of the condition (7, f) € U is that the statement of the
theorem holds for “almost all”, or “generic” pairs (T, f). For a more complete dis-
cussion on the notion of genericity (and on reconstruction problems in general) see
[26]. The reason why these conditions have to be imposed, is to exclude exceptional
cases, for which the reconstruction will obviously fail. These are cases such as the
observable function f being constant, or the map T being the identity. In the for-
mer case, applying a constant function to the points of the orbit destroys all the
information about the orbit, so it is impossible to make the reconstruction. In the
later case, the second, the third, and all other consecutive points of the orbit do
not contain any additional information, so the reconstruction also fails here.

2. The key word in the theorem is “embedding”. The transformation from X" to
R given by the reconstruction map Recy, is an embedding if the mapping of X’ into
Recy,(X) is continuously differentiable with continuously differentiable inverse. In
less technical terms it means that X and its image under the reconstruction map
Recg(X) are the same up to a diffeomorphic transformation. Furthermore, in the
presence of an attractor A C X the reconstruction maps transform 4 into its image
in R*. Under this transformation the differential structure of the attractor is pre-
served. Also the invariant measure on the reconstructed attractor is an image of the
invariant measure of the original transformation. Moreover, since a diffeomorphism
restricted to a bounded set gives only the distortion of distances by a factor which
is bounded and bounded away from zero, the correlation dimensions of the original
and the reconstructed attractor are the same (see [28]).

Here we also mention that this theorem is a variation of the well-known Whit-
ney embedding theorem, but restricted to mappings of special form, namely the
reconstruction maps.

3. For practical purposes, i.e. for reconstructing the attractor from the observed
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real-valued time series {yn }nen, we define the reconstruction vectors by

X5 =Rec(T"20) = (Yns Ynt1s s Yntk—1)

for k > 2dim(X) 4+ 1. Then the trajectory {T"zo }nen in X is an image of the tra-
jectory generated by the sequence of reconstruction vectors { X, }nen in RF under
the diffeomorphism. Moreover, the reconstruction vectors accumulate in R¥ in a
neighbourhood of the limit set which is diffeomorphic to the attracting set of orbits
of T in X. The reconstructed invariant measure on this limit set, the correlation di-
mension and some other characteristics that are defined by the sequence {X,,} nen
do not depend on the read-out function f but describe intrinsic properties of the
dynamics.

4. If it is not known that the time series is produced by a deterministic dynamical
system, e.g. because significant noise is present, then it is harder to interpret the
results of our reconstruction. Also one should not forget that the choice of the
embedding dimension k is essential. The problem of selecting a sufficiently large
k can be difficult since the dimension of X’ is usually unknown, and, hence, the
criteria k > 2 - dim(X) of the Takens theorem cannot be applied directly. There is
a number of methods for choosing k introduced in the literature (see [6], [5]). We
shall not concentrate on this problem here and simply assume that a sequence of
reconstruction vectors { X, }nenN or z, X; € RF is obtained from the outcome of the
actual time series {y, }. All further analysis and the estimates considered below will
be based on this sequence. The question, for which dynamical systems the sequence
of reconstruction vectors provides a stationary stochastic process with respect to
some ergodic probability measure, is in general very complex. For certain types of
systems, the so-called Aziom A systems, this has been shown by Ruelle [24]. We
shall not address this problem here and assume that a given sequence {X,} is the
outcome of a stationary stochastic process.

1.5 Dimension estimation

Estimating the fractal dimension of a strange attractor from a corresponding time
series has attracted considerable attention in the past few years and has become
one of the main tools in the analysis of the underlying dynamics. Of all types of
dimensions, most attention has been given to the correlation dimension. This is
mainly because this type of dimension is easier to estimate than others and also
because it provides a good measure of the complexity of the dynamics, i.e. of the
number of active degrees of freedom.

Let (X,T,u) be a dynamical system. Recall that the correlation dimension is
defined via the correlation integral

Clr)=P{X,Y):[[ X =Y [<r}

where X,Y are independent, each having marginal distribution pu. If there exists a
constant a, such that

C(r) ~const-r* as r — 0, (1.15)
then « is called the correlation dimension of u. Note that
1
o= lim 2890 (1.16)

r—0 logr



xviii 1. Dynamical systems and nonlinear models

provided this limit exists.

The correlation dimension is a characteristic of the underlying invariant mea-
sure p. In a certain sense it characterises how smoothly p is distributed over the
attractor: if y is a point measure, then a = 0, and if p is absolutely continuous
with respect to Lebesgue measure, then a equals the topological dimension d of X'.
These are two boundary cases, in general 0 < a < d.

A number of procedures for estimating the correlation dimension has been intro-
duced in the literature. In the next sections we review some of these estimators and
their properties.

1.5.1 Grassberger-Proccacia estimator

Grassberger and Proccacia [10] suggested a procedure of estimating o which imme-
diately became widely used by mathematicians and applied scientists. According to
their method, we first estimate the correlation integral on the basis of the part of a
stationary sequence of reconstruction vectors {X;};—1,... , by the sample correlation
integral

2

nin —1)

Calr) = S (X - X, lI< ) (1.17)

1<i<ji<n

(note that C),(r) is the proportion of pairs in the sample X, ..., X;, no more than
the distance r apart). For distance || - || one usually takes the maximum norm,
i.e. for a k-dimensional vector x it is || x [|= maxj<;<k |7;|. The estimate of a
is, however, independent of the choice of the norm (see [28]), and the max norm
is taken as the most convenient one. The correlation integral C),(r) is estimated
for a vector of distances (ry, ...,7;) and the Grassberger-Proccacia estimate for the
correlation dimension @%F is then obtained by studying the least-squares linear
regression of log C,, (r) vs. logr (or, alternatively, the weighted regression).

In fact, the correlation dimension was initially introduced and defined by Grass-
berger and Proccacia via the sample correlation integral C,(r) (and not C(r)) as
a double limit

a®? = lim lim M.
r—0+ n—oo logr

(1.18)

The variance of C,,(r) and of 4% can be consistently estimated from data by
different methods, such as using U-statistics, Monte-Carlo simulation or the boot-
strap. The variance estimation problem is very important for applications, since it
allows us to compute confidence intervals for the estimates of the dimension.

When estimating the dimension from a time series in practice, a number of im-
portant issues should be considered. First, for the purposes of discrimination of
chaotic time series, the dimension should be estimated for a number of embedding
dimensions k, up to some reasonable number. Here one should keep in mind that
for growing embedding dimension the estimates of correlation dimension can only
make sense if one has a very long time series, due to the so-called ”curse of di-
mensionality” (explain this). In literature criteria such as number of observations
~ 10*” are mentioned.

Second, the choice of the region of €’s for correlation integrals estimates is im-
portant. Here the problem is two-fold: if €’s are taken too small, there will be none
or very few pairs in the dataset withing such a small distances and the estimates
of the correlation integral will be unreliable; on the other hand, if €’s are taken too
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big, then you might be out of the region where the scaling relationship C(e) ~ €*
holds. In practice, these two problems should be balanced by estimating correlation
integrals for various €’s and looking for a region where a reasonable linear relation
between In C'(e) and ln € can be observed. Finally, confidence bounds for dimension
estimates should be given.

In general, one should always exercise extreme caution when drawing conclusions
from dimension estimation exercises, especially for economic and financial time
series which can be particularly nonstationary and noisy. Literature in this area
already contains enough notorious conclusions of presence of chaos and determinism
in financial data, some of the finest examples of this can be found in e.g. book of
Peters ”Chaos and order in capital markets”.

1.5.2 Takens estimator

Takens proposed an alternative approach of estimating the correlation dimension
[29]. Assuming again that the exact scaling C(r) = cr® for r < rg holds, Takens
first considered estimating « from i.i.d. realisations R; =|| X; — Y || of the distance
|| X =Y ||, where X; and Y; are independent each having the marginal distribution
78
Applying ideas of Maximum Likelihood estimation, he suggested to estimate «
by

R - (1.19)

Ef;l log R;’
where N is a number of distances considered.

In general, independent realisations of the distances || X — Y || will not be avail-
able (moreover, X;’s themselfs are, in most cases, not independent) and thus a
modification of the estimator (1.19) may become necessary. Given a finite seg-
ment X7, ..., X,, of a stationary sequence of the reconstruction vectors, we can form
n(n — 1)/2 pairwise distances || X; — X ||. Takens suggested to use the estimator

-1

N 2 | X; — X5 ||

T i j

A D D L A (1.20)
" n(n — 1) 1< ien To

In fact, an estimator similar to (1.20) was first introduced by Hill [14] in the
context of estimating the tail index of a distribution: suppose we have a random
sample Ty, T5, ..., Tn from a distribution F' which behaves at 0 as

F(x) ~ const - 2% asx — 0,

and we want to estimate a without making assumptions about the form of F
elsewhere. Assuming that actually F(z) = Cz® when z < g, for some known z
and some constant C, the conditional Maximum Likelihood estimator of o (Hill’s
estimator) is given by

—1
1 & Ty

A= — [ =371 () 1.21

& (mE 0g ; (1.21)

i—1 T(m+1)

where T(1) < Ta) < ... < Ty < Tmy1) < To are the order statistics which are
below the threshold zo. Note that the estimators (1.20) and (1.21) coincide up to a
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scaling factor: in Hill’s estimator observations are scaled by the last order statistics
which is still below the threshold, and in Takens estimator by the threshold itself.

From the practical point of view, Takens estimator has pluses as well as minuses
when compared to Grassberger-Proccacia estimator. It assumes exact scaling (which
is impossible to check in practice) and the cutoff distance r¢ is needed. Also it
can be quite sensitive to very small distances due to the logarithm. This problem
however can be solved by introducing also a lower cutoff distance r; and considering
distances only bigger than it. On the other hand, this estimator is computationally
more efficient and does not require ad-hoc choice of linear scaling region.



2

Prediction

Prediction of future observations is an important problem in the analysis of time
series. Given a time series {Y}, },en the question is to find a predictor for ¥,45, s >
1, as a function of a certain number of previous observations, i.e. we are looking for

A~

Yn+s = F(ynaynfla "'Jyn7k+1) (21)
= E(Yn+s|Yn = Yny oo Yokl = yn—k+1)-

In traditional time series analysis, F' is restricted to a parametric, usually linear
form and a linear autoregression with Gaussian innovations (AR of ARMA) is
applied to estimate F'. However, as we argued in the introduction, for many time
series the function F' can be nonlinear for many time series. In that case linear
predictions are not necessarily appropriate.

For example, if f : R — R is a nonlinear chaotic map, then the time series
obtained by yn+1 = f(yn), for some yo € R, satisfies the first order autoregression
model with nonlinear autoregression function f. Usually there is noise present in
the time series. What we actually observe is

Un+1 = Ynt1 + €ng1 = f(yn) + €nti,

where €, are zero-mean errors with finite variance.

Theory of chaotic dynamical systems shows that even simple nonlinear dynamical
systems can give rise to time series which exhibit highly erratic and seemingly
random behaviour. Well-known examples, already mentioned above, are: the logistic
map f(z) = 4z(1 — z), the Henon map, the Lorenz system of 3 coupled nonlinear
differential equations.

Time series coming from a chaotic dynamical system in general satisfy a nonlinear
autoregression model. This can be briefly explained by the following. Recall that
the reconstruction vectors X, Xs,... € R¥ are obtained from the observed time
series {yYn }nen by

Xi = (YirYit1y s Yitk—1)-
Takens reconstruction theorem implies that, in generic situations, if & is sufficiently
high, the reconstruction vectors X; are accumulating in R¥ in the neighbourhood
of an object, diffeomorphic to the original attractor, and, moreover, that there is
dynamical map induced on the space of the reconstruction vectors. This map is also
diffeomorphic to the original chaotic map T, i.e. in the absence of noise there exists
amap G : R¥F — R*, diffeomorphic to T, such that for all ¢

Xit1 = G(X;). (2:2)

In terms of the original time series, the relation (2.2) means that there also exists
a function F : RF — R such that

Yirk = F(Wi,Yir1, - Yirk—1)- (2.3)

This is page xxi
Printer: Opaque this
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The original transformation 7" was assumed to be nonlinear, so F' is also a nonlinear
function. The relationship (2.3) implies that the time series {y;}ien satisfies the
kth order nonlinear autoregression model, where the autoregression function F' is
some unknown nonlinear function not restricted to any parametric form. If there is
noise present in the system, we shall for simplicity again assume that it is additive
measurement noise, i.e. that we observe

Jirk = Yirk + €k = F(Yi, Yir1, - Yirk—1) + €itks (2.4)

where ¢; are mean zero and finite variance errors. For clarity’s sake we shall write
{yi}iew for the observed time series, even when an additive noise is present.

Relation (2.4) expresses the functional dependence of the next observation in the
time series {y;}ien on the previous k observations. In many practical situation we
are interested in the relation between the observation s > 1 steps ahead and the
previous k values, i.e. in the nonlinear function F*:

Yits = F°(Yis Yi-15 s Yikt1)- (2.5)
If (2.3) holds, F* can be expressed as
F°(:)=F(F...(F("))...).
————
s times

In the case of chaotic time series, as well as other nonlinear time series (not
necessarily chaotic), one expects nonlinear or locally linear methods of prediction
to have an advantage over traditional linear methods.

A method of prediction frequently mentioned in the literature on chaotic time
series is the so-called (k, €)-method (or locally linear predictors). It is based on the
assumption that it is best to capture the underlying dynamics locally, to reduce
the effects of nonlinearity. On the local scale the nonlinear function F', if it is
smooth enough, can be successfully interpolated by a linear function. The method
can be briefly described as follows: suppose we have observed k past values of
the time series y := yj,...,¥;, and want to predict y; .. We collect all vectors of
length k£ from the time series which are within distance € from y, as well as the
corresponding observations s steps after, and then apply a linear regression to the
collected data. The pair (k, €) is selected by minimising some measure of prediction
error. This method turns out to be quite successful if the time series comes from a
low-dimensional chaotic dynamical system and enough data are available.

In the next two sections we shall concentrate on another method: the kernel
regression smoothing. This method also has a local character, but is more flexible.

2.1 Kernel autoregression estimation for time series

Kernel smoothing is a method from nonparametric statistics for estimating an un-
known regression function. First we describe it briefly in a more general setting.

Suppose that random pairs (X;,Y;), ¢ = 1,...,n, are coming from the same
distribution as a random vector (X,Y’), where X, X; € R¥, V,Y; € R, and suppose
that there exists a function r : R¥ — R such that

Y =r(Xi) + &, (2.6)
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where ¢; are i.i.d. zero-mean observation errors with fixed finite variance. Here r,
called the regression function, is an unspecified function and it is not restricted to
any parametric form. It can also be defined as the conditional expectation of Y
given that X = z:

r(z) = EY|X =2)

(it is well-defined if E|Y| < oo0). The components of the random vector X are
also called the explanatory variables, and the random variable Y is regarded as the
response. One is interested in approximating the general relationship between X
and Y, the function r, on the basis of the sample {(X;,Y;)}i=1,... n-

A kernel estimator of the function r is

— 2?21 Kh(m - Xz)Yz
Z?:l Kh(.fU - Xl) ’

where K, for £ > 1 is defined via the so-called kernel function K : R — R by

P, (2) = Fr(x) (2.7)

k
K(z) = [ K(a/m),
=1
where £ = (x1,...,xr). K is called the product kernel. For k = 1 one takes

Kr(y) = K(y/h). Here h = h,, is a sequence of scaling parameters, called the band-
width sequence. The estimator (2.7) is usually referred to as the Nadaraya-Watson
estimator.

The kernel function K(y) is taken to be a continuous bounded and symmetric
real-valued function which integrates to 1. Usually these functions are also taken to
be unimodal with maximum at 0. The most commonly used kernel functions are:

Triangle (1 — [y|) - 1(Jy| < 1);

Epaneshnikov 3(1 — y2) - 1(|y| < 1);

Gaussian \/%_wexp(—%yz).

In the context of time series, we can denote X; = (y;, yi—1,---, Yi—k+1) and Y; =
Yi+s- Then the kernel estimator of the autoregression function F' is

2 _a Y Kiz-X)Y;
Fu(z) = fn(z) = S K@ X)) (2.8)

The application of the kernel method to time series was studied by Collomb
(1984), Delecroux (1987) (see [11] and the references therein), and it was shown
(Delecroux (1987)) that the estimator (2.8) is consistent if the time series is a
stationary ergodic process and the bandwidth sequence converges to 0 at some
specified rate. (See also [2].)

In applications a very important question is how to select the bandwidth. Select-
ing a bandwidth that is too small leads to a higher variance of the kernel estimator
(this is called undersmoothing), and choosing a bandwidth that is too large increases
its bias (oversmoothing). In practice we have to balance these two factors. Consider
the average squared error:

ASER) = L 3 o1R() - PO
i=k
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which is the sum of the variance and the squared bias components. A value of the
bandwidth which minimises the ASE is desirable.

The consistency results of Delecroux, Bosq, mentioned above, give the theoretical
optimal rate of convergence of the bandwidth in terms of n, which balances the
variance and the bias of the kernel estimate. In most cases this rate is h = h,, ~
0(n~1/5). However, these results are of purely theoretical value and do not tell us
how to choose the bandwidth in practice. A data-driven approach for bandwidth
selection is therefore necessary. Such an approach is called cross-validation and
amounts to the following. We estimate the ASE by the cross-validation function

V() = = IV~ BT,
i=k

where ﬁ’h,i(Xi) is the leave-i-out kernel estimate of F'(X;)

. L Kp(X; —X;) Y
Fh,z’(Xi) — Zz;éj h( % J) J
Ei;ﬁj K (X; _Xj)

The cross-validation function CV (k) is an asymptotically unbiased estimator of the
ASE and has the advantage that it can be computed directly from the data. Then
we choose the value of the bandwidth h,p; which minimises CV (h). The question
then is whether izopt also (asymptotically) minimises the ASE? Haerdle and Vieu
[13] have shown that, if the sequence (X, Y;) is strongly mixing and some additional
conditions on K, F' and on the distribution of (X;,Y;) are satisfied, then the cross-
validation procedure is asymptotically optimal, i.e. that the bandwidth chosen by
means of the cross-validation asymptotically minimises the ASE.

2.2 Variation of kernel smoothing method

One of the main disadvantages of the methods mentioned above (traditional kernel
smoothing, (k,€)-method) is the fixed choice of the autoregression order k, which
results into taking entirely into account the previous k observations and completely
disregarding the rest. Moreover, in applications k is usually unknown and has to
be estimated in some way (traditionally via linear models).

In this section we suggest the variation of kernel autoregression smoothing which
overcomes this disadvantage and is in general more flexible.

One way to apply the kernel smoothing method for prediction in the case k > 1
involves product kernels. Another way is to define in some suitable way a distance
between two k-dimensional vectors z,y: d(z,y), and define the kernel regression
estimator via a one-dimensional kernel function as

5 oy _ ey Kld(z, Xi) /B Yi

Fu(z) = Yo Kld(z, X5)/h] -

The distance d(-,-) can be taken as the Euclidean or the maximum distance.
However, the choice of these distances would be purely formal and would not exploit
the fact that the vectors X;’s are parts of a time series, i.e. sequences of observations
ordered in time. Here we suggest a variation of the estimator (2.9) and choose a

(2.9)
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distance between the vectors which takes the specifics of the time series setting into
account.
We define the distance between two vectors = (21,22, ..., 2x) and y = (y1, Y2, ..., Uk)

as
k

d(£5 g) = Z(xz - yi)Q’Yia (210)
i=1
where {v;}%_,, 7: € [0,1], is a collection of weights which we put on each of the
differences between the coordinates.
In general, we will chose decreasing weights v; > v2 > ... > v, expressing the
idea that the influence of past observations on the prediction should be discounted
as the time lag grows. More specifically, we suggest to take

Y=, (2.11)

for some v € (0,1]. One motivation for this is the exponential divergence of tra-
jectories (whose starting points are close) in chaotic dynamical systems. However,
this technique is appropriate for many time series, including those with stochastic
properties. Thus, the more recent observations give more precise information about
the present state of the system, and the information decreases exponentially as time
passes.

Observations further in the past are less relevant for future predictions since they
are most affected by noise. In chaotic dynamical systems this is expressed via the
notion of the sensitive dependence on initial conditions. The exponential growth of
errors, which are always present in a real-life systems, makes the chaotic evolution
self-independent of its own past. Quantitatively, this is described by the Lyapunov
exponents of a chaotic map. The mean exponential rate with which nearby orbits
diverge with time is measured by the highest Lyapunov exponent, and the existence
of at least one positive Lyapunov exponent is evidence for the sensitive dependence
on initial conditions. In the context of chaotic time series we are more interested in
backward divergence of orbits, which is responsible for decreasing influence of the
past observations on the future ones. In that case the mean rate of divergence of
backwards orbits is measured by the highest Lyapunov exponent of the inverse map
T (provided T is invertable). It is given by the inverse of the lowest Lyapunov
exponent, of the original map T'.

For our applications this situation can be illustrated by the following example.
If z = (x1,...,2r) and y = (y1,...,Yr) are segments of two orbits of an invertable
chaotic dynamical system, or two parts of the same orbit, and if || z; —yx ||= J, then,
due to the exponential divergence of backward trajectories, || zx_1 — yr_1 ||= de*,
| k-2 — yk—2 ||= d€?*, etc., where A is the highest Lyapunov exponent of the
inverse of the underlying chaotic map. The distance between z and y is:

k k
dz,y) =Y Nl ooy —yu—y P 7/ =) 6**y (2.12)
j=1 Jj=1

and it is completely determined by &, while the factors e/ indicate the natural
divergence of trajectories with the rate X. This reasoning suggests taking v = e=2*
to “discount” for this exponential divergence. Due to the state space reconstruction,
the above reasoning also applies when z = (x1,...,2¢) and y = (y1,---,Yx) are not
parts of an orbit, but segments of a chaotic time series. B
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In practice we will choose 7 in a different way, based on optimalisation of the
value of v in an experimental way. This method is explained in more detail below.

We believe our method is more flexible than that of locally linear predictors,
as well as the other methods mentioned above. Rather than having sharp cut-off
points (k,€) in time we have a smoother way to assign the significance of past
observations. The choice of the parameter v in a way replaces the choice of the
order of autoregression k. By taking the decreasing weights (2.11), the choice of
k becomes less important, because the dependence on the previous observations is
not cut off at the number k, but decreases smoothly with the decrease of ~;.

The influence of the parameter v on our kernel estimate is comparable to the
bandwidth influence. Thus, the choice of v as well as of h determines the quality of
our predictions. At the same time the choice of v and of h is not independent: the
bigger the bandwidth h, the higher the value of v we should choose. Again we use
a cross-validation algorithm. But since the parameters h and v are bound together,
the selection of their optimal values should be carried out simultaneously, i.e. we
choose the optimal pair (h,7)opt as

(h7 ’y)opt = argmin{CV(h, ’7)}7

where C'V (h,7) is a cross-validation function of the estimator (2.9).

The consistency of our estimator (2.9) follows from standard results for the tra-
ditional kernel estimator (see [11], [2]). The asymptotic optimality of the double
cross-validation procedure can possibly be seen using similar arguments to those
found in [13].

Taking decreasing weights -; is not the only possible choice, and sometimes not
the most efficient one. For some time series not the most recent observation(s), but
those further in the past have more influence on future observations. Consider the
following example.

Suppose that the time series {z, }nen is obtained by

ZTpy1 = 0.01z, + f(znt) + €n,

where f : R — R is a nonlinear chaotic map (e.g. a logistic map) and €, are mean
zero and finite variance errors. Here the value of the next observation depends much
more on the value of the observation ¢ time units in the past than on the previous
one. Consequently, v; (and, possibly, also s, s, etc.) should be taken significantly
bigger than ~; and other weights.

How can we recognise such a time series? It is usually not possible by just observ-
ing its plot, because the chaotic evolution f produces the time series which appears
random. We generated the following time series:

Tn =0.01z,—1 + f(Tp—4) +€,, n=1,...,100,

with f(z) = 4ze~%", and the i.i.d. errors ¢; ~ N(0,0.05) (Fig.7.1).

The plot of this time series does not indicate that the essential dependence is on
a delay of 4. The so-called delay-s maps, i.e. plotting z; vs. x;45, can be helpful.
On Fig.7.2 shows the delay-1 map, and we see that it does not have any structure.
But the delay-4 map (Fig.7.3) immediately reveals the deterministic structure of
the time series. Fig.7.4 shows the plot of the autocorrelations, and it is clear that
the autocorrelations of lags that are a multiple of 4 are significantly larger than
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any other. An even more informative picture is obtained by examining the so-called
partial autocorrelations. For the precise definition of the partial autocorrelation see
Brockwell and Davis [4], pp. 98-102. The partial autocorrelation has the following
meaning: its value at lag k indicates the amount of the additional information
obtained from considering the linear autoregression model of order k instead of
order k — 1. Although the partial autocorrelations are defined in terms of a linear
model, they certainly do show at which lags the dependence is most significant.
The plot of partial autocorrelations for our working example is given in Fig.7.5.

The plot shows that the largest partial autocorrelations are at lags 4 and 12,
with less significant ones at 1 and 3. This information can be used for determining
the weights ;. For instance, v;’s can be taken proportional to the partial auto-
correlations. In terms of dynamical systems, the quantity analogous to the partial
autocorrelation can be considered. This quantity is called the mutual information.
Here we shall not go into detail as to how to define it, we shall only mention that
this quantity with respect to an orbit of a dynamical system carries essentially
the same meaning as the partial autocorrelation with respect to a time series. It
can be also consistently estimated from a time series and, consecutively, used for
determining the weights ;.

The example we just considered is more an exception than the rule. For most
nonlinear time series geometrically decreasing weights ; = +* is the most natural
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choice, since it reflects the idea of a decreasing influence of past observations on
future ones. Moreover, this has the advantage that the choice of the autoregression
parameter k becomes less essential, and also that the value of the parameter vy can in
practice be selected together with the value of h by the cross-validation procedure.

Taking a distance of the form (2.12) with weights 7; = ~! for application of
the kernel smoothing method for prediction is also possible when high values of
autocorrelations are observed at lags 7, 27, ... for some 7 > 1. Then we consider the
model

Yi = F(Yir,Yi-2rs - Yikr) T €

and estimate F by (2.9) with a distance as in (2.12) and weights v; = 7%, i = 1, ...,k
for some v € (0,1). This is also useful when a time series is oversampled. In that case
considering the autoregression on a number of all consecutive previous observations
is not necessary and only leads to an oversized model. Then, by choosing a time
delay 7 and proceeding in the same way as above, we significantly reduce the model
and, so, the computation time.

In general, the kernel autoregression estimate (2.9) with a distance as in (2.10)
allows for broader flexibility of an assumed autoregression model and of assigning
the influence of past observations on future ones.

2.3 Prediction by Neural Networks

Here we shall address briefly another nonlinear method of prediction which has
become popular in the past few years: the application of neural networks.

2.3.1 Feedforward Neural Networks

Artificial neural networks (NN) originated as a mathematical model of the func-
tioning of the human brain. Mathematically a neural network represents a directed
graph, where the vertices, arranged in layers, are called the neurons and the directed
edges the synaptic connections. Feedforward neural nets are those with connections
leading only from neurons on the lth layer to the [ + 1st layer. Each edge feeds
the output of a neuron on the previous layer to the input of a neuron on the next
layer, and has a synaptic weight assigned to it. The neurons which receive an input
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from outside a network, i.e. those without input connections from other neurons,
are called input neurons; those without output connections to other neurons are
called output neurons. The layers in between are called hidden layers.

An output of a neuron j is multiplied by the synaptic weight w;;, which corre-
sponds to the connection from the jth to the ith neuron, and the result is received
as an input of the ¢th neuron. Then, all inputs of the ith neuron and some thresh-
old 6; are summed up, and a function called the activation or transfer function o is
applied to the sum. This procedure is repeated till the output layer of the network
is reached. If the output layer consists of more than 1 neuron, such a network can
be considered as a superposition of several networks, so it makes sense to consider
only neural networks with one output neuron.

The most commonly used neural networks are those with one hidden layer. A
feedforward neural network with k input neurons, 1 hidden layer of n neurons and
one output neuron can be viewed as a function f = f, : R¥ — R, and the total
output of such a neural net is given by

k

fulz) = ZWU(Z(wijwi —0;) = Z vjo(wj -z —6;), (2.13)

i=1

where = (21, ...,2%) is the input of a network, w;; are the weights assigned to
the edges leading from the input layer to the hidden layer, o is a transfer function,
0; are the thresholds, and v; are the weights from the hidden layer to the output
neuron. Usually the sigmoidal function o(z) = 1/(1 + e *) is taken.

It is assumed that the configuration of a neural net (a graph and a number of
hidden neurons) and the transfer function are given, and weights and thresholds
are adjusted so that the network can perform a given task. Adjustment of weights
is called training, and it is done by some learning algorithm designed to minimise
the mean square error between the desired and the actual output of the network.
The most commonly used learning algorithm is the error backpropagation (BPL),
based on the method of gradient descent.

Due to its rich connection structure, a neural network is supposed to learn how to
perform a complex task from the examples, just like the human brain does, instead
of being given a large set of rules in advance. The training process involves pre-
senting to a network a set of known examples of inputs and corresponding outputs,
and continuously adjusting weights until the network output maximally matches
the desired output.

The major areas of application of artificial neural networks include a wide variety
of image and pattern classification problems, function estimation and regression
problems. In recent years, neural networks have been applied extensively to the
prediction of future observations of a time series. Having observed a sufficiently
long part of the time series, we can try to find the unknown functional relationship
between the past and the future observations (2.1) by training a neural network to
approximate the unknown autoregression function F'.

The universal approximation capability of a one-hidden-layer feedforward neural
network with sigmoidal activation function follows from the results of Cybenko [8].
He showed that the functions

n

> vjo(wy-z—06)) (2.14)

Jj=1
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are dense in La(p) (where p is a probability measure concentrated on a bounded
subset of R*), which makes them candidates to approximate any function in Lo ().

While the one-hidden-layer network with backpropagation learning algorithm
provides a very powerful approximation tool, the training may be very slow and
inefficient, especially for a large network. An important question is how to choose
the optimal size and configuration of the network for a specific problem. The speed
of approximation depends on the number of hidden neurons. Barron [1] proved
that a sufficiently smooth function can be approximated by (2.14) in La(u) at a
rate O(ﬁ) Hence, a network with a number of hidden neurons that is too small
will not be able to reach a given error level, while a network that is too large requires
too much training time. Training of a neural network involves minimisation of a
function of n(k + 2) + 1 parameters, and so, a large network cannot be trained
properly in reality.

The next section will deal with a constructive learning algorithm of Projection
Pursuit Learning (PPL), which is inspired by the Projection Pursuit Regression
(PPR). This learning algorithm builds a neural network by dynamically adding
hidden neurons, in this way optimising the network size and decreasing learning
time.

2.3.2  Projection Pursuit Learning

Projection pursuit is a nonparametric regression technique, known from nonpara-
metric statistics, that allows the interpretation of high-dimensional data by consid-
ering well-chosen one-dimensional projections.

Let again X, X; be the k-dimensional vectors of explanatory variables, Y,Y; be
the responses, ¢ = 1,..., N, and the (unknown) functional relation between X and
Y is the regression surface r (2.6). In projection pursuit, r is approximated by the
sum of empirically determined univariate functions g; of linear combinations of
explanatory variables, i.e.

Pn(z) = gi(a] - z), (2.15)

where z is a vector of observed explanatory variables and a; is a unit projection vec-
tor. The word “pursuit” refers to finding good projection directions by optimisation.
The functions g; (also called the ridge functions) are then estimated nonparamet-
rically, e.g. by kernel or spline smoothing, or using a supersmoother. For a good
review on projection pursuit regression see Huber [15].

Note that the structure of PPR, (2.15) is similar to that of a neural network (2.13),
where the activation functions g; in each neuron have to be estimated, instead of
being fixed in advance (e.g. the sigmoidal function). The algorithm of projection
pursuit learning implements PPR, into a one-hidden-layer neural network

fal@) = vig;(a) -z —6;), (2.16)
j=1

where the weights v;,a;,8; and the functions g; are adjusted to minimise the mean-
squared error between the network output and the desired output.
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The following training scheme is considered: the weights and the ridge function
corresponding to one hidden neuron are adjusted until there is no further improve-
ment in error level. Then a new neuron is added and procedure is repeated.

Studies show that in general PPL performs better than BPL for model-free re-
gression problems: PPL requires fewer neurons to achieve comparable accuracy and
it is less sensitive to outliers. However, due to additional problem of ridge functions
estimation, the total learning time is comparable to that of BPL, or even higher.

The learning time will decrease if the activation functions do not have to be
estimated. For instance, we again can take the sigmoidal activation function and
for the rest carry out PPL in the same way, i.e. adding the hidden neurons one by
one. The following “relaxed” variant of projection pursuit regression does just that
and, moreover, achieves the desirable approximation accuracy.

Suppose that f,, has been selected, then f,, 1 is selected from the restricted class
of functions of the form

(1-a)fn(z) + avo(Wni1 - = Ony1),

where a,v,w,11,60,4+1 are the required parameters. Here the parameter a plays
the role of a “relaxing” parameter. It allows more “space” for improvements of the
approximation when f,,41 is being selected. In terms of a neural network this is the
following iterative procedure: after having trained a network with n neurons, until
some stopping criteria is reached, all the weights are kept fixed, one more neuron
is added and the weights corresponding to this neuron are adjusted together with
a. When there is no more improvement in terms of approximation error, one more
neuron is added, etc., until the desirable error level is achieved.

The so-called “greedy approximation lemma” of Jones [16] establishes conver-
gence of this procedure in Ly () with the approximation rate of O(ﬁ)

Adding hidden neurons with the sigmoidal activation function one by one sub-
stantially decreases learning time in comparison to BPL, where all weights must
be adjusted simultaneously. This is confirmed by the numerical examples of the
next section. However, replacing the unknown ridge functions by a single sigmoidal
function is too restrictive. A more flexible approach would be to add more than
one neuron at a time, in this way increasing the richness of the class of admissible
ridge functions. We suggest adding neurons in pairs - two sigmoidal functions of the
opposite signs form a unimodal function and can successfully approximate peaks
and valleys of an unknown regression function. Comparison to a kernel smoothing
methods provides an extra motivation for this suggestion.

In kernel smoothing the multivariate case is treated either by product kernels or
by considering a distance between vectors. Instead, we may consider a projection
pursuit kernel estimator:

v =33 h—jK(h—j) Y;, (2.17)

j=1i=1

where a; is a unit projection vector, h; is a bandwidth in direction a;, and we
suppose that the sum has been properly normalised. Here n is the number of hidden
neurons and N is the sample size.

Note that we can rewrite an output of a one-hidden-layer neural network (2.13)
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as

T ,
a; -z —tj
8j

fn(z) = Z'Uja(i), (2.18)

where |a;| = 1. The similarity between (2.17) and (2.18) reveals some connections
between these two approaches.

If we set 0 = K, then both (2.17) and (2.18) perform data smoothing in each
direction a;. The parameter s;, which is chosen by the backpropagation algorithm,
plays the role of the smoothing parameter h;, which is chosen in kernel methods by
the cross-validation method. The main difference between the two methods is that,
while the kernel method performs explicit smoothing in all directions a; using all
the data, a neural network performs implicit smoothing, determining v; (instead of
Yi/hj) and t; (instead of a] - X;) by some nonlinear optimisation procedure.

In a neural network the activation function o is the sigmoidal function and does
not have the form of a kernel. However, two sigmoidal function of the opposite
signs approximate the typical unimodal bell-shape of a kernel function. Moreover,
different bandwidths s; are selected for each half of such an asymmetric kernel, in
this way possibly improving approximation capabilities in comparison with sym-
metric kernel K with a single value of a bandwidth. These considerations support
the suggestion of adding hidden neurons in PPL in pairs.

In the next section we shall apply PPL to predict a real-life time series and
compare it with BPL in terms of the prediction error and the learning time.

2.4 Application to a fluidized bed time series

Here we will consider a time series of pressure measurements in a fluidized bed. We
used this time series in the introduction as one of our examples of nonlinear time
series. Part of the data set together with the delay map at lag 35 is shown again in
Fig.7.6 and 7.7. The prediction step for this time series was chosen 35 measurements
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FIGURE 2.6. Pressure fluctuations in the FIGURE 2.7. Delay map for the fluidized
fluidized bed bed time series: X, vs. X, 435

ahead, and, since the time series is oversampled, we introduce a time delay 7 = 35
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and look for a predictor of the form:

Z}n+35 = F(yn; Yn—71y ey yn—57’)- (219)

We used a larger part of the time series as the basis for predictions, and dis-
joint smaller parts as test sets. For this time series, as a measure of quality of our
predictions, we take the Average Absolute Error:

® _

N ~(t)
1 ly;” —4;
AAEN = N E R 100%,
i=1

where R is the range of values of the time series, y?),...,yj(\t,) is a test set and

gﬁt), ...,gjl(\t,) are the obtained predictions.

For application of our kernel method we took the Gaussian kernel function and ge-
ometrically decreasing weights ; = v (i = 1, ..., 5) for computation of the distance
(2.10). Selection of the bandwidth h and the parameter v was done by simultaneous
cross-validation. The cross-validation surface is shown in Fig.7.8, the optimal pair

of parameters being (h,~) = (0.03,0.6).
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Fig.7.9 shows two test sets each consisting of 600 observations (solid line) together
with predictions (dashed line). The value of the AAE is 5.75%. In general, the
quality of prediction is quite good, and the dashed curve is rather smooth, but, as
we could expect, on highs and lows, where the fluctuations are most noticeable, we
get slightly worse predictions than on intermediate parts of the time series.

Next we compare the results with the performance of a neural net trained by the
method of backpropagation. Looking again for a predictor of the form (2.19), we
used the one-hidden-layer feedforward neural net with 5 inputs, 3 hidden neurons
and 1 output, which was trained to be the prediction for a value 35 measurements
ahead. We used 10° training iterations performed on the training set of length
3000 observations. Since we used a small neural net (5:3:1), this number of training
iterations should be sufficient to train it properly.

The example of a test set together with neural net predictions is shown in Fig.7.10.
The obtained AAFE is 8.7%. Comparison of Fig.7.9 with Fig.7.10 shows that the
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kernel method works better not only in terms of average error, but also has a definite
advantage in predicting high and low values where the neural net failed.

We also apply local and global linear predictors to this data set. For the (k,¢€)-
method we take into account e-close vectors of k past values, sampled with time
delay 35, and we base the choice of the pair (k,e) on the minimisation of the
AAE. The optimal pair is £ = 3, € = 0.2. A test set together with local linear
predictions is shown in Fig.7.11. The AAE is in this case 8.4%, but note that again
the predictions of high and low values are of lower quality.

Note, however, that the predictions obtained by the (k,¢)-method are rather
undersmoothed (Fig. 7.11), and the method has a very local character. This is
different from the smooth prediction curves obtained by the kernel method, where
the parameters were tuned so that no under and oversmoothing occurs, and those
obtained by the neural net, which is a more global approximation procedure.

For comparison we also fitted global linear autoregression of the past 5 values
sampled with time delay 7 = 35 (as in (2.19), with F linear). This delivered the
AAE of 13%, much higher than in applications of nonlinear and locally linear
methods. This shows that strong nonlinear dependence in this data set is indeed best
captured by applying nonlinear methods of predictions, and that linear methods
perform quite poorly in this case.
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