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Malliavin Derivative via Chaos Expansion

3.1 The Malliavin Derivative

The Malliavin calculus (see [158], see also, for example, [53, 72, 160, 169,
212]) was originally created as a tool for studying the regularity of densities
of solutions of stochastic differential equations. Subsequently, partly due to
the papers [173] and [174], the significance of Malliavin calculus in finance
became clear. This triggered a tremendous interest in the subject, also among
economists. Today the range of applications has extended even further to
include numerical methods, stochastic control, and insider trading, not just
for systems driven by Brownian motion, but for systems driven by general
Lévy processes. These applications will be covered later in this book.

There are many ways of introducing the Malliavin derivative. The original
construction was given on the Wiener space Ω = C0([0, T ]) consisting of all
continuous functions ω : [0, T ] −→ R with ω(0) = 0. This construction is
outlined in Appendix A.

In this book, we mainly use an approach based on chaos expansions. We
give a presentation in this chapter. In the Brownian motion case this ap-
proach is basically equivalent to the construction of the Malliavin derivative
as a stochastic gradient on the space Ω = S ′(R). This last approach has the
advantage of being more intuitive. Moreover, it opens for a useful combina-
tion with Hida white noise calculus, which turns out to be a useful framework
for both Malliavin calculus, Skorohod integrals, and anticipative calculus in
general. We discuss this in Chap. 6.

Definition 3.1. Let F ∈ L2(P ) be FT -measurable with chaos expansion

F =
∞∑
n=0

In(fn),

where fn ∈ L̃2([0, T ]n), n = 1, 2, ....
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28 3 Malliavin Derivative via Chaos Expansion

(i) We say that F ∈ D1,2 if

‖F‖2
D1,2

:=
∞∑
n=1

nn!‖fn‖2L2([0,T ]n) <∞. (3.1)

(ii) If F ∈ D1,2 we define the Malliavin derivative DtF of F at time t as the
expansion

DtF =
∞∑
n=1

nIn−1(fn(·, t)), t ∈ [0, T ], (3.2)

where In−1(fn(·, t)) is the (n−1)-fold iterated integral of fn(t1, ..., tn−1, t)
with respect to the first n − 1 variables t1, ..., tn−1 and tn = t left as
parameter.

Remark 3.2. Note that if (3.1) holds, then

‖D·F‖2L2(P×λ) = E
[ ∫ T

0

(DtF )2dt
]

=
∞∑
n=1

∫ T

0

n2(n− 1)!‖fn(·, t)‖2L2([0,T ]n)dt

(3.3)

=
∞∑
n=1

nn!‖fn‖2L2([0,T ]n) = ‖F‖2
D1,2

<∞,

so D·F = DtF , t ∈ [0, T ], is well defined as an element of L2(P × λ).

We first establish the following fundamental result.

Theorem 3.3. Closability of the Malliavin derivative. Suppose F ∈
L2(P ) and Fk ∈ D1,2, k = 1, 2, ..., such that

(i) Fk −→ F , k →∞, in L2(P )
(ii)

{
DtFk

}∞
k=1

converges in L2(P × λ).
Then F ∈ D1,2 and DtFk −→ DtF , k →∞, in L2(P × λ).
Proof Let F =

∑∞
n=0 In(fn) and Fk =

∑∞
n=0 In(f (k)

n ), k = 1, 2, ... . Then
by (i)

f (k)
n −→ fn, k →∞, in L2(λn)

for all n. By (ii) we have
∞∑
n=1

nn!‖f (k)
n − f (j)

n ‖2L2(λn) = ‖DtFk −DtFj‖2L2(P×λ) −→ 0, j, k →∞.

Hence by the Fatou lemma,

lim
k→∞

∞∑
n=1

nn!‖f (k)
n − fn‖2L2(λn) ≤ lim

k→∞
lim
j→∞

∞∑
n=1

nn!‖f (k)
n − f (j)

n ‖2L2(λn) = 0.

This implies that F ∈ D1,2 and

DtFk −→ DtF, k →∞, in L2(P × λ). ��
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3.2 Computation and Properties
of the Malliavin Derivative

In this section we proceed presenting a collection of results that constitute
the rules of calculus of the Malliavin derivatives.

3.2.1 Chain Rules for Malliavin Derivative

We proceed to prove a useful chain rule for Malliavin derivatives. First let us
consider the case when fn = f⊗n for some f ∈ L2([0, T ]), that is,

fn(t1, ..., tn) = f(t1) · · · f(tn).

Then by (1.15) we have

In(fn) = ‖f‖nhn
( θ

‖f‖
)
, (3.4)

where ‖f‖ = ‖f‖L2([0,T ]), θ =
∫ T
0
f(t)dW (t) and hn is the Hermite polynomial

of order n. Then by (3.2) we have

DtIn(fn) = nIn−1(fn(·, t))
= nIn−1(f⊗(n−1))f(t)

= n‖f‖n−1hn−1

( θ

‖f‖
)
f(t). (3.5)

A basic property of the Hermite polynomials is that

h′n(x) = nhn−1(x). (3.6)

Combining this with (3.4) and (3.5) we get

Dthn
( θ

‖f‖
)

= h′n
( θ

‖f‖
) f(t)
‖f‖ . (3.7)

In particular, choosing n = 1, we get

Dt

∫ T

0

f(s)dW (s) = f(t). (3.8)

Similarly, by (3.6) and induction, for n = 2, 3, ..., we have

Dt

( ∫ T

0

f(s)dW (s)
)n

= n
(∫ T

0

f(s)dW (s)
)n−1

f(t). (3.9)

Let D
0
1,2 be the set of all F ∈ L2(P ) whose chaos expansion has only finitely

many terms. Then we have the following result.
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Theorem 3.4. Product rule for Malliavin derivative. Suppose F1, F2 ∈
D

0
1,2. Then F1, F2 ∈ D1,2 and also F1F2 ∈ D1,2 with

Dt(F1F2) = F1DtF2 + F2DtF1. (3.10)

Proof Being F1, F2 ∈ D
0
1,2, clearly F1, F2 ∈ D1,2 and, since the Gaussian

random variables have all finite moments, we also have that F1F2 ∈ L2(P ).
First of all let us consider the random variables F (n)

k (n = 1, 2, ..., k = 1, 2) as
linear combination of iterated integrals of tensor products of functions ξi in an
orthogonal basis {ξj}∞j=1 of L2([0, T ]). Thanks to the structure of the Hermite

polynomials, the argument above together with (1.14) shows that F (n)
1 , F

(n)
2

and F (n)
1 F

(n)
2 are in D1,2 for all n, with

Dt(F
(n)
1 F

(n)
2 ) = F

(n)
1 DtF

(n)
2 + F

(n)
2 DtF

(n)
1 . (3.11)

We can choose the two sequences so that F
(n)
k −→ Fk in L2(P ) and

DtF
(n)
k −→ DtFk in L2(P × λ), for n → ∞ (k = 1, 2). Then, being F1F2 ∈

D
0
1,2, we have that F (n)

1 F
(n)
2 −→ F1, F2 in L2(P ) and also {Dt(F

(n)
1 F

(n)
2 )}∞n=1

converges in L2(P × λ). Hence we can conclude by Theorem 3.3. ��
See also Problem 3.1.

A version of the chain rule can be formulated as follows, see also [169].

Theorem 3.5. Chain rule. Let G ∈ D1,2 and g ∈ C1(R) with bounded
derivative. Then g(G) ∈ D1,2 and

Dtg(G) = g′(G)DtG. (3.12)

Here g′(x) = d
dxg(x).

Proof The result can be derived as a corollary to a forthcoming general result.
See Theorem 6.3 and Corollary 6.4. ��

Remark 3.6. Another chain rule requiring only the Lipschitz continuity of ϕ
can be found in [169, Proposition 1.2.4].

3.2.2 Malliavin Derivative and Conditional Expectation

We now present some preliminary results on conditional expectations.

Definition 3.7. Let G be a Borel set in [0, T ]. We define FG to be the com-
pleted σ-algebra generated by all random variables of the form

F =

T∫

0

χA(t)dW (t),

for all Borel sets A ⊆ G.
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Thus if G = [0, t], for any t ∈ [0, T ] fixed, we have that F[0,t] = Ft. Note that
if G1, G2 are Borel sets in [0, T ], then FG1 ∩ FG2 = FG1∩G2 .

Lemma 3.8. For any g ∈ L2([0, T ]) we have

E
[ ∫ T

0

g(t)dW (t)|FG
]

=

T∫

0

χG(t)g(t)dW (t).

Proof By definition of conditional expectation, it is sufficient to verify that
the random variable

T∫

0

χG(t)g(t)dW (t) is FG-measurable (3.13)

and that

E
[
F

T∫

0

g(t)dW (t)
]

= E
[
F

T∫

0

χG(t)g(t)dW (t)
]

(3.14)

for all bounded FG-measurable random variables F .
To prove (3.13) we may assume that g is continuous, because the continuous
functions are dense in L2([0, T ]). If g is continuous, then

T∫

0

χG(t)g(t)dW (t) = lim
Δti→0

n∑
i=0

g(ti)

ti+1∫

ti

χG(t)dW (t),

where the limit is in L2(P ) for the vanishing mesh Δti of the partitions 0 =
t0 < ... < tn = T . Since each term in the sum is FG-measurable, the sum
is also FG-measurable. Then by taking a subsequence converging P -a.s. we
conclude that the limit represents an FG-measurable random variable.

To prove (3.14) we may assume F =
T∫
0

χA(t)dW (t) for some A ⊆ G. Then by

the Itô isometry we have

E
[
F

T∫

0

g(t)dW (t)
]

= E
[ T∫

0

χA(t)g(t)dt
]
,

and also

E
[
F

T∫

0

χG(t)g(t)dW (t)
]

= E
[ T∫

0

χA(t)χG(t)g(t)dt
]

= E
[ T∫

0

χA(t)g(t)dt
]
.

Then the proof can be completed by a density argument. ��
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Lemma 3.9. Let G ⊆ [0, T ] be a Borel set and v = v(t), t ∈ [0, T ], be a
stochastic process such that

(1) for all t, v(t) is measurable with respect to Ft ∩ FG
(2) E

[ T∫
0

v2(t)dt
]
<∞.

Then ∫
G

v(t)dW (t) is FG-measurable.

Proof By a standard approximation procedure it is sufficient to consider v to
be an elementary process of the form

v(t) =
n∑
i=1

viχ(ti,ti+1](t),

where 0 = t0 < t1 < · · · < tn = T and vi are Fti ∩ FG-measurable random
variables such that (2) is satisfied. For such v we have

∫

G

v(t)dW (t) =
n∑
i=1

vi

∫

G∩(ti,ti+1]

1 dW (t),

which is a sum of products of FG-measurable functions and hence FG-
measurable. ��
Lemma 3.10. Let u = u(t), t ∈ [0, T ], be an F-adapted stochastic process in
L2(P × λ). Then

E
[ T∫

0

u(t)dW (t)|FG
]

=
∫

G

E[u(t)|FG]dW (t).

Proof Lemma 3.9 guarantees that
∫
G
E[u(t)|FG]dW (t) is FG-measurable.

Then it suffices to verify that

E
[
F

T∫

0

u(t)dW (t)
]

= E
[
F

∫

G

E[u(t)|FG]dW (t)
]

for all F of the form F =
∫
A

dW (t), where A ⊆ G is a Borel set. In this case

we obtain by the Itô isometry that

E
[
F

T∫

0

u(t)dW (t)
]

= E
[ T∫

0

χA(t)u(t)dt
]

=
∫

A

E[u(t)]dt
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and

E
[
F

∫

G

E[u(t)|FG]dW (t)
]

= E
[ T∫

0

χA(t)χG(t)E
[
u(t)|FG

]
dt
]

=

T∫

0

χA(t)E
[
E[u(t)|FG]

]
dt

=
∫

A

E[u(t)]dt.

A density argument completes the proof. ��
Proposition 3.11. Let fn ∈ L̃2([0, T ]n), n = 1, 2, .... Then

E[In(fn)|FG] = In[fnχ⊗n
G ], (3.15)

where (fnχ⊗n
G )(t1, . . . , tn) = fn(t1, . . . , tn)χG(t1) · · ·χG(tn).

Proof We proceed by induction on n. For n = 1 we have

E[I1(f1)|FG] = E[

T∫

0

f1(t1)dW (t1)|FG] =

T∫

0

f1(t1)χG(t1)dW (t1) = I1
[
f1χ

⊗1
G

]

by Lemma 3.10. Assume that (3.15) holds for n = k. Then, again by
Lemma 3.10, we have

E[Ik+1(fk+1)|FG]

= (k + 1)!E
[ T∫

0

tk+1∫

0

· · ·
t2∫

0

fk+1(t1, . . . , tk+1)dW (t1) · · · dW (tk)dW (tk+1)|FG

]

= (k + 1)!

T∫

0

E
[ tk+1∫

0

· · ·
t2∫

0

fk+1(t1, . . . , tk+1)dW (t1) · · · dW (tk)|FG

]

· χG(tk+1)dW (tk+1)

= . . .= (k + 1)!

T∫

0

tk+1∫

0

· · ·
t2∫

0

fk+1(t1, . . . , tk+1)χG(t1) · · ·χG(tk+1)dW (t1) · · · dW (tk+1)

= Ik+1[fk+1χ
⊗(k+1)
G ],

and the proof is complete. ��
Proposition 3.12. If F ∈ D1,2, then E[F |FG] ∈ D1,2 and

DtE[F |FG] = E[DtF |FG]χG(t).
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Proof First assume that F = In(fn) for some fn ∈ L̃2([0, T ]n). By
Proposition 3.11 we have

DtE[F |FG] = DtE[In(fn)|FG]
= DtIn(fnχ⊗n

G )

= nIn−1[fn(·, t)χ⊗(n−1)
G (·)χG(t)] (3.16)

= nIn−1[fn(·, t)χ⊗(n−1)
G (·)]χG(t)

= E[DtF |FG]χG(t).

Next, let F =
∑∞

n=0 In(fn) belong to D1,2. Let Fk =
∑k

n=0 In(fn). Then

Fk → F in L2(Ω) and DtFk → DtF in L2(P × λ)

as k →∞. By (3.16) we have

DtE[Fk|FG] = E[DtFk|FG]χG(t),

for all k, and taking the limit with convergence in L2(P×λ) of this, as k →∞,
we obtain the result. ��
Corollary 3.13. Let u = u(s), s ∈ [0, T ], be an F-adapted stochastic process
and assume that u(s) ∈ D1,2 for all s. Then

(i) Dtu(s), s ∈ [0, T ], is F-adapted for all t;
(ii)Dtu(s) = 0, for t > s.

Proof By Proposition 3.12 we have that

Dtu(s) = DtE[u(s)|Fs] = E[Dtu(s)|Fs]χ[0,s](t) = E[Dtu(s)|Fs]χ[t,T ](s),

from which (i) and (ii) follow immediately. ��

3.3 Malliavin Derivative and Skorohod Integral

3.3.1 Skorohod Integral as Adjoint Operator to the Malliavin
Derivative

The following result shows that the Malliavin derivative is the adjoint operator
of the Skorohod integral.

Theorem 3.14. Duality formula. Let F ∈ D1,2 be FT -measurable and let
u be a Skorohod integrable stochastic process. Then

E
[
F

∫ T

0

u(t)δW (t)
]

= E
[ ∫ T

0

u(t)DtFdt
]
. (3.17)
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Proof Let F =
∑∞

n=0 In(fn) and, for all t, u(t) =
∑∞
k=0 Ik(gk(·, t)) be the

chaos expansions of F and u(t), respectively. Then

E
[
F

∫ T

0

u(t)δW (t)
]

= E
[ ∞∑
n=0

In(fn)
∫ T

0

∞∑
k=0

Ik(gk(·, t))δW (t)
]

= E
[ ∞∑
n=0

In(fn)
∞∑
k=0

Ik+1(g̃k)
]

= E
[ ∞∑
k=0

Ik+1(fk+1)Ik+1(g̃k)
]

=
∞∑
k=0

(k + 1)!
∫

[0,T ]k+1
fk+1(x)g̃k(x)dx

=
∞∑
k=0

(k + 1)!
(
fk+1, g̃k

)
L2([0,T ]k+1)

,

(3.18)

where g̃k is the symmetrization of gk(x1, ..., xn, t) as a function of n+ 1 vari-
ables (see (2.1)). On the other side we have

E
[ ∫ T

0

u(t)DtFdt
]
=E

[ ∫ T

0

( ∞∑
k=0

Ik(gk(·, t))
)( ∞∑

n=1

nIn−1(fn(·, t))
)
dt
]

=
∫ T

0

∞∑
k=0

E
[
(k + 1)Ik(gk(·, t))Ik(fk+1(·, t))

]
dt

=
∫ T

0

∞∑
k=0

(k + 1)k!
(
fk+1(·, t), gk(·, t)

)
L2([0,T ]k)

dt

=
∞∑
k=0

(k + 1)!
(
fk+1, gk

)
L2([0,T ]k+1)

.

(3.19)

Now

(
fk+1, g̃k

)
L2([0,T ]k+1)

=
∫ T

0

(
fk+1(·, t), g̃k(·, t)

)
L2([0,T ]k)

dt

=
1

k + 1

k+1∑
j=1

∫ T

0

(
fk+1(·, tj), gk(·, tj)

)
L2([0,T ]k)

dtj

=
∫ T

0

(
fk+1(·, t), gk(·, t)

)
L2([0,T ]k)

dt

=
(
fk+1, gk

)
L2([0,T ]k+1)

.

(3.20)

Therefore, by (3.20) combined with (3.18) and (3.19) the result follows. ��
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3.3.2 An Integration by Parts Formula and Closability
of the Skorohod Integral

Theorem 3.15. Integration by parts. Let u(t), t ∈ [0, T ], be a Skorohod
integrable stochastic process and F ∈ D1,2 such that the product Fu(t), t ∈
[0, T ], is Skorohod integrable. Then

F

∫ T

0

u(t)δW (t) =
∫ T

0

Fu(t)δW (t) +
∫ T

0

u(t)DtFdt. (3.21)

Proof First assume that F ∈ D
0
1,2 (see Theorem 3.4). Choose G ∈ D

0
1,2. By

Theorem 3.14 and Theorem 3.4 we get

E
[
G

∫ T

0

Fu(t)δW (t)
]

= E
[ ∫ T

0

Fu(t)DtGdt
]

= E
[
GF

∫ T

0

u(t)δW (t)
]
− E

[
G

∫ T

0

u(t)DtFdt
]
.

Since the set of all G ∈ D
0
1,2 is dense in L2(P ), it follows that

F

∫ T

0

u(t)δW (t) =
∫ T

0

Fu(t)δW (t) +
∫ T

0

u(t)DtFdt P − a.s.

Then the result follows for general F ∈ D1,2 by approximating F by F (n) ∈
D

0
1,2 such that F (n) −→ F in L2(P ) and DtF

(n) −→ DtF in L2(P × λ), for
n→∞. ��
Remark 3.16. The arguments of the proof of Theorem 3.15 actually show that
the assumption of the Skorohod integrability of Fu can be replaced by requir-
ing the existence of the integrals

F

∫ T

0

u(t)δW (t) and
∫ T

0

u(t)DtFdt

in L2(P ).

We can now use the duality formula to prove the following important result.

Theorem 3.17. Closability of the Skorohod integral. Suppose that
un(t), t ∈ [0, T ], n = 1, 2, ..., is a sequence of Skorohod integrable stochastic
processes and that the corresponding sequence of Skorohod integrals

δ(un) :=
∫ T

0

un(t)δW (t), n = 1, 2, ...

converges in L2(P ). Moreover, suppose that

lim
n→∞ un = 0 in L2(P × λ).

Then
lim
n→∞ δ(un) = 0 in L2(P ).
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Proof By Theorem 3.14, we have that
(
δ(un), F

)
L2(P )

=
(
un, D·F

)
L2(P×λ)

−→ 0, n→∞,

for all F ∈ D1,2. We conclude that δ(un) −→ 0 weakly in L2(P ). Since
{δ(un)}∞n=0 is convergent in L2(P ), we obtain that δ(un) −→ 0 in L2(P ).

��

3.3.3 A Fundamental Theorem of Calculus

The next result gives a useful connection between differentiation and Skorohod
integration.

Theorem 3.18. The fundamental theorem of calculus. Let u = u(s),
s ∈ [0, T ], be a stochastic process such that

E
[ T∫

0

u2(s)ds
]
<∞ (3.22)

and assume that, for all s ∈ [0, T ], u(s) ∈ D1,2 and that, for all t ∈ [0, T ],
Dtu ∈ Dom(δ). Assume also that

E
[ T∫

0

(
δ(Dtu)

)2
dt
]
<∞. (3.23)

Then
T∫
0

u(s)δW (s) is well-defined and belongs to D1,2 and

Dt

(∫ T

0

u(s)δW (s)
)

=

T∫

0

Dtu(s)δW (s) + u(t). (3.24)

Proof First assume that

u(s) = In(fn(·, s)),

where fn(t1, . . . , tn, s) is symmetric with respect to t1, . . . , tn. Then

T∫

0

u(s)δW (s) = In+1[f̃n],

where
f̃n(x1, . . . , xn+1) =

1
n+ 1

[
fn(·, x1) + . . .+ fn(·, xn+1)

]
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is the symmetrization of fn as a function of all its n+ 1 variables. Hence

Dt

( T∫

0

u(s)δW (s)
)

= (n+ 1)In[f̃n(·, t)], (3.25)

where

f̃n(·, t) =
1

n+ 1

[
fn(t,·, x1) + . . .+ fn(t, ·, xn) + fn(·, t)

]
(3.26)

(since fn is symmetric with respect to its first n variables, we may choose t to
be the first of them, in the first n terms on the right-hand side). Combining
(3.25) with (3.26) we get

Dt

( T∫

0

u(s)δW (s)
)

= In

[
fn(t, ·, x1) + . . .+ fn(t, ·, xn) + fn(·, t)

]

= In

[
fn(t, ·, x1) + . . .+ fn(t, ·, xn)

]
+ u(t)

(3.27)

(the integration in In is with respect to (x1, . . . , xn)). To compare this with
the right-hand side of (3.24) we consider

δ(Dtu) =

T∫

0

Dtu(s)δW (s)

=

T∫

0

nIn−1[fn(·, t, s)]δW (s)

= nIn[f̂n(·, t, ·)], (3.28)

where

f̂n(x1, . . . , xn−1, t, xn) =
1
n

[
fn(t, ·, x1) + . . .+ fn(t, ·, xn)

]

is the symmetrization of fn(x1, . . . , xn−1, t, xn) with respect to x1, . . . , xn.
Then, from (3.28) we get

T∫

0

Dtu(s)δW (s) = In

[
fn(t, ·, x1) + . . .+ fn(t, ·, xn)

]
. (3.29)

Comparing (3.27) and (3.29) we obtain (3.24).
Next, consider the general case when

u(s) =
∞∑
n=0

In[fn(·, s)].
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Define

um(s) =
m∑
n=0

In[fn(·, s)], m = 1, 2, . . . .

By (3.22) we have ‖u− um‖2L2(P×λ) −→ 0,m→∞.
Then by the above argument we have

Dt(δ(um)) = δ(Dtum) + um(t), for all m. (3.30)

By (3.28) we see that (3.23) is equivalent to saying that

E
[ T∫

0

(δ(Dtu))2dt
]

=
∞∑
n=1

n2n!

T∫

0

‖f̂n(·, t, ·)‖2L2([0,T ]n)dt

=
∞∑
n=1

n2n!‖f̂n‖2L2([0,T ]n+1) <∞, (3.31)

since Dtu ∈ Dom(δ). Hence, for m→∞,

‖δ(Dtu)− δ(Dtum)‖2L2(P×λ) =
∞∑

n=m+1

n2n!‖f̂n‖2L2([0,T ]n+1) −→ 0. (3.32)

Therefore, by (3.30)

Dt(δ(um)) → δ(Dtu) + u(t), m→∞,

in L2(P × λ). Note that

(n+ 1)f̃n(·, t) = nf̂n(·, t, ·) + fn(·, t)

and hence

(n+ 1)!‖f̃n‖2L2([0,T ]n+1) ≤
2n2n!
n+ 1

‖f̂n‖2L2([0,T ]n+1) +
2n!
n+ 1

‖fn‖2L2([0,T ]n+1).

Therefore,

‖δ(u)‖2
D1,2

=
∞∑
n=0

(n+ 1)(n+ 1)!‖f̃n‖2L2([0,T ]n+1)

≤
∞∑
n=0

[
2n2n!‖f̂n‖2L2([0,T ]n+1) + 2n!‖fn‖2L2([0,T ]n+1)

]

≤ 2‖δ(Dtu)‖2L2(P×λ) + 2‖u‖2L2(P×λ) <∞,
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by (3.31) and (3.22). Then we conclude that δ(u) is well-defined and belongs
to D1,2. By similar computations, we obtain

∥∥Dt

( ∫ T

0

u(s)δW (s)
)
−Dt

(∫ T

0

um(s)δW (s)
)∥∥2

L2(P×λ)

=
∥∥ ∞∑
n=m+1

(n+ 1)In(f̃n(·, t))
∥∥2

L2(P×λ)

=
∫ T

0

∞∑
n=m+1

(n+ 1)2n!‖f̃n(·, t)‖2L2([0,T ]n)dt

≤ 2
∞∑

n=m+1

[
n2n!‖f̂n‖2L2([0,T ]n+1) + n!‖fn‖2L2([0,T ]n+1)

]
,

(3.33)

which vanishes when m→∞. Hence given (3.32) and (3.33), we obtain (3.24):

Dt(δ(u)) = δ(Dtu) + u(t),

by letting m→∞ in (3.30). ��
Corollary 3.19. Let u be as in Theorem 3.18 and assume in addition that
u(s), s ∈ [0, T ], is F-adapted. Then

Dt

( T∫

0

u(s)dW (s)
)

=

T∫

t

Dtu(s)dW (s) + u(t). (3.34)

Proof This is an immediate consequence of Theorem 3.18 and Corollary 3.13.
��

3.4 Exercises

Problem 3.1. Let ξ, ζ be orthonormal functions in L2([0, T ]). Using the prop-
erties of Hermite polynomials compute directly the following:

(a) I1(ξ)I2(ζ⊗2)
(b) I3(ξ⊗̂ζ⊗2)
(c) DtI3(ξ⊗̂ζ⊗2) [Hint. Use (1.14), (3.5)–(3.9)].

Using the chain rule compute:

(d)Dt(I1(ξ)I2(ζ⊗2).

Compare the results in (c) and (d).

Problem 3.2. (*) Find the Malliavin derivativeDtF of the following random
variables:
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(a) F = W (T ).

(b)F =
T∫
0

s2dW (s).

(c) F =
T∫
0

t2∫
0

cos(t1 + t2)dW (t1)dW (t2).

(d)F = 3W (s0)W 2(t0) + log(1 +W 2(s0)), for given s0, t0 ∈ [0, T ].

(e) F =
T∫
0

W (t0)δW (t), for a given t0 ∈ [0, T ]. [Hint . Use Problem 2.4 (b).]

Problem 3.3. (*)

(a) Find the Malliavin derivative DtF, when

F = eG with G =

T∫

0

g(s)dW (s), g ∈ L2([0, T ]),

by using that F =
∑∞

n=0 In[fn], with

fn(t1, . . . , tn) =
1
n!

exp
{1

2
‖g‖2L2([0,T ])

}
g(t1) . . . g(tn)

(see Problem 1.1 and Problem 1.3 (d)).
(b)Verify that the result in (a) can be expressed in terms of the chain rule:

Dte
G = eGDtG.

(c) Find the Malliavin derivative of F = eG with G = W (t0), for a given
t0 ∈ [0, T ].

Problem 3.4. Use the integration by parts formula (Theorem 3.15) to com-
pute the Skorohod integrals

∫ T

0

FδW (t),

for the random variables F given in Problem 3.2 and in Problem 3.3.

Problem 3.5. Use the integration by parts formula to compute the Skorohod
integrals in Problem 2.4.

Problem 3.6. Let u = u(t), t ∈ [0, T ], be a stochastic process such that

E
[ ∫ T

0

u2(t)dt
]
<∞.

Suppose that there exists a constant K (which can depend on u) such that

∣∣∣E
[ ∫ T

0

DtFu(t)dt
]∣∣∣ ≤ K‖F‖L2(P ), for all F ∈ D1,2.

Show that u is Skorohod integrable.




