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Outline

� Introduction on the COS pricing method.
� ASCOS pricing method for Asian options.

� Recover the PDF in the risk–neutral pricing formula in terms of its
characteristic function by Fourier expansions.

� Calculation of the characteristic function recursively using Fourier
expansions and Clenshaw–Curtis quadrature.

� Error convergence and computational cost.

� Extensions of our pricing method.

� Numerical results and conclusions.
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COS method
ASCOS overview

COS pricing method (Fang, Oosterlee)

We start from the risk–neutral formula, where the price of an option
without early–exercise features is written as an expectation of the
discounted payoff at maturity time.

v(x , t0) = e
−r∆t

�

R
v(y ,T )f (y |x)dy .

Several numerical methods can be used to calculate the option price.
Our pricing method is based on the Fourier cosine expansion of the
conditional density function.
First we truncate the infinite integration range of the Risk-Neutral
formula

v(x , t0) = e
−r∆t

� b

a
v(y ,T )f (y |x)dy .

Here truncation range [a, b] can be determined by cumulants of
underlying process.
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COS method
ASCOS overview

COS pricing method (Fang, Oosterlee)

Then the conditional density function of the underlying is approximated
in terms of its characteristic function through Fourier cosine expansions.

f (y |x) ≈ 2

b − a

N−1��

k=0

Re(ϕ(
kπ

b − a
; x) exp (−i

akπ

b − a
)) cos (kπ

y − a

b − a
).

By replacing f (y |x) by its approximation and interchanging integration
and summation, we obtain the COS algorithm for option pricing

v(x , t0) = e
−r∆t

N−1��

k=0

Re(φ(
kπ

b − a
; x)e−ikπ a

b−a )Vk ,

where Vk is the Fourier Cosine coefficient of option value v(y ,T ).

Vk =
2

b − a

� b

a
v(y ,T ) cos(kπ

y − a

b − a
).
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Asian options

� Asian option is written on the (arithmetic, geometric, harmonic)
average of the underlying process over the time.

� For a fixed strike Asian options, the average plays the part of the
underlying and for a floating strike Asian options, the average plays
the part of the strike.

� The volatility inherent in the average process is less than that in the
underlying process, thus an Asian option is usually cheapter than a
European option. An Asian option protects us from price fluctuation
in the market.

� Asian option could function as a hedging tool in place of a basket of
European options with different maturities.
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COS method
ASCOS overview

Pricing of Asian options

� We focus on Lévy processes, which are governed by independent and
stationary increments through time.

� Our pricing method is based on the recovery of the characteristic
function of the average value (or the sum) of the underlying asset
through time.

� For geometric Asian options, the characteristic function of the
geometric average can be calculated directly.

� For arithmetic Asian options, the characteristic function of the
arithmetic average needs to be approximated recursively.

� Continuously–monitored Asian option price is derived from
discretely–monitored Asian option, in combination with
extrapolation.
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Recovery of characteristic function
Pricing method of Asian options

Pricing of Arithmetic Asian Options

The payoff function of an arithmetic Asian option reads

v(S ,T ) ≡ g(S) = max(δ(
1

M + 1

M�

j=0

Sj − K ), 0)

with δ = 1 for a call and δ = −1 for a put.
A new stochastic process , Yj , j = 1, · · · ,M, is introduced.

Y1 = log(
SM

SM−1
),Yj = log(

SM+1−j

SM−j
) + log(1 + exp(Yj−1)).

then
1

M + 1

M�

j=0

Sj =
(1 + exp(YM))S0

M + 1
.

Therefore, after the characteristic function of YM is recovered, the Asian
option price is available from the COS formula.
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Recovery of characteristic function
Pricing method of Asian options

Recursive Recovering of characteristic function φYM(u)

The characteristic function of YM is recursively recovered. Yj is rewritten
as

Y1 = RM ,Yj = RM+1−j + Zj−1

where ∀j ,Rj := log( Sj

Sj−1
) and Zj := log(1 + exp(Yj)). For a Lévy process

we have.

� ∀u, φY1(u) = φR(u), j = 2, · · · ,M., where Rd
=Rj .

� φYj (u) = φRM+1−j (u)φZj−1(u) = φR(u)φZj−1(u), j = 2, · · · ,M.

φR(u) is known analytically and

φZj−1(u) = E[e iu log(1+exp(Yj−1))] =

� ∞

−∞
(ex + 1)iufYj−1(x)dx ,

is calculated from φYj−1 via Fourier cosine expansions and
Clenshaw–Curtis quadrature.
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Recovery of characteristic function
Pricing method of Asian options

Fourier cosine expansion and Clenshaw–Curtis quadrature

We first truncate the integration range

φ̂Zj−1(u) =

� b

a
(ex + 1)iufYj−1(x)dx .

Then apply the Fourier cosine expansion on fYj−1(x), giving:

φ̂Zj−1(u) =
2

b − a

N−1��

l=0

Re

�
φ̂Yj−1(

lπ

b − a
) exp(−ia

lπ

b − a
)

�

·
� b

a
(ex + 1)iu cos

�
(x − a)

lπ

b − a

�
dx ,

The integration can be rewritten in terms of incomplete Beta function,
yet it is faster calculated with Clenshaw–Curtis quadrature.
In this setting, ∀u, j , φYj (u) = φR(u)φZj−1(u) is recovered from φYj−1 and
in the end we have the value of φYM (u).
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Recovery of characteristic function
Pricing method of Asian options

Pricing of Arithmetic Asian Options

The value of the arithmetic Asian options reads

v(x0, t0) = e
−r∆t

� ∞

−∞
v(y ,T )fYM (y)dy .

Truncate the integration range to [a, b] and expand fYM (y) on the Fourier
domain, we have

v̂(x , t0) = e
−r∆t

N−1��

k=0

Re

�
φ̂YM (

kπ

b − a
)e−ikπ a

b−a

�
Vk ,

in which φ̂YM is the characteristic function and Vk is the Fourier Cosine
coefficient of option value v(y ,T ).

Vk =
2

b − a

� b

a
v(y ,T ) cos(kπ

y − a

b − a
).
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Recovery of characteristic function
Pricing method of Asian options

The value of Vk

From the the relation

1

M + 1

M�

j=0

Sj =
(1 + exp(YM))S0

M + 1
.

we have

Vk =






2
b − a

�
S0

M + 1χk(x∗, b) + ( S0
M + 1 − K )ψk(x∗, b)

�
, for a call,

2
b − a

�
(K − S0

M + 1)ψ(a, x∗)− S0
M + 1χ(a, x∗)

�
, for a put.

Here x∗ = log(K(M+1)
S0

− 1), χk(x1, x2) :=
� x2

x1
ey cos

�
kπ y−a

b−a

�
dy , and

ψk(x1, x2) :=
� x2

x1
cos

�
kπ y−a

b−a

�
dy .
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Computational cost
Convergence rate

Computing cost

Assuming that

� M is the number of monitoring dates.

� N is the number of terms in the Fourier cosine expansions.

� nq is the number of terms in the Clenshaw–Curtis quadrature.

Then the total computational complexity for arithmetic Asian option is
O((nq + M)N2).
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Computational cost
Convergence rate

Error Convergence

Assuming that

� N is the number of terms in the Fourier cosine expansions.

� nq is the number of terms in the Clenshaw–Curtis quadrature.

Then if the underlying process is governed by a smooth probability
density function, the error in the Asian option price is bounded by

|�| ≤ P̄(N, nq)(exp(−(N − 1)νF ) + exp(−(nq − 1)νq)),

where P̄(N, nq) is a term which varies less than exponentially with
respect to N and nq, and νF > 0, νq > 0. That is, the error decays
exponentially with respect to N and nq.
If the density function of the underlying process or it derivative is not
continuous then the error converges exponentially with respect to nq and
algebraically with respect to N.
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Harmonic Asian options
Forward contract

Asian options on the harmonic average

Asian options with a payoff based on the harmonic average
M/(

�m
j=1 1/Sj) can be priced in a similar fashion by our method.

Denote R̄j = log(Sj−1/Sj), j = 1, · · · ,M and let

Y1 := R̄M , and for j = 2, · · · ,M,Yj := R̄M+1−j + Zj−1,

where ∀j ,Zj := log(1 + exp (Yj)), then YM = log(
�m

j=1 S0/Sj).
Apply the COS method to the risk–neutral pricing formula and the
harmonic Asian option value is then given by

v̂(x , t0) = e
−r∆t

N−1��

k=0

Re

�
φ̂YM (

kπ

b − a
)e−ikπ a

b−a

�
Vk .

The Fourier coefficient Vk is known analytically and the characteristic
function of YM is recursively computed.
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Harmonic Asian options
Forward contract

Asian options on the harmonic average

� For Lévy processes, we have that ∀u ∈ R,

φY1(u) = φR̄M
(u)and for j = 2, · · · ,M, φYj (u) = φR̄M+1−j

(u)φZj−1(u).

Here ∀j , u, φR̄j
(u) = φRj (−u), where Rj = log(Sj/Sj−1), and

φZj−1(u) is calculated via Clenshaw–Curtis quadrature.

� For harmonic Asian options

Vk =






2
b − a

(MS0χ̄k(x∗, b)− Kψk(x∗, b)), for a call,

2
b − a

(Kψ(a, x∗)−MS0χ̄(a, x∗)), for a put,

with x∗ = log(MS0/K ), χ̄(x1, x2) :=
� x2

x1
e−y cos(kπ y−a

b−a )dy , and

ψk(x1, x2) :=
� x2

x1
cos

�
kπ y−a

b−a

�
dy .
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Harmonic Asian options
Forward contract

The forward contract

A forward contract, as often encountered in the commodity market, may
be defined by the payoff:

g(S) =
1

M + 1

M�

j=0

Sj − K .

Let Y1 := log( SM
SM−1

),Yj := log(SM+1−j

SM−j
) + log(1 + exp(Yj−1)), then

1
M+1

�M
j=0 Sj = (1+exp(YM ))S0

M+1 and the value of the forward contract,
obtained from risk–neutral formula, is given by

v(x0, t0) = e
−r∆tE(

1

M + 1

M�

j=0

Sj − K )

= e
−r∆t

�
S0

M + 1
E[eYM ] + (

S0

M + 1
− K )

�
.
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Harmonic Asian options
Forward contract

The forward contract

The expected value of YM is derived recursively via

E[eY1 ] ≡ E[eR ], and E[eYj ] = E[eR ](1 + E[eYj−1)], ∀j

where R is the increments between (any) two consecutive monitoring
dates of the Lévy process. We have

E[eR ] =

� ∞

−∞
e

y
fR(y)dy =

N−1��

k=0

Re

�
φR(

kπ

b − a
)e−ikπ a

b−a

�
χk(a, b),

where χ̄(x1, x2) :=
� x2

x1
ey cos(kπ y−a

b−a )dy .
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Exponential Convergence

� x–axis is index d with N = 64d , nq = 100d

� y–axis is the logarithm with base 10 of the error, i.e. log10(�).

Figure: Error convergence of arithmetic Asian option, BS model, M = 50.
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Time and error

NIG model
time and error

N = 128 N = 256 N = 384
M nq = 200 nq = 400 nq = 600

12
abs.error 2.0e-3 1.71e-4 5.16e-6
CPU time 2.41 15.13 46.09

50
abs.error 2.26e-4 6.94e-5 2.17e-6
CPU time 2.43 15.16 46.22

250
time and error

N = 128 N = 256 N = 512
nq = 200 nq = 400 nq = 800

abs.error 7.8e-3 9.33e-5 6.94e-7
CPU time 2.42 15.23 104.28

� Exponential convergence and robustness for all M.
� M has no significant influence on convergence behaviour, nor on the

CPU time.
� Works well for other Lévy processes (e.g. CGMY) and in particular

advantageous for frequently–monitored Asian options.
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Continuously–monitored Asian options

Let v̂(M) denote the computed value of a discretely–monitored Asian
option with M monitoring dates. The continuously–monitored Asian
option value, denoted by v̂∞, is approximated by a four-point Richardson
extrapolation scheme, as follows:

v̂∞(d) =
1

21
(64v̂(2d+3)− 56v̂(2d+2) + 14v̂(2d+1)− v̂(2d)).

Thanks to the non–increased computing time w.r.t M, accurate
continuously–monitored arithmetic Asian option can be obtained with a
large value of d without the lose of computing time.

d
K = 90 K = 100

Option value CPU time Option value CPU time
4 12.6748 60.05 5.1191 60.01
5 12.6744 60.13 5.1186 59.94
6 12.6743 60.35 5.1185 60.17
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Conclusions

� Our pricing method for Asian options works well for different
underlying processes and different types of averages.

� For all underlying processes with smooth density functions, the
option price converges exponentially with respect to the number of
terms used in the Fourier cosine expansions and that used in the
Clenshaw–Curtis quadrature.

� The computing time does not change significantly as the number of
monotoring dates goes up, which makes our pricing method
advantageous for frequently monotored Asian options.

� Our pricing method is extended to harmonic Asian options, forward
contract with Asian payoff, and Asian options with early–exercise
feature.
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