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Abstract

This paper describes a practical simulation-based algorithm, which
we call the Stochastic Grid Bundling Method (SGBM) for pricing multi-
dimensional Bermudan (i.e. discretely exercisable) options. The method
generates a direct estimator of the option price, an optimal early-exercise
policy as well as a lower bound value for the option price. An advantage
of SGBM is that the method can be used for fast approximation of the
Greeks (i.e., derivatives with respect to the underlying spot prices, such as
delta, gamma, etc) for Bermudan-style options. Computational results for
various multi-dimensional Bermudan options demonstrate the simplicity
and efficiency of the algorithm proposed.

1 Introduction

Pricing of Bermudan options under multi-dimensional stochastic processes is a
challenging problem owing to its path-dependent settings and high dimension-
ality. The traditional valuation methods, such as lattice- and tree-based tech-
niques are often impractical in such cases due to the curse of dimensionality,
and hence are used mainly in the low-dimensional cases. Simulation methods
are based on stochastic sampling of paths of the underlying state vector. They
converge in proportion to the square root of the number of paths generated,
a convergence rate independent of the dimension of the problem. This makes
simulation-based methods attractive for valuing path-dependent and multi-asset
derivatives. Simulation-based algorithms however can be complicated when the
option has American-style features, i.e., contracts in which the holder can choose
the time of exercise. In such a situation, an optimal exercise policy has to be
determined via a dynamic programming approach. The difficulty then arises in
combining the forward evolution of simulation paths with the backward induc-
tion of dynamic programming.
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Several simulation-based methods have been proposed to price options with
early-exercise features, which combine Monte Carlo path generation and dy-
namic programming techniques to determine optimal policies. The class of
regression-based methods has been developed by Carriere (1996)[8], Tsitsiklis
and Van Roy (1999)[22], the Least Squares Method (LSM) by Longstaff and
Schwartz (2001)[17], as well as the Stochastic Grid Method (SGM) by Jain and
Oosterlee (2012)[13]. A detailed analysis of regression-based methods can be
found in Glasserman (2003)[11].

Another approach is based on approximating the transition probabilities using
either bundling, as in Tilley (1990) [21], partitioning, as in Barraquand and Mar-
tineau (1997)[3] and Jin et al. (2007)[14], or quantization, as in Bally and Pages
(2004)[2], of the state space; or computing weights to approximate these condi-
tional probabilities, as in the stochastic mesh method Broadie and Glasserman
(2004)[6].

Other than the above two approaches, there exist duality-based methods pro-
posed by Haugh and Kogan (2004)[12] and Rogers (2002)[19]. Using a duality-
based method an upper bound on the option value for a given exercise policy
can be obtained, by adding a non-negative quantity that penalizes potentially
incorrect exercise decisions made by the sub-optimal policy.

In this paper we present the Stochastic Grid Bundling Method (SGBM) for
pricing of Bermudan options with several underlying assets. The method is a
hybrid of regression- and bundling- based approaches, and uses regressed value
functions, together with bundling of the state space to approximate continuation
values at different time steps. A high biased direct estimator and an early-
exercise policy are first computed using SGBM. The early-exercise policy is then
used to determine a lower bound to the true option price. SGBM can also be
used to compute a duality-based high-biased estimator. Compared to LSM, the
approximate option values computed using SGBM, have lower numerical noise,
not just at the initial step but also the intermediate time steps; which makes it
a good candidate for computations that require option values at intermediate
times steps (for example, computing future exposures within the CVA context).

Efficient calculation of price sensitivities continues to be among the greatest
practical challenges facing users of Monte Carlo methods in the early-exercise
derivatives pricing industry. Computing Greeks is essential for hedging and risk
management, but it typically requires substantially more computing time than
pricing the derivative. A favourable property of SGBM is that it can be used
to get fast approximations of the sensitivities or Greeks of the option price, a
feature illustrated through numerical examples, upto fifteen-dimensional basket
option problems.

The paper is organized as follows. Section 2 gives the formulation of the problem.
Section 3 describes the details of SGBM. In Section 4 various numerical examples
of increasing complexity are used to discuss various aspects of the method and
finally we conclude in Section 5.



2 Problem Formulation

This section defines the Bermudan option pricing problem and sets up the no-
tations used in this paper. We assume a complete probability space (92, F,P)
and finite time horizon [0,7]. € is the set of all possible realizations of the
stochastic economy between 0 and 7. The information structure in this econ-
omy is represented by an augmented filtration F; : t € [0,7], with F; the
sigma field of distinguishable events at time ¢, and P is the risk-neutral prob-
ability measure on elements of F. It is assumed that F; is generated by W4,
a d-dimensional standard Brownian motion, and the state of economy is rep-
resented by an F;-adapted Markovian process, S; = (S}, ...,59%) € R, where
tefto=0,....tm,...,tas =T]. Let hy := h(S:) be an adapted process repre-
senting the intrinsic value of the option, i.e. the holder of the option receives
max(h¢, 0), if the option is exercised at time ¢. With the risk-less savings account
process B = exp( fot rsds), where r; denotes the instantaneous risk-free rate of
return, we define
Btm

m = N
Btm+1

Dy

We consider the special case where 7, is constant. The problem is then to
compute

Vio(Sty) = maxE [%] :

T

where 7 is a stopping time, taking values in the finite set {0,¢1,...,7}. The
value of the option at the terminal time T is equal to the product’s pay-off,

Vir(St) = max(h(St),0). (1)

The conditional continuation value @,,, i.e. the expected pay-off at time #,,41,
is given by:

th (Stm) = DtmE I:‘/tm+l(stm+l)|stm} : (2)
The Bermudan option value at time ¢,, and state S, is given by
Vi,.(St,,) = max(h(S¢,,), Qt,, (St,,))- (3)

We are interested in finding the value of the option at the initial state S;,, i.e.
V4o (St ), as well as finding the derivatives of the option price with respect to S.

3 Stochastic Grid Bundling Method

The Stochastic Grid Bundling Method (SGBM), which is introduced here, is
a simulation-based dynamic programming method, which first generates paths
forward in time, followed by determining the optimal early-exercise policy mov-
ing backwards in time. The steps involved in the SGBM algorithm, which are
detailed in sections to follow are:



Step I: Generating grid points

The grid points in SGBM are generated by simulating independent copies of
sample paths, {S¢,(n),...,St,, (n)}, n=1,..., N, of the underlying process S,
all starting from the same initial state S;,. The n-th grid point at time step
ty, is then Sy, (n), n = 1,..., N. Depending upon the underlying process an
appropriate discretization scheme, e.g. the Euler scheme, is used to generate
sample paths. Sometimes the diffusion process can be simulated directly, es-
sentially because it appears in a closed form, as an example, for the regular
multi-dimensional Black & Scholes model.

Step II: Option value at terminal time

The option value at terminal time is given by:

‘/tM (StM) = maX(h(StM )a 0)

This relation is used to compute the option value for all grid points at the final
time step.

The following steps are subsequently performed for each time step, t,,,, m < M,
recursively, moving backwards in time, starting from tp;.

Step III: Bundling

The grid points at t,,_1 are bundled into By, _,(1),...,B:,_, (v) non-overlapping
sets or partitions. This paper considers three different approaches for partition-
ing:

e k-means clustering algorithm,
e Recursive bifurcation,
e Recursive bifurcation of reduced state space.

These techniques are detailed in a subsequent section.

Step I'V: Mapping high-dimensional state space to a low-dimensional
space

Corresponding to each bundle By, ,(8), 8 = 1,...,v, a parametrized value

function Z : R x RX + R, which assigns values Z(Stm,afm) to states S, , is
B

tm

computed. Here of € RX is a vector of free parameters. The objective is then

to choose, for each t,, and 3, a parameter vector o so that

tm

Z(Stm s O[tﬁm) ~ ‘/tm (Stm)-



Step V: Computing the continuation and option values at t¢,, 1

The continuation values for S, _,(n) € By, _,(8), n=1,...,N, B=1,...,v,
are approximated by

Qo1 (St 1 (0)) = E[Z(Sy,,, 0 )|S,. . (n)]
The option value is then given by:

Vi1 (St 1 (n)) = max(h(Ss,,_, (1)), Qt,,_, (St,,_, (n))).

3.1 Bundling in SGBM

SGBM employs bundling to approximate the conditional distribution using sim-
ulation. The aim of bundling in SGBM is used to cluster grid points based on
proximity.

The distribution of S;,, conditional on the state S, , = X, can be sampled
by simulating paths from the state S;,, , = X until time step ¢,,,. Such an ap-
proach, however, is computationally expensive, as the number of paths grows
exponentially over time. Another approach for sampling this distribution is
to bundle the grid points at t,,_1, using some measure of proximity, into v
non-overlapping partitions, and then using those paths that originate from the
bundle that contains S;,, , = X to sample S;, . As will be shown in the dis-
cussions to follow, under our model assumptions, with increasing numbers of
paths and bundles, this sampled distribution approaches the true conditional
distribution.

From here on, the bundle that contains S;,, , = X, where X be any point in
R? or a simulated grid point S;,,_,(n), will be indicated by By, ,(3), where 3
can be 1,...,v.

We first explain the different bundling techniques employed in our technique:

k-means clustering

Given N grid points, (S, ,(1),...,S¢,, ,(IN)), k-means clustering aims to par-
tition these IV observations into v non-overlapping sets, B, , = {Bs,,_,(1),..., B, (¥)}
so as to minimize the sum of squares within clusters, i.e:

argminz Z [ St,.—1(n) — s 1],

m=1 B=1 \S¢,, ,(n)€B:,, ,(B)

where pg is the mean of the points in By, , (5).

Lloyd’s algorithm (Lloyd 1982)[16] can be used to bundle the grid points using k-
means clustering. Briefly, the algorithm uses an iterative refinement technique,
where given the initial guess of cluster means, ugl), ey ,u,(,l), the algorithm per-

forms the following two steps alternately:
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Figure 1: Bundling of grid points in a two-dimensional space using k-means clustering. The
grid points are bundled into 8 non-overlapping partitions.

Step 1 Assign grid points to the set whose mean is closest to it.

B (8) ={Se,._.(n) :[| St,_, ()= 12<II St,,_, ()~ |2, ¥1 < j < v},

where grid point S;,,_, (n) is assigned to only one bundle, even though it
could be assigned to more than one.

Step 2 The results have converged if the assignment of the grid points doesn’t
change anymore from a previous iteration, else the centroids are updated
for the new clusters as:

1
D D - )
1Br Bl g, (n)eBy) (8

m—1 m—1

Figure 1 shows the bundles obtained using the & means clustering algorithm for
a two asset case at a particular time step.

Recursive bifurcation

The aim of bundling in SGBM is to cluster grid points based on proximity
and as will become evident through numerical examples, it’s not so impor-
tant how optimally the grid points are allocated to the different bundles, we
therefore propose fast practical schemes to do this. To bundle the grid points,
{S¢,,_,(1),...,S:, _,(N)}, the following steps can be performed:

Step 1: Compute the mean of the given set of grid points, along each dimen-
sion, i.e.

N
1 5
s = NZ;Stmil(n),é:l,...,d.

Step 2: The grid points are bundled separately along each dimension. This is
done by dividing the grid points into 2¢ sets as:



A5 ={Sp (1) S5_.(n) > s, n=1,...,N},
As=1{S;, _,(n): Sfmfl(n) <ps,n=1,...,N},

where § = 1,...,d.

Step 3: The 2¢ unique non-overlapping bundles are then obtained using the
following intersections of these sets :

Bi, (1) = AinA;n...NAq,

Bi, .(2) = AinNAyn...N A,

BtWL—1(3) = Al QZQQ...ﬂAd, (4)
Btm71(2d) = Z1 QZQ n... mZd,

Step 4: Bundles B, ,(1),... can be split further, in the next iteration, again
following the steps above.

The number of partitions, or bundles, after p iterations, where each of the
bundles obtained is split further, would be equal to (2)?. Figure 2 shows an
example of bundling of grid points in a two-dimensional space. First, the single
large bundle is halved along each dimension, resulting in a total of four par-
titions. Then, each of these partitions undergoes the same process, resulting
in 16 partitions in the second iteration, and 64 bundles in the third iteration.
The number of computations is linear in the total number of grid points, N,
the number of dimensions, d, and the number of iteration steps, p, which makes
this method of bundling practical and fast. However, this approach will be less
attractive with increasing dimensions of the problem, as the number of bundles
obtained after each iteration would be too large.

Recursive bifurcation of reduced state space

This method is motivated by the stratified state aggregation method by Bar-
raquand and Martineau (1995)[3], where rather than partitioning the actual
state space in which the value function resides, a reduced state space obtained
by some mapping function is partitioned. We, like the authors of [3], use the
payoff as the mapping function and bundle the grid points based on proximity
of the reduced state space h(S;,,_,). The bundling scheme is then similar to the
recursive bifurcation, except that now the effective dimension d is equal to 1.
The number of bundles obtained after p iterations in this case will be 2P.

Assumption 1. S;, , m = 1,..., M, is an everywhere dense set of R valued
vectors. Furthermore, the probability density function of S¢, is assumed to be
continuous everywhere.

Assumption 2.

lim lim |By, (B)] =00, m=2,...,M, f=1,...,v.

v—o00 N—o0o
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Figure 2: Bundling of grid points in a two-dimensional space. After the first bifurcation 4
bundles are obtained. A second bifurcation for each of these 4 bundles results in 16 bundles
and after the third bifurcation 64 bundles are obtained.



Definition 1.

i N
N 2on=1 s, (m<y(St..(n)- 15, (5)(St,._, (1))
]PN,V(Stm S y|Stm71 = X) = L|Bt (ﬂ)| )
N m—1

where, (Sy,, , =X) € By, ,(B).

When Assumptions 1 and 2 hold true, then

Proposition 1.

lim lim [Py, (S, <y[St, , = X) = P(Ss, <y[St, , = X)|=0.

v—o00 N —o00

Proof: See Appendix A.

3.2 Parameterizing the option values

As the dimension of the state space is usually large, the pricing problem becomes
intractable and requires the approximation of the value function. This can be
achieved by introducing a parametrized value function Z : R* x RE — R,
which assigns a value Z(S;,, ,a) to state St , where a € RE is a vector of free
parameters. The objective is to choose, corresponding to each bundle 3 at epoch
t.m—1, a parameter vector afm := « so that,

Vi, (St,) = Z(Se,,,a) ),

This paper follows Tsitsiklis and van Roy (2001)[22] in defining the approxima-
tion function. We use basis function® that map the state space from R to R, to
approximate the value functions. For a particular problem it may be required
to define several basis functions, ¢1,...,¢x. Then, to each state S;, a vector,
d(St,,) = (61(St,,), ..., Ok (St,,))’, of basis functions is associated. The vector
of basis functions is chosen such that it represents the most salient properties
of a given state.

In our approximation Z(Sy,,, atﬁm) depends on Sy, only through ¢(S;,, ). Hence,
for some function f : RE xR — R, we can write Z(Stm,afm) = f(&(Ss,,), afm).
Usually, the basis function ¢, is selected based on the problem and relies on hu-
man experience, as in the case of the least squares method (LSM) (Longstaff
and Schwartz (2001)[17]). The function f, which maps the option values onto
the span of ¢, in our disucssion is restricted to the form:

N
2

:
3

I
(]~

af (k)i (St,.), (5)
k=1

1Basis functions are sometimes reffered to as features



i.e., the value function is a linear combination of basis functions. Define a
weighted quadratic norm || V¢, (S¢,,) ||x, as

| Vi (80,) = ( Lo vti<stm>d<w<stm>>> ,

where 7(S,,,) is the conditional distribution of S, , with a conditional density
function given by P(S;, |B:,,_,(53)). Here, it should be emphasized that 7(S;,,)
is the distribution of S; , conditional on information S;,, , € B, _,(8) and not
conditional on S, . It is assumed that || V4, (S;,,) ||=< oco. The problem is then

to project the value function onto the span of ¢1, ..., ¢x, which is characterized
by:
K
argmin | Vi, (Se,) = > af (k)ék(St,) |Ix -
=2 k=1

Exact computation of the above projection is not generally viable, however,
it can be approrimated by sampling a collection of states S; , according to
probability measure P(Sy,,|Bs,,_,(8)). The approximate distribution 7(Sy,,), of
grid points S;, (n), whose paths originate from the bundle B;, ,(5), would in
the limiting case of the number of paths N have a transition density function
equal to P(S;, |B:,,_,(B)), i.e. Imy_0o 7(St, ) = m(St,,). The projection (5)
can now be approximated by:

K
Z(St,.,a1,) = > ap, (k)ok(St,), (6)
k=1
and satisfies,
Bty 1 (B)] K 2
; B P
argmin > (Vtm(stm(n)) atm(k)¢k(stm,(n))> : (7)
atm n=1 k=1

Proposition 2. Assume that Assumptions 1 and 2 hold, then it follows that,

lim || Z(Sy,,.a7,) = Z(St,,. ) = 0.

N —oc0

Proof: Convergence is by the law of large numbers.

To summarize, corresponding to each bundle By, _, (), a parametrized function
Z (Stm,@fm) is computed using ordinary least squares regression, so that:

Vi, (Se,,(n) = Z(Sy,,(n),@;,) + €, (8)

where Sy, (n) € By, _, ().

As ordinary least squares gives us an unbiased estimator, and it is further as-
sumed that the following assumption holds:

10



Assumption 3. El¢} [S,, ,(n)] =0, S, ,(n) € B, _,(B).

Function Z (Stm,afm) can also be seen as the linear unbiased estimator of the
conditional expectation

Z(St,, 0l ) =EV;, (Se.)|6(Se, ), Ben 1 (8)]-

Proposition 3.

lim Z(St,,. o ) = E[Vi, (St,.)|6(St,.), St,._, = X].

vV—00

Proof: As the number of sample paths N and bundles v go to infinity, Lemma
1(see Appendix A) shows that the maximum distance between any two grid
points within a bundle approaches zero. Therefore, for the bundle By, (),
that contains S;, , = X, it can then be stated that,

hm E[V4,, (St )|6(St,.), Bt,, . (B)] = E[W,,(St,.)|6(St,.), St,. . = X].

3.3 Computing the continuation value
Using the parametrized option value function Z(S;, , @fm) corresponding to bun-

dle B:,, ,(f), the continuation values for the grid points that belong to this
bundle are approximated by:

Qtr_+(St,_, (n)) = Dy, ,E[Z(Ss,,, @, )ISt,._, = St,._,(n)], 9)

where Sy, ,(n) € By,, ,(8). Using Equation (6), this can be written as:

Q\tmfl (Stmfl (TL)) -

(Z Oétm k)pr(Se,, )) [S:,, . = Stml(n)‘|

= Dy, 12% E [¢x(St,.)[St,.—1 = St,..(n)] . (10)

The vector of basis functions ¢ should ideally be chosen such that E [¢(Ss,,)[St,,

is known in a closed form, or has an analytic approximation. We observe that
h(-), is usually an important basis function, and, as a rule of thumb, if analytic
solutions or approximations for a single time period European equivalent of an
option are available, then the Bermudan option pricing problem at hand can be
solved efficiently using SGBM. Examples are given in Section 4.

Theorem 1. When Assumptions 1 and 2 hold, then,

lim lim |Qt (S, ) — Q1 (S, )| =0.

v—00 N—o0

11
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Proof:

The continuation value, using the law of iterated conditioning, can be written
as,

Qtp_y(St,,., =X) = E[V,,(S:,)ISt,_, = X]
= E[E[W,, (St,,)|é(St,,),St,._, = X]ISt,,_, = X].

Using Propositions 2 and 3 we can then state:
th,fl(stanl = X) = I}EEOE[ (Stm’ CYt |Stm 1= X]a p=1...,v

= lim lim E[Z(Stm,atmﬂstmfl = X]

v—o00 N—o0

= lim lim Qt (S, =X).

v—00 N—o0

Definition 2. We define the direct estimator of the option values for the grid
points at ty,—1, as

‘/}tmfl (Stmfl (n)) - ma'X(h(Stmfl (n)a Q\tmfl (Stmfl (n))a

N.

wheren =1,...,

Theorem 2. Under the condition that E[¢x(St,,)|Se,._, = X] is known ezactly,
and Assumption 8 holds, the direct estimator is biased high, i.e.

E[f/\;o (Sto)] 2 V;fo (Sto)'
Proof: The proof is by induction. At the terminal time we have ‘A/tM (St,,)

Vin (St,,) = h(St,,), for all S;,,. Take as induction hypothesis E[V;, (S;, )] >
Vi, (St,,) for all S; . Now, we have

E[Vi,, Sty = X)) = E [max (h(Sy,,_, = X).E[Z(St,,,0f, )ISi,._, = X|)]
> max( (X),]E[]E {E(Stm,afmﬂstmﬂ :XH)
= max (h(X),]E {E [(ﬂm(stm) - efm) S, | = XH)
= max (h(X).E|E[E[V,(S.,)IS:, ]S, = X]|)
> max (A(X),E[E Vi, (Ss,)IS, -, = X]])
= max (h(X),E [Vi,, (Si,.)[St,. . = X])

I
=
3
:
@
3
:
I
e

The first step uses Equation (9), the second Jensen’s inequality and the third
uses Equation (8). The fourth step is based on Assumption 3 and uses the
basic property of a conditional expectation. The fifth step uses the induction
hypothesis and the sixth is again based on a basic property of the expectation.

12



Corollary 1. When Assumptions 1 to 3 hold, we have,

lim lim |‘7}0 (Sto) = Vio(Stp)| =0

v—o0 N—oo

Proof: The proof an immediate outcome of Theorem 1 and the dynamic pro-
gramming formulation given by Equations (2) and (3).

3.4 Lower bounds using path estimator

Once the early-exercise policy and direct estimator values have been obtained,
an estimator based on the simulated paths which is biased low can be devel-
oped. Together, the high-biased direct estimator and the low-biased estima-
tor, can generate a valid confidence interval for the option price. In order
to compute the low-biased estimates, we generate a new set of paths S(n) =
{S¢,(n),...,St,(n)}, n = 1,..., N, using the same scheme as followed for
generating the paths for direct estimator. Along each path, the approximate
optimal policy exercises at,

75(S(n)) = min{tn, : h(Ss, (n)) > Q. (St (n)), m=1,..., M},

where Q. (S;, (n)) is computed using Equation (10). The path estimator is
defined by

v(n) = h(S7(s(n)))-

Theorem 3. A low-biased estimate, V., (Sy,), to the true option value, Vi, (S, ),
can be computed as:

Ny,

. 1
V,,(S) = limo— o)

Ny, L
< Vto(Sto)'

Under the assumption that Proposition 1 holds, additionally it can be show that
Kto(sto) — V;fo(sto)' (11)
The proof for the bias of the path estimator, i.e. Theorem 3, and the convergence

of the path estimator is the same as the proofs for the Theorems 3 and 4 in
Broadie and Glasserman (2001)[6].

Variance Reduction

The Direct estimator to the option price usually has lower variance than the
path estimator, because the parametrized option value function at t,, uses basis
functions, ¢ (S, ), whose expectations, E[¢(St,, )[St,,_,], are either known, or
an accurate numerical estimate of them can be obtained. Therefore, ¢x(S;,,)

13



additionally serves as a control variate. To elaborate further, we are inter-
ested in computing @y, ,(X) = E[V;, (S¢,,)|St,_ ., = X], and we know the
expectation E[¢g(S¢,,)|St,, , = X]. For simplicity, lets assume that the sample
Vi, (St (n)), é(St,. (n)), n=1,...,N, is generated from S;, , = X. The usual
procedure to form the controlled estimator Qy, ,(X) is (see Rasmussen 2005
[18] for details),

N N

% Y V(S (n Zatm <— > k(81 () — E[6x(S,,)|S,, , = X]) :

=1 n=1
(12)
where a4, (k) is chosen to solve:

LT K 2
Iaiiin ~ Z Vi, (St,,(n)) — <Z o, (k)dr(St,, (”))1 : (13)
" n=1 k=1

Note that Equation (13) is the same as (7). Reordering Equation (12), gives us

} 1N/ K
Qt,,,(X) = NZ (V(Stm(n))Zatm(k)¢k(stm(n))>
k=1

+ > au, (B)E[¢k(St,,)|St,,_, = X]

N
= %Z +ZO&¢ ¢k St )|Stm71 :X]

where the mean of e; (n) is zero as ordinary least squares gives us an unbi-
ased estimator. Therefore, the direct estimator can also be seen as controlled
estimator. The effectiveness of the procedure depends on the correlation of

Ve, (St,,(n)) and (S, (n))).

3.5 Computing the Greeks

An advantage of SGBM is that it can be used directly to approximate the first-
and second-order derivatives of the option price with respect to the underly-
ing assets. Existing methods for computing Greeks have been discussed in
Glasserman(2004)[11], and can broadly be classified into methods that employ
finite-difference approximations, and methods that use information about the
simulated stochastic process to replace numerical differentiation by exact dif-
ferentiation. The path-wise derivative method and the likelihood ratio method
belong to the second category, and are found to be computationally more effi-
cient than the finite-difference approach. Wang and Caflisch (2009)[23] propose
a modified least squares method for estimating the Greeks, and they report a
performance comparable to the path-wise method, the likelihood ratio method

14



as well as the likelihood ratio and duality (LRD) method [15]. However, the
choice of initial distribution is arbitrary, and may have a significant effect in
extreme cases. Other recent methods for computing the sensitivity of Bermu-
dan options include, Belomestny et al. (2010)[4], who use a regression-based
approach for computing the Greeks; Capriotti and Giles (2010)[7], who use the
Adjoint method for computing the option price sensitivities.

The option delta is defined as,

Vi, (St,)
A = T s d
to asgo B 5 5 Uy

and can be computed as,

a‘/;fo (Sto) — 1 V;fo (gto) - V;fo (Sto)

053 a0 (ST @) —Sp

(14)

where Sy, :{Stlo,...,SfU—i—x,...,Sfo}.

SGBM approximates Equation (14) as:

3? —  lim Vto (?to) — Vto (Séto)
’ z—0 (Stg + :C) - Sto
. E[Z(Stl’aglﬂgto] - E[Z(Stl’aglﬂsto]
= lim

z—0 T

B[S A, (0)6k(8,) 8| — B[S, @, ()n(Se,,)ISu
= Im z

% _
_ hi% &l (k)E [6%(St,,.)[St,] ;]E [k (St,,)]S¢,]
k=1

O [k (St,,)[Sto]
= 051y

At time to, there is only one grid point, which is equal to the initial state S;,,
so we have just one bundle, i.e v = 1, at ty. As = can be arbitrarily small,
it’s safe to assume that Sy, and Sy, will lie in this same bundle, and therefore
the same approximation Z(S;,,@; ) can be used to compute the continuation
value for these two states. Additionally, it is assumed that a3, is independent
of S¢,. We only consider the case when S, is not in the early-exercise region,
OE[ ¢k (St ) ISt ]

BStlo

or is computed using numerical methods. SGBM can compute the delta (and
similarly gamma) simultaneously with the direct estimator, at no additional
computational cost.

as the case otherwise is trivial. The derivative is either known,

Proposition 4. Under the assumptions considered,

lim lim |A} —A}|=0.

v—00 N—o00
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Proof: The numerator in the r.h.s. of Equation (15) approaches (14) in the
limiting case following Theorem 1.

3.6 Duality
Haugh and Kogan (2004)[12] and Rogers (2002)[19] proposed the dual formula-

tion for pricing Bermudan options. For an arbitrary adapted super-martingale
process My, it follows that,

h,
Vto(sto) = SEPE |:B_.,—|St0:|

e
= sk [g + M, - MTISm}

IN

h,
Mto + SU.pE |:B_ - MT|St0:|

T

S Mto + E {max (E — Mt) |St0:| y
t By

which gives us the upper bound of the option price V;,(S;,). Thus, the dual
problem is to minimize the upper bound with respect to all adapted super-
martingale processes, i.e.,

= . he
Vto (Sto) - Alxlnefn (Mto +E |:m?‘X (E - Mt) |Sto:|) ) (16)

where IT is the set of all adapted super-martingale processes. Haugh and Kogan
(2004)[12] show that when the super-martingale process, M, in (16) coincides
with the discounted option value process, Vt](;t) , the upper bound V,(Sy,)
equals the true price for the Bermudan option. This suggests that a tight upper
bound can be obtained by an accurate approximation of V;(S;), i.e. by defining
M so that when the approximate option price, ‘A/t(St), coincides with the exact
price V4(S;), M; equals the discounted process %?t). An obvious choice for M;
is then:

Mto = Kto (Sto)’ (17)

+ Vtm+1 (Stm+1) o @tm (Stm)
" Btm+1 Btm

My = My (18)

Therefore, corresponding to each simulated path, the martingale M, is con-
structed as,

‘/}tm+1 (Stm+1(n)) N @tm (Stm (TL))
Btm+1 Bt

th+1 (TL) =M, (n) +

m
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Set 1

St =40, K =40, r =0.06, 0 = 0.2, T =1, M = 50.

Set 2

S9 =40, K =40, r = 0.06, ¢gs = 0, 05 = 0.2, p;; = 0.25, T =1, M = 10.
Set 3

52 =100, K =100, r = 0.05, gs = 0.1, 05 = 0.2, p;; = 0.0, T =3, M = 9.

Table 1: Parameter values used in the examples.

The upper bound, V,, corresponding Equations (17) and (18) is then given by

_ h
Viy(St,) = E [mtax (ﬁt — Mt> |St0]

%ngxx <M%@ Mt(n)> st € [ty tar)-

In the limiting case, as the number of paths and bundles go to infinity, the
approximations V;, (S¢, ) and @y, _,(S¢, _,) approach their corresponding ex-
act values and then Vy (S;,) will coincide with V;,(Ss,). Through numerical
examples it becomes evident that in case of SGBM, with an increasing number
of paths and bundles, tight upper bounds can be obtained without the need of
sub-simulation.

4 Numerical experiments

This section illustrates the performance of SGBM by pricing different types of
Bermudan options. By means of numerical examples the rate of convergence of
the option price, when different bundling schemes are used, is compared. The
computational performance of SGBM is also compared against the standard
LSM [17] for different options. Numerical results are used to show that the
direct estimator has a significantly lower variance when compared to the path
estimator.

All underlying assets follow the standard single and multi-asset Black-Scholes
model (geometric Brownian motion, GBM). For the examples considered, unless
specified otherwise, we use N = 50,000 paths for computing the direct estima-
tor and the early exercise policy and Ny = 200,000 paths for computing lower
bounds using the path estimator. In case of the k-means clustering algorithm,
first a set of 5000 training paths is used to obtain the optimal centroids corre-
sponding to each bundle. The code for SGBM is implemented in MATLAB and
the computations were performed on an Intel(R) Quad-Core 2 GHz processor
with 4 GB RAM.

The parameter sets used for the different problems are listed in Table 1
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4.1 Experiment with bundles

This section discusses by examples the role of bundling in computing the option
price. We begin by a basic Bermudan put on a single asset and then move on
to high-dimensional options with different types of payoffs.

Bermudan options on single asset

Consider a Bermudan put on a single asset, where the risk-neutral asset price
follows the stochastic differential equation

dSt == TStdt + O'Stth, (19)

r being the continuously compounded risk-free interest rate, o the annualized
volatility (both chosen to be constant), W; is the standard Brownian motion.
The option is exercisable a finite number of times per year, M, up-to and includ-
ing the final expiration time ¢); = T. As basis functions we use ¢ (Ss,,) = S,
where £ =1,...,4.

The continuation value, as given by Equation (10), requires us to compute

E [¢(St,,)[Stn_ (0)] =E [(St,.)" S, (n)] .k =1,...,4.

These moments can be written down as:

—1)o2 k
E[(St,)"[St,, . (n)] = <Stm1(n)e(r+%>(tm_tm1)> ,

which can be simply computed. The convergence of the two bundling schemes,
i.e. k-means clustering and recursive bifurcation and their corresponding com-
putational times are compared. Figure 3(a) and (b) show the convergence with
an increasing number of bundles for the two methods. A highly accurate option
reference price is computed using the COS method [10]. Figure 3(c) compares
the total computational time, i.e. the combined time taken to compute the di-
rect estimator as well as the path estimator using the two bundling approaches.
Rapid convergence with increasing bundles for lower computational time makes
recursive bifurcation the preferred method in this case.

Geometric Basket Option

We consider the pricing of a Bermudan option on the geometric average of
several assets. As is well known, it is possible to reduce this problem to a
one-dimensional problem, which can then be priced accurately using the COS
method [10], thus providing a benchmark result for the algorithm. A geometric
average put option on d assets has intrinsic value:

h(S:,) =K —([] 50"

6=1
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Figure 3: Option price for a put on a single asset, corresponding to different numbers of
bundles used, when (a) recursive bifurcation scheme is used and (b) k-means clustering is used
to partition the state space. Parameter set 1 in Table 1 is employed. The true option value is
2.3140. (c) Total computational time, i.e. time to compute the direct estimator plus time to
compute the path estimator.

The asset prices are assumed to follow correlated geometric Brownian motion
processes, i.e.

dsyp P
Gl (r —gs)dt + osdW, (20)
where each asset pays a dividend at a continuous rate of g¢s. Wt‘s, 6=1,...,d,

are standard Brownian motions and the instantaneous correlation coefficient
i J s »
between W} and Wy is p;;.

As logical basis functions,

k—1

d
or(Se,) = [ (T s2.)7 k=1,...,5,
=1

are used here.

The continuation value, as given by Equation (10), requires us to compute,

k

d
E [¢1(St,,)[S¢,, . (n)] =E[([[ $2.) 7 [Se,, . ()], k=1,....5.
=1

These moments can directly be computed as:
k—1

E [61(St,.)[St,,_, (n)] = ptm,l(n)e(““%”%t ,
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Figure 4: Option value for a put on geometric average of five assets, when (a) recursive
bifurcation in high-dimensions is used and (b) recursive bifurcation on the reduced state
space is used, (c) k means clustering is used, to partition the state space. (d) gives the total
computational time (recursive bifurcation 2 is recursive bifurcation of reduced state space).
Parameter set 2 from Table 1 is used. The true option price is 1.3421.
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where,

(k—1)
d

d d 2 d
_ 1 o _ 1
Poat) = (II8h) =2 (e = > (S
6=1

p=1 \g=1

C' being the Cholesky factor of the covariance matrix and Cjp,— matrix element
b, q.

Figure 4 shows the convergence of the direct estimator and path estimator with
an increasing number of bundles for the different bundling schemes for a five-
dimensional problem. For the recursive bifurcation of the reduced state space,
the geometric average of the asset prices is used to map the high-dimensional
state space onto a single-dimensional space, which is then partitioned using the
recursive bifurcation. Partitioning of the reduced state space leads to better con-
vergence when compared to the other two bundling approaches. Additionally,
unlike recursive bifurcation of the high-dimensional state space, which results
in 32 bundles in the first bifurcation itself, recursive bifurcation of the reduced
state space has a greater flexibility on the choice of the number of bundles that
can be created.

Figure 4(d) compares the computational time corresponding to different num-
bers of bundles and the bundling schemes used. While for all three schemes the
option price is computed within a few seconds, the recursive bifurcation appears
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Figure 5: (a) Option value for a put on geometric average of 15 assets, when k-means
clustering and recursive bifurcation of the reduced state space (RB2) are used for bundling.
(b) Total computational time for the two approaches. Parameter set 2 from Table 1 is used.
The reference option price is 1.1190.

Direct estimator | Path estimator | Computation Time
(s.e.) (s.e.) (secs)

d=10 assets:

SGBM 1.1781 1.1779 8.10
(RB 2) (10.0002) (10.0024)
SGBM 1.1795 1.1777 16.68
(KM) (10.0004) (10.0027)
LSM 1.1765 5.67
(0.0023)
d=15 assets:
SGBM 1.1190 1.1190 14.02
(RB 2) (10.0002) (10.0023)
SGBM 1.1202 1.1185 22.42
(KM) (10.0003) (10.0027)
LSM 1.1164 7.15
(10.0019)

Table 2: Comparision between SGBM (using different bundling schemes) and LSM for a
geometric basket option on 10 and 15 assets. The values in paranthesis are standard errors.
Computation time includes the time to compute the policy or direct estimator and the path
estimator. RB2 stands for recursive bifurcation of the reduced state space and KM for k-
means clustering. The reference option price for the 10 assets case is 1.1779 and for the 15
assets case is 1.1190

to be computationally most efficient.

Figure 5(a) compares the convergence for a geometric basket on 15 assets, when
k-means clustering and recursive bifurcation of reduced state space were used
for bundling. Figure 5 (b) gives the corresponding total computational time for
the two methods. We do not use recursive bifurcation for this case as even with
one iteration of the method 2'° bundles would be obtained, and a significant
number of these bundles will not contain sufficient number of grid points.

Table 2 compares the results with LSM for the 10 and 15 assets case. The results
for SGBM correspond to 32 bundles, generated using the different bundling
schemes. The standard errors for the direct estimator are much lower than those
of the path estimator, even though 4 times more paths are used for computing
the path estimator. The variance reduction factor, i.e. ratio of variance of path
estimator to the direct estimator ranges between 50 to 100.
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Arithmetic Basket Option

We consider the case of a Bermudan option on the arithmetic mean of five assets,
where the asset prices follow the dynamics given by Equation (20).

The arithmetic average put option on d-assets is governed by the intrinsic value
function,

d k—1
1
or(Se, ) = (EZSEM> k=1,...,5,

5=1
is used.

The continuation value, as given by Equation (10), requires us to compute,
L k—1
E [¢1(St,.)|St, . (n)] =E <E Zsfm> IS¢, (n)|,k=1,...,5. (21)
5=1

The expectation in Equation (21) can be expressed as a linear combination of
moments of the geometric average of the assets, i.e.

(isﬁm>k: 2 (khkg,kf..,kd) [T 2,0,

kitkat-tka=k 1<6<d

where,

e B
ki,ko, ... kg 7]{;1|k2|kdl’
which can be computed in a straightforward way by Equation (21).

Figures 6(a) to (c) display the direct and path estimator values, for differ-
ent numbers of bundles and bundling schemes. For recursive bifurcation of
reduced state space, the arithmetic average of the asset prices is used to map
the high-dimensional state space to the single-dimensional space, which is then
partitioned using the recursive bifurcation scheme. Again, partitioning of the
reduced state space leads to better results when compared to the other two
bundling schemes.

Figure 6 (d) compares the computational time corresponding to different num-
bers of bundles. The total computational time is always less than a minute,
with the recursive bifurcation being computationally most efficient, while k-
means clustering being the most expensive. Figure 7 (a) shows the convergence
of the method with an increasing number of bundles for an arithmetic basket on
15 assets. We only consider k-means clustering and recursive bifurcation along
the reduced state space for bundling, as in the case of recursive bifurcation even
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Figure 6: Option value for a put on the arithmetic average of five assets, when (a) recursive
bifurcation in high-dimensions is used and (b) recursive bifurcation on the reduced state
space is used (c¢) k-means clustering is used. (d) Total computational time corresponding to
the different bundling schemes considered. Parameter Set 2 from Table 1 is used.
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Figure 7: (a) Option value for a basket on the arithmetic mean of 15 assets, corresponding
to different numbers of bundles. (b) Computational time corresponding to different numbers
of bundles. The parameter values from Set 2 in Table 1 are employed.

Direct estimator | Path estimator | Computation Time

(s.e.) (s.e.) (secs)

d=10 assets:
SGBM 1.0624 1.0615 22.60
(RB 2) (10.0003) (10.0018)
SGBM 1.0669 1.0604 26.34
(KM) (10.0008) (10.0022)
LSM 1.0611 5.13
(0.0020)
d=15 assets:
SGBM 1.0008 1.0006 15.98
(RB 2) (10.0002) (10.0019)
SGBM 1.0038 1.0002 18.56
(KM) (10.0004) (10.0020)
LSM 1.0009 7.20
(0.0026)

Table 3: Comparision between different bundling schemes used in SGBM and LSM for an
arithmetic basket option on 10 and 15 assets. The values in parenthesis are standard errors.
Computation time includes the time to compute the policy or direct estimator and the path
estimator. RB2 stands for recursive bifurcation of the reduced state space and KM for k-means
clustering. Parameter values are taken from Set 2 in Table 1.

with a single iteration 2'° bundles would be created, with a significant number
of bundles having an insufficient number of grid points. Figure 7 (c) displays
the corresponding computational time, which is still in seconds.

Table 3 compares the results with those obtained using LSM for the 10 and
15 assets case. The results reported for SGBM correspond to the case of 32
bundles. The standard error for the direct estimator is significantly lower than
that for the path estimator, even though 4 times more paths were used in the
latter case. The variance reduction factor, i.e. the ratio of variance of the path
estimator to the direct estimator again ranges between 50 to 100.

4.2 Duality based upper bounds

Duality-based upper bounds on the option price can be useful when only an
approximation for E[¢g(Sy,,)[St,. ., = X] can be found and it cannot be com-
puted exactly. This is because for the direct estimator to be an upper bound
on the true price, Theorem 2 requires E[¢x(S;,,)|S:,,_, = X] to be computed
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exactly. An example for such a case is an option on max of more than two
assets, discussed below.

Max Option

A Bermudan max-option is a discretely-exercisable option on multiple underly-
ing assets, whose pay-off depends on the maximum among all asset prices. The
intrinsic value function for the call option on the max of d assets is given by:

h(Stm) = ma'X(Slm’ R Sdm) B K’

We consider the case where the asset prices follow correlated geometric Brownian
motion processes, as given by Equation (20).

As basis functions we use:
ér(Sh,,) = (log(max(SE ..., 8¢ W k=1,....5,

1
d

d
¢6(St,,) = (H Sam) ,
5=1
bo+5(St,) =S ,6=1,....d

The continuation value, as given by Equation (10), requires us to compute,

E [ (log (max (S}, 52 ))" " 8, ()] (22)

which can be done using Clark’s algorithm [9]. Clark’s algorithm computes the
first four moments for the maximum of several correlated normal variates, as
well as the correlation coefficient between the maximum of a pair and the third
normal variate. The computed values, other than the maximum of two normal
variates, will be approzimations, and therefore for options with more than two
assets the direct estimator will not be an upper bound. However, the upper
bounds can still be computed using the approach of duality, as discussed in
Section 3.6.

Duality-based upper bounds, together with the lower bound computed using
the path estimator gives a valid confidence interval within which the true option
price lies. The confidence interval is constructed as:

o~

SI

VNs’

SH

V, (S;)— 1.96
—t[)( to) \/N_S )

Vo (St,) + 1.96

where sz, is the sample standard deviation for the path estimator and sy, is the
sample standard deviation for the duality-based upper bound estimator. These
standard deviations are based on Ng independent simulation trials, and in our
examples we take Ng = 30.

Figure 8(a) shows the convergence of the direct estimator with an increasing
number of bundles, and the corresponding confidence interval constructed using
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Figure 8: (a) Option price corresponding to different number of bundles for a call on max-
imum of two assets. (b) Computational time for the two asset case. (c) Confidence interval
correspoding to different number of bundles used for a call on max of five assets. (d) Compu-
tational time for the five asset case. Parameter values are taken from Set 3 in Table 1.

the duality-based upper bounds and the lower bounds found using the path es-
timator. For comparison, we plot the confidence interval reported in Andersen
and Broadie (2004)[1], which is also based on the dual formulation. Figure 8(b)
shows the time taken to compute the direct estimator, lower (using path esti-
mator) and upper bounds (using duality). For all cases the total computational
time is less than a minute.

Figure 8(c) displays the confidence interval constructed for the case of the max-
imum of 5 assets. Also plotted is the confidence interval reported by Broadie
and Cao (2009)[5] for the same problem. The corresponding computational
times are plotted in Figure 8(d). The computation time for duality-based up-
per bounds, reported in the literature are usually in several minutes, and in
comparison SGBM’s time in seconds seems efficient. Results for d = 2, 3, and 5
assets are summarized in Table 4.

4.3 Computing Greeks

In this section we compute the sensitivity of the option price using SGBM. As
an example we consider a call on the maximum of d assets option, which was
discussed above and compute the Greeks Delta, A} (= 0V, (Sy,)/05%,), and
Gamma, I'{! (= 9%V, (S4,)/9(SE,)?) for it.

We first consider the case of the max on two assets, as for this case we can
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‘ So | SGBM | SGBM ‘ SGBM | SGBM ‘ Literature | Binomial |

‘ | Direct est. (s.e.) | Path est. (s.e.) | Dual est. (s.e.) | 95% CI | 95% CIL | |

d=2 assets:

90 8.069 8.067 8.105 [8.059 8.136] [8.053 8.082] 8.075
(0.013) (0.020) (0.086)

100 13.907 13.898 13.906 [ 13.889 13.919] | [13.892 13.934] 13.902
(0.005) (0.023) (0.035)

110 21.351 21.338 21.339 [ 21.329 21.347] | [21.316 21.359] 21.345
(0.004) (0.022) (0.023)

d=3 assets:

90 11.223 11.247 11.483 [11.235 11.585] | [11.265 11.308] 11.29
(0.006) (0.035) (0.284)

100 18.650 18.654 18.761 [18.641 18.809] | [18.661 18.728] 18.69
(0.008) (0.037) (0.134)

110 27.5564 27.537 27.592 [27.523 27.648] | [27.512 27.663] 27.58
(0.011) (0.038) (0.158)

d=5 assets:

90 16.521 16.620 16.625 [16.607 16.637] | [16.620 16.653]
(0.009) (0.037) (0.036)

100 26.086 26.129 26.132 [26.113 26.148] | [26.115 26.164]
(0.011) (0.044) (0.044)

110 36.743 36.753 36.754 [36.737 36.770] | [36.710 36.798]
(0.013) (0.045) (0.045)

Table 4: Option values for call on maximum of 2, 3 and 5 assets, with parameter values
taken from Set 3, in Table 1.The values reported are for 12 bundles created using k-means
clustering algorithm. The reference confidence interval for the two and three asset case are
taken from Andersen and Broadie (2004)[1], and for the five asset case from Broadie and Cao
(2009)[5].

compute the exact Greeks using the 2D COS method of Ruijter and Oosterlee
(2012)[20]. Figures 9(a) and (b) compare the exact Greeks computed using
the 2D COS method with results from SGBM for different numbers of exercise
opportunities. The error in the delta values ranges between 0.2% to 0.4%,
which is quite modest in comparison to the ones obtained using the traditional
bumping method. The errors for gamma values are higher and range between
3% to 7%. Results for SGBM are comparable to those reported by Kaniel et
al. (2004) [15], however, the computation time for SGBM is less than a minute
while for the latter it can be hours.

Figures 8(c) and (d) compare the Greeks computed for different numbers of ex-
ercise opportunities with the bounds reported in Wang and Calfisch (2009) [23].
It is clear that although the SGBM values reported lie within the confidence
interval, the results are not accurate enough when number of exercise opportu-
nities increases. One of the reasons for this is that with an increasing number
of exercise opportunities there is an error build up while the option values are
estimated moving backwards in time. Still SGBM can provide an accurate ap-
proximation for the option price sensitivities with minimal computational effort.

5 Conclusion

This article introduced the Stochastic Grid Bundling Method (SGBM) for ap-
proximating the value of Bermudan options by simulation. SGBM is a hybrid of
regression-based and bundling-based Monte Carlo methods, and appears to be
computationally at least as attractive as existing methods. Basic proofs for con-
vergence are discussed, however, the rate of convergence, especially regarding
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Figure 9: (a) Delta and (b) Gamma values, for a call on maximum of two assets, for different
number of exercise opportunities. (c¢) Delta and (b) Gamma values, for a call on maximum of
five assets, corresponding to different number of exercise opportunities. Parameter values are
taken from Set 3 in Table 1.
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the number of bundles used is only dealt with by numerical examples.

We illustrated SGBM’s performance using a number of realistic examples, in-
cluding the valuation of options on the geometric and the arithmetic mean, and
a maximum of assets option on a basket of assets. The computational time for
the method is comparable to the least squares method [17], but a higher accu-
racy, not just at the final time step, but also at intermediate time steps makes it
a suitable candidate for computing upper bounds using duality-based methods.
Another advantage of SGBM is that it can be used for fast approximation of
the option price sensitivities.

The SGBM method described is intuitive, easy to implement and accurate.
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A Appendix

The following definitions will assist us in the proof of Proposition 1.
Definition 3. Let x := (z1,...,z,) € (RY)”. A Borel partition Cs(z), B =
1,...,v of R? is a Voronoi tessellation of z if, for every 8 € {1,...,v}, Cs(x)
satisfies
Cow) € {y € R a5 —y 1= min ly—a, [}
<jsv

Definition 4. Let X € L2,(Q, F,P). The random vector
X* = wple,m)(X),
p=1

is called a Voronoi quantization of X.

When g := (u1, ..., 1) are the centroids obtained from the k-means clustering
algorithm then B;  ,(8) C Cg(u) and

Sf;n—l = Zuﬁllgtm,l(ﬂ)(stmfl)v
A=1

where 15, (5)(St,,_,) is the indicator function which returns 1 if S¢,, , be-

longs to the bundle B;, _,(f), and 0 otherwise.
Lemma 1. When Assumptions 1 and 2 hold, then

lim lim || S, -8} [=0,

Proof: We assume that in the limiting case, when the number of grid points, N,
and bundles, v, go to infinity, Sﬁm, , to be an everywhere dense set of R? valued
vectors. An intuitive explanation for the assumption is that for a finite N when
the number of bundles v are equal to N the bundle centroids would coincide
with the grid points, and will have the same distribution as the grid points. As,
when N goes to infinity, S;, _, is an everywhere dense set of R? valued vectors,
then it is safe to assume that when the number of grid points and bundles go to
infinity, the bundle centroids also constitute an everywhere dense set. It follows
then by Lebesgue dominated convergence theorem, || S;,_, —S{ | goes to

tm—1
Z€ero.

For the case of recursive bifurcation, we sketch the proof of Lemma 1 as following;:

Assume that S;,, , = X belongs to bundle B, ,(5), which is bounded as
follows

Btrn,fl(ﬁ) = {StnL—l |Smin < Stm,fl < SmaX}'

Let € = max(]X — Smin|, | X — Smax|) be the maximum width of a given bundle.
When N goes to infinity, it is easy to see that the grid points can be recursively
partitioned until maximum width, €, of the bundle is less than an arbitrarily
small €. Lemma 1 then follows from dominated convergence.
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Proof of Proposition 1

Event A is defined as A := {S;, |St,, <y}, and event B, is defined as (S, _, =
X) € B, ,(B), ie Xt = pgs.

As the distribution of S;
bers we find,

is continuous everywhere, by the law of large num-

m—1

P(B) = J\}E}n %ﬂ

Using Lemma 1 we have,

B
P(S;, , = X)= lim P(B) = lim lim w

v—00 v—00 N —o00

(23)

Similarly, it can be shown that:

P((St,, <y)N (S, =X)) = lim P(ANB)

—1
m V—r00

m

N
. .1
= lim lim <> 1s, <,(S:,.(n)15, (5 (S, (1)
=1

v—o00 N—oo [N
n

Again, assuming that the conditional distribution is continuous everywhere, we
obtain

. P(ANnB
P(St, <ylSe,., =X) = lim (]P’(B) :
R T s, <y(8e ()1, () (Se (1)
= lim lim 1
v—00 N—o00 W|Btm71(ﬂ)|
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