
Journal of Computational Finance 20(1), 139–172
DOI: 10.21314/JCF.2017.337

Research Paper

Efficient computation of exposure profiles on
real-world and risk-neutral scenarios for
Bermudan swaptions

Qian Feng,1 Shashi Jain,3 Patrik Karlsson,3

Drona Kandhai3,4 and Cornelis W. Oosterlee1,2

1Centrum Wiskunde and Informatica (CWI), Science Park 123, 1098 XG Amsterdam,
The Netherlands; emails: qian@cwi.nl, c.w.oosterlee@cwi.nl
2Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
3ING Bank, Foppingadreef 7, PO Box 1800, 1000 BV Amsterdam, The Netherlands;
emails: shashi.jain@ingbank.com, patrik.karlsson@ingbank.com
4University of Amsterdam, PO Box 94216, 1090 GE, Amsterdam, The Netherlands;
email: drona.kandhai@ingbank.com

(Received June 6, 2016; accepted June 7, 2016)

ABSTRACT

This paper presents a computationally efficient technique for the computation of
exposure distributions at any future time under the risk-neutral and some observed
real-world probability measures; these are needed for the computation of credit valua-
tion adjustment (CVA) and potential future exposure (PFE). In particular, we present a
valuation framework for Bermudan swaptions. The essential idea is to approximate the
required value function via a set of risk-neutral scenarios and use this approximated
value function on the set of observed real-world scenarios. This technique signifi-
cantly improves the computational efficiency by avoiding nested Monte Carlo simu-
lation and using only basic methods such as regression. We demonstrate the benefits
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of this technique by computing exposure distributions for Bermudan swaptions under
the Hull–White and G2++ models.

Keywords: credit valuation adjustment (CVA); credit exposure; potential future exposure (PFE);
Bermudan swaption; risk-neutral measure; real-world measure.

1 INTRODUCTION

The aim of the regulatory capital base in the Basel framework is to improve a bank’s
resilience against future losses due to defaults of counterparties (Basel Committee on
Banking Supervision 2010). Credit exposure to counterparties occurs due to financial
transactions or investments via over-the-counter (OTC) derivatives products. It is
defined as the market value of the replacement costs of transactions if a counterparty
defaults, assuming no recovery. Banks are required to hold regulatory capital to back
exposure in the future to all their counterparties.

The Basel Committee gives specific definitions for the credit exposure metrics
and adjustments regarding the future credit risk to banks/firms (Basel Committee on
Banking Supervision 2005). For example, the expected exposure (EE) is the mean of
the exposure distribution at any particular future date. The potential future exposure
(PFE) is a high quantile (typically 97% or 99%) of the exposure distribution at any
particular future date. The (unilateral) credit valuation adjustment (CVA) is the market
value of the credit risk of the counterparty to the bank, which is typically calculated
via an integral over time of the product of the discounted EE, the default probability
and the percentage of loss given default (LGD) (Zhu and Pykhtin 2007).

EE and PFE are important indicators for the safety of a bank’s portfolio to market
movements. They are therefore used as metrics for capital requirements by regulators
in Basel II and III (Gregory 2010). PFE is used for trading limits for portfolios with
counterparties, as it may indicate at any future date the maximum amount of exposure
with a predefined confidence. For example, the 99% PFE is the level of potential
exposure that can be exceeded with a probability of 1%. CVA is a charge that has
a direct impact on the balance sheet and the income statement of a firm, as it is an
adjustment to the value of financial derivatives.

There are three basic steps in calculating future distributions of exposure (Gregory
2010):

� the generation of scenarios using the models that represent the evolution of the
underlying market factors;

� the valuation of the portfolio for each scenario at each monitoring date;

� the determination of exposure values at each date for each scenario.

Journal of Computational Finance www.risk.net/journal



Efficient computation of exposure profiles 141

There is no doubt that CVA must be computed under the risk-neutral measure, as it
is the market price of counterparty default risk. It is the cost of setting up a hedge
portfolio to mitigate the credit risk that arises from exposure against a counterparty.
In the setting of a CVA computation, scenarios are generated under the risk-neutral
measure to compute “risk-neutral exposure distributions”.

In contrast, for risk analysis, it is argued that expectations (EEs) and quantiles
(PFEs) of future exposure values must be obtained via scenarios that can reflect the
real world in a realistic way. We know that the risk-neutral probability measure used
in the pricing process does not reflect the real-world probability of future outcomes, as
it has been adjusted based on the assumption that market participants are risk neutral.

The Girsanov theorem states that the risk-neutral volatility should be equal to
the real-world volatility when an equivalent measure exists (Andersen and Piterbarg
2010). However, it is well known that in practice the risk-neutral market-implied
volatility differs from the observed real-world volatility (Hull et al 2014; Stein
2013). The observed historical dynamics and the calibrated risk-neutral dynamics
may exhibit a different behavior, which is a challenge for risk management, as the
computational cost becomes high.

In practice, calculation of exposure values on each real-world scenario at each
monitoring date needs to be performed under a risk-neutral measure. For certain
products, such as Bermudan swaptions, the valuation is based on Monte Carlo simu-
lations, which can be computationally intensive, especially since pricing then requires
another nested set of Monte Carlo paths. The computational cost increases drastically
due to the number of real-world scenarios, risk-neutral paths and monitoring dates.

Employing a simplification, ie, assuming that the observed real-world scenarios
are close to the risk-neutral scenarios and calculation takes place under just one
measure, may lead to serious problems, as there are significant differences between
the resulting distributions. Stein (2014) showed that exposures computed under the
risk-neutral measure depend on the choice of numéraire and can be manipulated by
choosing a different numéraire. As a conclusion, it is crucial that calculations of EE
and PFE are done under the real-world instead of the risk-neutral measure.

The computational problem poses a great challenge to practitioners to enhance
computational efficiency.Available solutions include reduction of the number of mon-
itoring dates and Monte Carlo paths, application of variance reduction techniques and
using interpolation and enhanced computational platforms such as graphics process-
ing units (GPUs). Even with all these efforts, calculations cost a lot of time (Stein
2014).

For Bermudan swaptions, Joshi and Kwon (2016) provided an efficient approach
for approximating CVA, which relies only on an indicator of future exercise time along
scenarios, the decision of which is based on the regressed functions. The expected
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exposure at a monitoring date is then obtained from the corresponding deflated path-
wise cashflows. However, this approximation method cannot, in a straightforward
fashion, be used for PFE on the real-world scenarios. For PFE computations, Stein
(2013) proposed to avoid nested Monte Carlo simulations by combining the real-
world and the risk-neutral probability measures. The computed results lie between
the computed PFE values under the real-world and risk-neutral probability measures.

In this paper, we will focus on accurate computation of these risk measures for
a heavily traded OTC derivative, the Bermudan swaption. There are well-developed
methods that can be used to compute the time-zero value of Bermudan swaptions,
such as regression and simulation-based Monte Carlo methods, eg, the least squares
method (LSM) (Andersen 1999; Longstaff and Schwartz 2001) or the stochastic grid
bundling method (SGBM) (Jain and Oosterlee 2012, 2015; Karlsson et al 2014), the
finite difference (FD) PDE method or the Fourier expansion-based COS method (Fang
and Oosterlee 2009).

This paper presents an efficient method to significantly enhance the computational
efficiency of exposure values computation without the nested simulation. The key is
to approximate the value function by a linear combination of basis functions obtained
by risk-neutral scenarios, and to compute the expected payoff using the approximated
value function to determine the optimal early exercise strategy on the paths repre-
senting the observed real-world scenarios. Only two sets of scenarios, one under the
risk-neutral and one under the observed historical dynamics, are needed to compute
the exposure distributions at any future time under the two measures. We apply this
numerical scheme within the context of the LSM and SGBM approaches.

The paper is organized as follows. Section 2 presents the background mathematical
formulation of EE, PFE and CVA as well as the dynamic programming framework for
pricing Bermudan swaptions. Section 3 explains the essential insight for computation
under two measures based on the risk-neutral scenarios, and describes the algorithms
for computing the exposure profiles for the SGBM and LSM. We provide reference
values for exposure, based on Fourier-cosine expansions, in Section 4. Section 5
presents numerical results with the algorithms developed for the one-factor Hull–
White and two-factor G2++ models.

2 CREDIT VALUATION ADJUSTMENT, EXPECTED EXPOSURE AND
POTENTIAL FUTURE EXPOSURE AS RISK MEASURES

In this section, we present the general framework for computing the exposure mea-
surements. It is important to choose suitable probability measures to compute CVA,
EE and PFE. We will discuss the practical background and the choice of probability
measures.
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Efficient computation of exposure profiles 143

2.1 Calibration and backtesting

It is well known that there are differences between calibrated historical dynamics
and the dynamics implied by market prices. The reason is that models calibrated
to historical data tend to reflect future values based on historical observations, and
models calibrated to market prices reflect market participants’ expectations about the
future. Some research on building a joint framework in the real and risk-neutral worlds
is done by Hull et al (2014). They propose a joint measure model for the short rate,
in which both historical data and market prices can be used for calibration, and the
calibrated risk-neutral and real-world measures are equivalent.

The practical setting with respect to calibrating model parameters is involved,
however. Backtesting of counterparty risk models is required by the Basel Committee
for those banks with an internal model method approval, for which PFE is an important
indicator for setting limits. Backtesting refers to comparison of the outcomes of a
bank’s model against realized values in the past. The bank’s model must be consistent
with regulatory constraints; in other words, it must be able to pass the backtesting
of PFE. A bank has to strike a balance between managing its risk and meeting the
expectations of the shareholders. An overconservative estimate of market factors for
exposure computation would lead to high regulatory capital reservings.

In short, a model used by a bank for generating scenarios should be able to reflect
the real world: it should be able to meet the requirements of backtesting limits by
regulators and the return rate by investors. Based on this, Kenyon et al (2015) proposed
a risk-appetite measure that would fit in with these requirements. When a calibrated
model under this risk-appetite measure cannot pass the backtesting, the bank needs
to reconsider its preferences. From backtesting, one may find a so-called PFE-limit
implied volatility of a model, by which, combined with a given budget, a bank’s risk
preference can be computed.

Ruiz (2012) called the model that describes the evolution of the underlying market
factors the risk factor evolution (RFE) model, on which the backtesting is done peri-
odically. The related probability measure is called the RFE measure. In that work, the
model used to describe the real world is introduced first, and the relevant probability
measure is defined based on the model. In some sense, there are different probability
measures induced by the backtesting setting that describe the outcome, assuming the
underlying factors evolve according to the calibrated model.

2.2 Mathematical formulation

Consider an economy within a finite time horizon Œ0; T �. The probability space
.˝;F ;P/ describes the uncertainty and information, with ˝ being the sample
space consisting of outcome elements w, with F being a � -algebra on ˝, and with
P W F ! Œ0; 1� being the probability measure that specifies the probability of events
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happening on the measure space .˝;F /. Information up to time t is included in the
filtration fFt ; t 2 Œ0; T �g.

Further assume a complete market without arbitrage opportunities. There exists an
equivalent martingale measure such that a price associated to any attainable claim
is computed as an expectation under this probability measure with respect to the
associated numéraire. We choose to use a risk-neutral probability measure, denoted
by Q W F ! Œ0; 1�, with numéraire Bt .w/ D exp.

R t
0
rs.w/ ds/, where frs; s 2 Œ0; t �g

is the risk-neutral short rate. The numéraire Bt represents a savings account with
B0.w/ D 1.

Inspired by Kenyon et al (2015) and Ruiz (2012), we define a probability measure of
observed history that can pass the backtesting. We use the notation A W ˝ 0 ! Œ0; 1� to
present the observed historical probability measure on some measure space .˝ 0;F 0/
that we choose to reflect the probability of events in the real world. The probability
measure A.˝ 0/ D 1. The observed historical measure A may not be equivalent to the
chosen risk-neutral measure Q.As a probability space that includes realized outcomes
in the past, the observed measure space should satisfy ˝ 0 � ˝ and the associated
filtration F 0t � Ft .

Let the stochastic process fXt 2 Rd ; t 2 Œ0; T �g on .˝;F / represent all influential
market factors. We further define the market factor fXtgT0 on the space .˝ 0;F 0/ as
the same mapping as the one on .˝;F /, ie, for an outcomew that may happen in both
˝ and ˝ 0 with different probability, one will have the same realized values for the
market factors. Fixing an outcome w 2 ˝ 0 � ˝, the stochastic process is a function
of time t , ie, Xt .w/ W Œ0; T �! Rd , which is a path of Xt .

2.3 Definition of exposure, credit valuation adjustment and
potential future exposure

Let the value of a portfolio v at time t be denoted by random variable vt W ˝ ! R;
vt .w/ is the value of the portfolio at time t on a path, which is the mark-to-market
value of the portfolio computed under the risk-neutral measure Q.

We define exposure as the replacement costs of the portfolio, given by

Et .w/ D max.0; vt .w//; (2.1)

where w 2 ˝. Once the contract expires or, in the case of early exercise options,
when the contract is exercised before expiry, the exposure of the portfolio is equal to
zero.

Assume the percentage of LGD to be a constant over time, and let PS.t/ represent
the default probability up to time t , which is retrieved from credit default swap (CDS)
market data under the risk-neutral probability measure. Assume the independence of
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exposure and the probability of default. The CVA formula is then given by

CVA0 D LGD
Z T

0

EE�.t/ d PS.t/; (2.2)

where the notation d PS.t/ represents the probability that the default event occurs
during the interval Œt; t C dt �, and the discounted expected exposure EE� is the con-
ditional expectation of discounted exposure computed with the probability measure
Q, given by

EE�.t/ D EQ

�
Et

Bt

�
D

Z
˝

Et .w/

Bt .w/
dQ.w/; (2.3)

where EQ is the risk-neutral expectation.
The curve PFE.t/ is a function of future time t until the expiry of the transactions

T . Its peak value indicates the maximum potential exposure of a portfolio over the
horizon Œ0; T �. We define the PFE curve at time t 2 Œ0; T � as the 99% quantile of the
exposure distribution, measured by the observed probability measure A, given by

PFE.t/ D inffy j A.fw W Et .w/ < yg/ > 99%g; (2.4)

where w 2 ˝ 0 and X0.w/ D x.
The maximum PFE (MPFE) is used to measure the peak value at the PFE curve

over the time horizon Œ0; T �, given by

MPFE D max
t2Œ0;T �

PFE.t/: (2.5)

In a similar way, another measure of credit risk of a portfolio is the EE, which is
the average exposure at any future date, denoted by EE.t/. The value of the EE curve
at a monitoring date t under the observed measure A is given by

EE.t/ D EAŒEt � D

Z
˝0
Et .w/ dA.w/; (2.6)

where w 2 ˝ 0 and X0.w/ D x. The real-world expected positive exposure (EPE)
over a time period Œ0; T � is given by

EPE.0; T / D
1

T

Z T

0

EE.t/ ds: (2.7)

In particular, we are interested in Bermudan swaptions, the pricing dynamics of
which are presented in the following section.
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2.4 Pricing of Bermudan swaptions

A Bermudan swaption is an option where the owner has the right to enter into an
underlying swap either on the swaption’s expiry or at a number of other predefined
exercise dates before the expiry date. As soon as the swaption is exercised, the under-
lying swap starts. We assume here that the expiry date of the swap is predefined, so
the duration of the swap is calculated from the swaption exercise date until a fixed end
date. The underlying dynamics for the short rate governing the Bermudan swaption
are either the one-factor Hull–White model or the two-factor G2++ model. Details of
these well-known governing dynamics, either under the risk-neutral or the observed
real-world dynamics, are presented in Appendixes 1 and 2 (available online).

We assume that the exercise dates coincide with the payment dates of the underlying
swaps. Then, we consider an increasing maturity structure, 0 < T1 < � � � < TN <

TNC1, with TNC1 the fixed end date of the underlying swap and T1; TN the first and
last opportunities to enter, respectively. We define T0 D 0. We assume that when an
investor enters a swap at time Tn, n D 1; 2; : : : ; N , the payments of the underlying
swap will occur at TnC1; TnC2; : : : ; TNC1, with time fraction �n D TnC1�Tn. We let
N0 represent the notional amount and K be the fixed strike. We use indicator ı D 1
for a payer Bermudan swaption and ı D �1 for a receiver Bermudan swaption.

The payoff for entering the underlying swap at time Tn associated with payment
times Tn D fTnC1; : : : ; TNC1g, conditional on XTn D x, is given by (Brigo and
Mercurio 2007)

Un.x/ D N0

� NX
kDn

P.Tn; TkC1; x/�k

�
max.ı.S.Tn;Tn; x/ �K/; 0/; (2.8)

where the forward swap rate S.t;Tn; x/ at time t 6 Tn associated with time
Tn; : : : ; TNC1 is defined by

S.Tn;Tn; x/ D
1 � P.Tn; TNC1; x/PN
kDn P.Tn; TkC1; x/�k

; (2.9)

and P.Tn; Tk; x/ is the price of a zero-coupon bond (ZCB), conditional onXTn D x,
associated with times Tn and Tk . The analytic formula of the ZCB is related to the
risk-neutral model for the underlying variable (see, for example, Appendixes 1 and
2, available online).

We refer to a function Un, a bounded Borel function, as the exercise function,
which represents the value of the future payments on any given scenario, when the
option will be exercised at time Tn. For completeness, we define U0 � 0. We choose
for the stochastic process fXt ; t 2 Œ0; TN �g an Ito diffusion. In that case, Un.XTn/
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FIGURE 1 Time lines.
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is a continuous variable, as XTn is a continuous random variable. The value of not
exercising the option at t 2 Œ0; TN / is the value of continuing the option at time t .

Let time t 2 ŒTn; TnC1/, where the exercise opportunities are restricted to dates
fTnC1; : : : ; Tng. The value of the Bermudan claim is the risk-neutral expectation
of the (discounted) future payoff when exercising optimally (Øksendal 2003). With
the strong Markov property of the Ito diffusions (Øksendal 2003), the value of this
Bermudan claim at time t , conditional on Xt D x, is the value that is obtained by
maximizing the following object function (Glasserman 2003):

C.t; x/ D max
I2fnC1;:::;N g

BtE
Q

�
UI .XTI /

BTI

ˇ̌̌
ˇ Xt D x

�
; (2.10)

where n D 0; : : : ; N � 1. We refer to the value function C.t; �/ as the continuation
function at time t .

We wish to determine the exposure at a set of discrete monitoring dates, f0 D t0 <
t1 < � � � < tM D TN g, with time step �tk D tkC1 � tk , k D 0; : : : ;M � 1. These
monitoring dates include the exercise dates fT1; T2; : : : ; TN g, and tM is equal to TN .
There are some dates between each two exercise dates, as we are also interested in
the exposure at those intermediate dates.

Figure 1 presents the time lines of the exercise dates of a Bermudan swaption and
the monitoring dates used for exposure computation as an example. This Bermudan
swaption can be exercised seven times between year four and year ten, ie, year four is
the first exercise date and year ten is the expiry (the last exercise date). The exposure
monitoring dates are each one-fifth of a year from time zero until year ten. The
monitoring date t20 D 4 coincides with the first exercise date,and the monitoring date
t50 D 10 is equal to the last exercise opportunity.
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We compute the exposure of a Bermudan claim at monitoring dates ftmgMmD0. Value
function V then satisfies (Glasserman 2003)

V.tm; x/ D

8̂̂
<
ˆ̂:
UN .x/; tM D TN ;

max.C.tm; x/; Un.x//; tm D Tn; n < N;

C.tm; x/; Tn < tm < TnC1; n < N;

(2.11)

where the continuation function C is computed as the conditional expectation of the
future option value, given by

C.tm; x/ D BtmEQ

�
V.tmC1;XtmC1/

BtmC1

ˇ̌̌
ˇ Xtm D x

�
; (2.12)

which can be proven to be equivalent to (2.10) by induction.
The optimal exercise strategy is now as follows. At state XTn D x, exercise takes

place when Un.x/ > C.Tn; x/, and the option is kept at all non-exercise monitoring
dates tm. The value function V and continuation function C are defined over the time
period Œ0; TN � and space D 2 Rd .

The pricing dynamics in (2.11) are most conveniently handled by means of a back-
ward recursive iteration. From known value UN at time tM D TN , we compute
V.tM�1; �/, and subsequently function V.tM�2; �/, and so on, until time zero. The
essential problem, hence, becomes to determine the value functionV and continuation
function C at all monitoring dates ftmgMmD1.

Remark 2.1 Given a fixed pathw0 2 ˝ 0 orw 2 ˝, we compute the option values
for the scenario as V.tm;Xtm.w// at any monitoring date tm by (2.11). Once the
option for scenario w is exercised at a specific date, the option terminates, and the
exposure values regarding this option along the scenario from the exercise date to T
become zero.

When a sufficient number of scenarios for the risk-neutral model are generated,
the option value can be determined at all monitoring dates for any scenario, and we
obtain a matrix of exposure values called the exposure profile.

The exposure profile, computed from observed real-world scenarios that are cal-
ibrated based on historical data, is an empirical real-world exposure density from
which we can estimate real-world EEs and PFEs at each monitoring date. However,
with risk-neutral short rate processes, the exposure profiles on risk-neutral scenarios
are needed to compute the discounted EE.

We see that the key to computing exposure profiles on generated scenarios is to
know the value function V and the continuation function C at all monitoring dates
ftmg

M
mD1.

Nested Monte Carlo simulation is often used when a simulation-based algorithm is
employed for the valuation; this is expensive, as simulations of risk-neutral paths are
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Efficient computation of exposure profiles 149

needed for each (real-world) scenario at each monitoring date. Suppose that accurate
pricing requiresKI risk-neutral paths atM monitoring dates; then, the computational
time would beO.M 2KIKa/ forKa real-world scenarios for computing EE and PFE
profiles.

3 REGRESSION-BASED MONTE CARLO ALGORITHMS

The computation of the conditional risk-neutral expectation is the most expensive
part in the algorithm for dynamics (2.11). We propose algorithms that can approxi-
mate the continuation function in (2.12) by basic functions (for example, polynomial
functions), based on the risk-neutral scenarios. Using these functions, we can perform
simulations with risk-neutral expectations on the real-world scenarios without nested
simulations. To compute CVA and PFE, we only need one set of Kq risk-neutral
scenarios and one set of Ka real-world scenarios.

The proposed algorithms are based on the approximation of the continuation func-
tion within the SGBM and LSM simulation techniques. In this section, details of the
algorithms are presented as well as the differences between the LSM and SGBM.

3.1 Stochastic grid bundling method

The SGBM approach, based on regression, bundling and simulation, was developed
by Jain and Oosterlee (2015) for pricing Bermudan options. The SGBM can be very
naturally generalized toward the efficient computation of exposure profiles because
of its high accuracy in approximating expected payoffs on each Monte Carlo path.
The SGBM has been used to compute risk-neutral exposure profiles (for computing
CVA) of Bermudan-style claims in Karlsson et al (2014) and Feng and Oosterlee
(2014).

Pricing in the context of the SGBM approach is based on risk-neutral scenarios.
Computation of discounted expected option values is performed locally in so-called
bundles by means of local regression. We will store the bundle-wise approximated
continuation functions and use them to compute exposure profiles for the observed
real-world scenarios for a Bermudan swaption.

3.1.1 Risk-neutral scenarios

Let fXq
1;h
; : : : ; X

q

M;h
g
Kq
hD1

beKq scenarios, where the underlying factor evolves with
the risk-neutral model. Pricing is done by a backward-in-time iteration, as in (2.11),
from time tM to time t0 D 0.

To initialize the computation, the option value at expiry tM D TN is computed as
the immediate payoff UN , ie, the option value realized on the hth scenario at time
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FIGURE 2 Bundles and the disjoint sub-domains at time 0.5.
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tM , Ovq
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D UN .X

q

M;h
/. As the option either expires or is exercised at time tM , the

exposure equals zero for all paths at time tM , f OEq
M;h
D 0g

Kq
hD1

.
At monitoring dates tm, m D M � 1; : : : ; 1, J partitions fBm;j g

J
jD1, which are

called bundles, are defined; these consist of Monte Carlo path values at tm and
have very similar realized values based on the cross-sectional risk-neutral samples
fX

q

m;h
g
Kq
hD1

. The realized values of the risk-neutral paths form a bounded domain,
and these bundles divide the domain into disjoint sub-domains fDm;j gJjD1. For a
one-dimensional variable, these disjoint sub-domains connected to bundles can be
presented by

Dm;j D
�

max
h2Bm;j�1

.X
q

m;h
/; max
h2Bm;j

.X
q

m;h
/
i
; (3.1)

where j D 2; 3; : : : ; J �1. In particular, we define the first sub-domain at the left-side
boundary as

Dm;1 D
�

min
h2Bm;1

.X
q

m;h
/; max
h2Bm;1

.X
q

m;h
/
i
: (3.2)

Figure 2 shows the Monte Carlo paths in four bundles and the associated disjoint
sub-domains at a monitoring date. The bundles are based on the values of the realized
short rate at time 0:5.

The continuation function C.tm; �/ is approximated “in a bundle-wise fashion” for
each domain by approximating the value function at time tmC1 for the paths in a
bundle.
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For j D 1; : : : ; J , on the Monte Carlo paths in bundle Bm;j , the value function
V.tmC1; �/ is approximated by a linear combination of basis functions f�kgBkD1, ie,

V.tmC1; y/ �

BX
kD1

ˇk.m; j /�k.y/; (3.3)

where the coefficientsˇk.m; j / of the kth basis function minimize the sum of squared
residuals over the paths in bundle Bm;j , ie,

X
h2Bmj

�
Ov
q

mC1;h
�

BX
kD1

ˇk.m; j /�k.X
q

mC1;h
/

�2
; (3.4)

with f Ovq
mC1;h

g
Kq
hD1

the option values at time tmC1 on the cross-sectional sample

fX
q

mC1;h
g
Kq
hD1

.
Using the approximated value function in (3.3) instead of the “true value” in (2.12),

the continuation function on Dm;j can be approximated by

C.tm; x/ �

BX
kD1

ˇk.m; j / k.x; tm; tmC1/; (3.5)

where x 2 Dm;j and function  k is the conditional risk-neutral discounted
expectation of basis function �k , defined by

 k.x; tm; tmC1/ WD BtmEQ

�
�k.XtmC1/

BtmC1

ˇ̌̌
ˇ Xtm D x

�
: (3.6)

The formulas for f kgBkD1 can be obtained easily, and often analytically, when
polynomial terms are chosen as the basis functions (see Section 3.1.4).

The expected values on the paths of the bundle Bm;j can then be approximated by

Oc
q

m;h
�

BX
kD1

ˇk.m; j / k.X
q

m;h
; tm; tmC1/; (3.7)

where h 2 Bm;j .
After computation of the continuation values for all paths f Ocq

m;h
g
Kq
hD1

at time tm, we
determine the option value at time tm by

Ov
q

m;h
D

(
max.Un.X

q

m;h
/; Oc

q

m;h
/; tm D Tn;

Oc
q

m;h
; tm 2 .Tn; TnC1/;

(3.8)

where Un is the exercise function.
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The exposure value on the hth path from time tm to expiry tM is updated by the
following scheme.

(1) When exercised at exercise time tm D Tn, a value of zero is assigned to the
exposures along the path from time tm to expiry, ie,

OE
q

k;h
D 0; k D m; : : : ;M:

(2) When the option is “alive” at an exercise date, or when tm is a monitoring date
between two exercise dates, the exposure at the path is equal to the approximated
continuation value, OEq

m;h
D Oc

q

m;h
, and the exposure values at later times remain

unchanged.

The algorithm proceeds by moving one time step backward to tm�1, where the paths
are again divided into new bundles, based on the realized values fXq

m�1;h
g
Kq
hD1

, and
the continuation function is approximated in a bundle-wise fashion. Option values are
evaluated, and the exposure profile is updated. The algorithm proceeds, recursively,
back to t0 D 0. At time t0, we do not need bundles, and regression takes place
for all paths to get the coefficients fˇk.0/gBkD1, ie, the option value at time zero is
approximated by

Ov
q
0 �

BX
kD1

ˇk.0/ k.x0; t0; t1/: (3.9)

During the backward recursive iteration, information about the boundaries of
the disjoint sub-domains, Dm;j , is stored, along with the associated coefficients
fˇk.m; j /g

B
kD1

for each index, j D 1; : : : ; J , at each monitoring date, tm, m D
0; : : : ;M �1. Based on this information, we can retrieve the piecewise approximated
continuation function for each time tm.

With the risk-neutral exposure profiles, f OEq
1;h
; : : : ; OE

q

M;h
; g
Kq
hD1

, the discounted EE
of a Bermudan swaption can be approximated by

EE�.tm/ �
1

Kq

KqX
hD1

exp

�
�

mC1X
kD0

1
2
. Or
q

k;h
C Or

q

kC1;h
/�tk

�
OE
q

m;h
; (3.10)

where fOrq1;j ; : : : ; Or
q
M;j g

Kq
jD1 represents simulated risk-neutral short rate values.

3.1.2 Real-world scenarios

During the computations on the risk-neutral scenarios, we have stored the bundle-wise
coefficients fˇk.m; j /gBkD1 and the associated sub-domains fDm;j g

J
jD1, by which

we can perform valuation and exposure computation for any scenario without nested
simulation.
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We present the steps to compute exposure profiles on a set of Ka observed real-
world scenarios fXa

1;h
; : : : ; Xa

M;h
g. These profiles are also determined by a backward

iteration from time tM until time t0.
At expiry date tM , the exposure equals zero,

f OEaM;h D 0g
Ka
hD1

:

At monitoring dates tm < tM , for each index j D 1; : : : ; J , we determine those
paths for which Xa

m;h
2 Dm;h; we compute the continuation values for these paths

by

Ocam;h �

BX
kD1

ˇk.m; j / k.X
a
m;h; tm; tmC1/; (3.11)

where Xa
m;h
2 Dm;j .

Based on these continuation values, we update the exposure profile on this set of
real-world scenarios.

At an exercise time tm D Tn, we compare the approximated continuation value
Oca
m;h

with the immediate exercise valuesUn.Xam;h/ for each path; when the immediate
exercise value is largest, the option is exercised at this path at time tm, and exposure
values at this path from time tm to expiry are set to zero, ie, OEa

k;h
D 0; k D

m; : : : ;M .
Otherwise, OEa

m;h
D Oca

m;h
and the later exposure values remain unchanged.

When tm is an intermediate monitoring date, the exposure values are equal to the
continuation values in (3.11).

Note that the time-zero option value is the same for the risk-neutral and real-world
scenarios, ie, Ovq0 D Ov

a
0 . Values of the observed real-world PFE and EE curves at

monitoring dates tm can be approximated by

PFE.tm/ D quantile. OEam;h; 99%/;

EE.tm/ D
1

Ka

KaX
hD1

OEam;h: (3.12)

3.1.3 Stochastic grid bundling method bundling technique

An essential technique within the SGBM is the bundling of asset path values at
each monitoring date, based on the cross-sectional risk-neutral samples. Numerical
experiments have shown that the algorithm converges with respect to the number of
bundles (Feng and Oosterlee 2014; Jain and Oosterlee 2015).

Various bundling techniques have been presented in the literature, such as the
recursive-bifurcation method, k-means clustering (Jain and Oosterlee 2015) and
the equal-number bundling method (Feng and Oosterlee 2014). Here, we use the
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equal-number bundling technique. In this method, at each time step tm, we rank the
paths by their realized values, fXq

m;h
g
Kq
hD1

, and place the paths with indexes between
.j � 1/Kq=J C 1 and jKq=J into the j th bundle, Bm;j , j D 1; : : : ; J � 1. The
remaining paths are placed in the J th bundle, Bm;J . Asset paths do not overlap
among bundles at time tm, and each path is placed in a bundle.

The advantage of the equal-number bundling technique is that the number of paths
within each bundle is proportional to the total number of asset paths. An appropriate
number of paths in each bundle is important for accuracy during the local regression.
As mentioned, the bundling technique is also used to determine the disjoint sub-
domains on which the value function is approximated in a piece-wise fashion.

For high-dimensional problems, one can either use the equal-number bundling
technique along each dimension, as employed in Feng and Oosterlee (2014), or one can
project the high-dimensional vector onto a one-dimensional vector and then apply the
equal-number bundling technique (see Jain and Oosterlee 2015; Leitao and Oosterlee
2015).

3.1.4 Formulas for the discounted moments in the stochastic grid
bundling method

When we choose monomials as the basis functions within the bundles in the SGBM,
the conditional expectation of the discounted basis functions is equal to the discounted
moments. There is a direct link between the discounted moments and the discounted
characteristic function (dChF), which we can also use to derive analytic formulas for
the discounted moments.

As a one-dimensional example, in which the underlying variable represents the
short rate, ie, Xt D rt , let the basis functions be �k.rt / D .rt /

k�1, k D 1; : : : ; B .
The discounted moments  k , conditional on rtm D x over the period .tm; tmC1/, are
given by

 k.x; tm; tmC1/ WD EQ

�
exp

�
�

Z tmC1

tm

rs ds

�
.rtmC1/

k�1

ˇ̌̌
ˇ rtm D x

�
; (3.13)

and the associated dChF is given by

˚.uI x; tm; tmC1/ WD EQ

�
exp

�
�

Z tmC1

tm

rs ds C iurtmC1

� ˇ̌̌
ˇ rtm D x

�
: (3.14)

When an explicit formula for the dChF is available,  k can be derived by

 k.x; tm; tmC1/ D
1

.i/k�1
@k�1˚

@uk�1
.uI x; tm; tmC1/

ˇ̌̌
ˇ
uD0

: (3.15)

Using the relation in (3.15), we find analytic formulas for the discounted moments
when the dChF is known. The dChFs of the Hull–White and G2++ models are
presented in Appendixes 1 and 2, respectively (available online).
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3.2 Least squares method

The LSM is also a regression-based Monte Carlo method that is very popular among
practitioners. The objective of the LSM algorithm is to find for each path the optimal
stopping policy at each exercise time Tn; the option value is computed as the average
value of the generated discounted cashflows. The optimal early exercise policy for
the in-the-money paths is determined by comparing the immediate exercise value and
the approximated continuation value, which is approximated by a linear combination
of (global) basis functions f�kgBkD1.

One can always combine the (expensive) nested Monte Carlo simulation with the
LSM for the computation of EE and PFE on observed real-world scenarios. We will
adapt the original LSM algorithm to obtain a more efficient method for computing
risk-neutral and real-world exposures. The technique is similar to that described for
the SGBM: valuation on the risk-neutral scenarios, approximation of the continuation
function and computation of risk-neutral and real-world exposure quantities.

The involved part in the LSM is that discounted cashflows, realized on a path,
are not representative of the “true” continuation values. In the LSM algorithm, the
approximated continuation values are only used to determine the exercise policy;
therefore, one cannot use them to determine the maximum of the immediate exercise
value and discounted cashflows in order to approximate the option value (Feng and
Oosterlee 2014), as is done in the SGBM.

The challenge is to approximate exposure values by means of the realized
discounted cashflows over all paths.

Joshi and Kwon (2016) present a way of employing realized discounted cashflows
and the sign of the regressed values for an efficient computation of CVA on risk-
neutral scenarios. However, since the average of discounted cashflows is not the value
of a contract under the observed real-world measure, it cannot be used to compute
real-world EE or PFE quantities.

Here, we propose two LSM-based algorithms for the approximation of continuation
values with realized cashflows. They can be seen as alternative algorithms to the
SGBM for the computation of exposure values when we do not have expressions for
the discounted moments (or when the LSM is the method of choice for many other
tasks). We will test the accuracy of the algorithms compared with the SGBM and
reference values generated by the COS method in Section 5.

3.2.1 Risk-neutral scenarios

First of all, we briefly explain the original LSM algorithm with the risk-neutral scenar-
ios.At the final exercise date, tM D TN , the option holder can either exercise an option
or not, and the generated cashflows are given by qM;h D UN .X

q

M;h
/, h D 1; : : : ; Kq .
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At monitoring dates tm 2 .Tn�1; Tn/, at which the option cannot be exercised, the
realized discounted cashflows are updated by

qm;h D qmC1;hDm;h; (3.16)

with the discount factor Dm;h D exp .�1
2
. Or
q

m;h
C Or

q

mC1;h
/�tm/.

At an exercise date tm D Tn, prior to the last exercise opportunity, the exercise
decision is based on the comparison of the immediate payoff by exercising and the con-
tinuation value when holding the option on the in-the-money paths; the continuation
values at those in-the-money paths are approximated by projecting the (discounted)
cashflows of these paths onto some global basis functions f�1; : : : ; �Bg.

The option is exercised at an in-the-money path, where the payoff is larger than the
continuation value.After determining the exercise strategy at each path, the discounted
cashflows read

qm;h D

(
Un.X

q

m;h
/; exercised;

qmC1;hDm;h; to be continued:
(3.17)

Again, computation of the discounted cashflows at any monitoring date takes place
recursively, backward in time. At time t0 D 0, the option value is approximated by

Ov
q

0;h
�

1

Kq

KqX
hD1

q0;h:

During the backward recursion, the discounted cashflows realized on all paths at
each monitoring date tm are computed.

For the computation of the real-world EE and PFE quantities, valuation needs to
be done on the whole domain of realized asset values, as we need the continuation
values at each monitoring date for all paths. We therefore propose to use the realized
discounted cashflows determined by (3.17) or (3.16) on the risk-neutral scenarios.

One possible algorithm in the LSM context involves employing two disjoint sub-
domains, similar to in the SGBM. At each monitoring date tm 2 .Tn�1; Tn�, Monte
Carlo paths are divided into two bundles based on the realized values of the underlying
variable, so the approximation can take place in two disjoint sub-domains, given by

Un;1 D fx j Un.x/ 6 0g; Un;2 D fx j Un.x/ > 0g: (3.18)

The continuation function is approximated on these two sub-domains as

C.tm; x/ �

BX
kD1

�k.tm; j /�k.x/; (3.19)
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where x 2 Un;j ; the coefficients �k.tm; j / are obtained by minimizing the sum of
squared residuals over the two bundles, respectively, which is given by

X
X
q

m;h
2Un;j

�
qmC1;hDm;h �

BX
kD1

�k.tm; j /�k.X
q

m;h
/

�2
: (3.20)

We refer to this technique as the LSM-bundle technique.
The other possible algorithm is to perform the regression over all Monte Carlo paths

and compute the approximated continuation function on each path. The regression is
as in (3.20), using basis functions and discounted cashflows but for all paths. We call
this the LSM-all algorithm. Note that the exercise decision is still based on the in-
the-money paths with approximated payoff, using (3.19) at exercise dates Tn < TN ,
n D 1; : : : ; N � 1.

We compute the risk-neutral exposure profiles with the approximated value func-
tions in (3.19) by means of the same backward recursion procedure in Section 3.1.1.

3.2.2 Real-world scenarios

The LSM-bundle algorithm can be used for computing exposure on the observed real-
world scenarios directly. It is based on the same backward iteration in Section 3.1.2;
however, the continuation values are computed by the function in (3.19), ie,

Ocam;h �

BX
kD1

�k.tm; j /�k.X
a
m;h/: (3.21)

At an early exercise date tm D Tn < TN , the early exercise policy is determined for
in-the-money paths by comparing Oca

m;h
with the immediate exercise value Un.Xam;h/.

Exposure values along the path from time tm to expiry are set to zero if the option at
a path is exercised.

By the LSM-all algorithm, we use the continuation function approximated in (3.19)
for determining the optimal early exercise time on each real-world path; the regressed
function is based on all paths to compute exposure values. We will compare the
LSM-bundle and LSM-all algorithms in Section 5.

3.3 Differences between the stochastic grid bundling method and
least squares method algorithms

The SGBM differs from the LSM with respect to the bundling and the local regression
based on the discounted moments. By these components, the SGBM approximates the
continuation function in a more accurate way than the LSM, but at a (small) additional
computational cost. Here, we give some insights into these differences.
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The use of SGBM bundles may improve the local approximation on the disjoint
sub-domains, and we can reduce the number of basis functions.

Another important feature of the SGBM is that option values are obtained from
regression in order to obtain the coefficients for the continuation function.

Loosely speaking, the continuation function is approximated locally on the bounded
sub-domains fDm;j g

J
jD1 by projection on the functions f kgBkD1.

Compared with the SGBM, the LSM is based on the discounted cashflows for
regression to approximate the expected payoff; however, discounted cashflows do not
represent the realized expected payoff on all Monte Carlo paths. In the LSM, the
expected payoff is only used to determine the optimal early exercise time and not
the option value. One cannot compute the option value by using the maximum of
the expected payoff and the exercise value, as it will lead to an upward bias for the
time-zero option value (Longstaff and Schwartz 2001).

The SGBM does not suffer from this, and the maximum of the exercise value and
the regressed continuation values gives us the direct estimator. We recommend also
computing the path estimator for convergence of the SGBM algorithm. Based on a
new set of scenarios with the obtained coefficients to determine the optimal exercise
policy on each path, we then take the average of the discounted cashflows as the
time-zero option value. Upon convergence, the direct and path estimators should be
very close (Jain and Oosterlee 2015).

The LSM approach is a very efficient and adaptive algorithm for computing option
values at time zero. The LSM-based algorithms for computing exposure can be
regarded as alternative ways of computing the future exposure distributions based
on simulation. We will analyze the accuracy of all variants in Section 5.

4 THE COS METHOD

In this section, we explain the computation of the continuation function of Bermudan
swaptions under the one-factor Hull–White model by the COS method. The COS
method is an efficient and accurate method based on Fourier-cosine expansions. It
can be used to determine reference values for the exposure. For Lévy processes and
early exercise options, the computational speed of the COS method can be enhanced
by incorporating the fast Fourier transform (FFT) into the computations. We cannot
employ the FFT, because the resulting matrixes with the Hull–White model do not have
the special form needed (Toeplitz and Hankel matrixes (see Fang and Oosterlee 2009))
to employ the FFT. For the G2++ model, the two-dimensional COS method developed
in Ruijter and Oosterlee (2012) may be used for pricing Bermudan swaptions, but
this is not pursued here.

When the short rate is a stochastic process, the discount factor is a random variable,
which should be under the expectation operator when computing the continuation
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values. In order to compute the discounted expectation of the future option values, we
will work with the discounted density function. Letp.y; zI t; T; x/ be the joint density
function of the underlying variables XT D y and z D � log.Bt=BT /, conditional
on Xt D x. The discounted density function is defined as the marginal probability
function pX of XT , derived by integrating the joint density p over z 2 R:

pX .yI t; T; x/ WD

Z
R

e�zp.y; zI t; T; x/ dz: (4.1)

The dChF is the Fourier transform of the discounted density function, ie,

˚.uI t; T; x/ D E

�
Bt

BT
exp.iuXT /

ˇ̌̌
ˇ Xt D x

�

D

Z
Rn

eiuy
Z

R

e�zf .y; zI t; T; x/ dz dy

D

Z
Rn

eiuypX .yI t; T; x/ dy; (4.2)

where u 2 Rd and Xt 2 Rd .
In the one-dimensional setting, Xt D Xt , the discounted density function pX can

be approximated by Fourier-cosine expansions (Fang and Oosterlee 2009). On an
integration range Œa; b�, we define fukg

Q�1

kD0
by

uk D
k�

b � a
; k D 0; : : : ;Q � 1;

whereQ represents the number of cosine terms used in the Fourier-cosine expansion
of the discounted density, which is given by

pX .yI t; T; x/ �
2

b � a

Q�1X0

kD0

Pk.x; t; T / cos.uk.y � a//: (4.3)

The symbol
P0 in (4.3) implies that the first term of the summation is multiplied

by 1
2

and the Fourier coefficients Pk are given by

Pk.x; t; T / WD Ref˚.ukI t; T; x/ exp.�iauk/g: (4.4)

The integration range should be chosen such that the integral of the discounted
density function over the region Œa; b� resembles very well the value of a ZCB between
time t and T , given Xt D x. The way of constructing the range is presented in
Appendix 1 (available online).
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With (2.12), the continuation function, conditional onXtm D x, at any monitoring
date tm 2 Œ0; TN / can be computed as an integral over Œa; b�:

C.tm; x/ �

Z b

a

V.tmC1; y/pX .yI tm; tmC1; x/ dy

�
2

b � a

Q�1X0

kD0

Pk.x; tm; tmC1/Vk.tmC1/; (4.5)

where the coefficients Vk.tmC1/ are defined by

Vk.tmC1/ WD

Z b

a

V.tmC1; y/ cos.uk.y � a// dy: (4.6)

The coefficients fVkg
Q�1

kD0
can be computed at monitoring dates ftmgMmD1 by the

backward recursion, as in (2.11). Analytic formulas in the case of the Hull–White
model for the coefficients fVkg

Q�1

kD0
can be computed by backward recursion.

At the expiry date, tM D TN , the option value equals the payoff of the underly-
ing swap, ie, V.tM ; �/ D UN .�/. We are only interested in the in-the-money region
regarding the function Un, for which we need to solve UN .x�.TN // D 0.

Function UN is positive on the range .a; x�.TN // for a receiver Bermudan swap-
tion, and on the range .x�.TN /; b/ for a payer Bermudan swaption. We compute the
integral on the range in which UN > 0 for the coefficients Vk.tM /. The formulas for
the integral are given by

Vk.tM / D

Z b

a

UN .y/ cos.uk.y � a// dy

D

(
Gk.a; x

�.TN /; TN / for a receiver swaption;

Gk.x
�.TN /; b; TN / for a payer swaption:

(4.7)

The coefficients Gk at time Tn over Œx1; x2� are computed by

Gk.x1; x2; Tn/ D N0

Z x2

x1

cos.uk.y � a//UN .y/ dy

D N0ı.A
1
k.x1; x2/ �A2

k.x1; x2; Tn//; (4.8)

where the coefficients are given by

A1
k.x1; x2/

D

8<
:
x2 � x1; k D 0;
1

uk
Œsin.uk.x2 � a// � sin.uk.x1 � a//�; k ¤ 0;

(4.9)
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A2
k.x1; x2; Tn/

D

NX
jDn

cj NA.Tn; TjC1/

.uk/2 C . NB.Tn; TjC1//2

� Œexpf� NB.Tn; TjC1/x2g

� .uk sin.uk.x2 � a// � NB.Tn; TjC1/ cos.uk.x2 � a///

� expf� NB.Tn; TjC1/x1g

� .uk sin.uk.x1 � a// � NB.Tn; TjC1/ cos.uk.x1 � a///�: (4.10)

Here, cj D �jK, j D n; : : : ; N �1, cN D 1C �NK, and NA and NB are coefficients
associated to the ZCB price, given in Appendix 1 (available online).

In the COS method, computation also takes place in backward fashion. We distin-
guish an early exercise date from an intermediate date between two exercise times.
At an intermediate date, tm 2 .Tn�1; Tn/, V.tm; �/ D C.tm; �/; thus, the coefficients
Vk at time tm are given by

Vk.tm/ D

Z b

a

C.tm; y/ cos.uk.y � a// dy D Ck.a; b; tm/; (4.11)

where the coefficients Ck at time tm over Œx1; x2� are computed via an integral

Ck.x1; x2; tm/ WD

Z x2

x1

C.tm; y/ cos.uk.y � a// dy

�
2

b � a

Q�1X0

jD0

�Z x2

x1

Pj .y; tm; tmC1/ cos.uk.y � a// dy

�
Vj .tmC1/

D
2

b � a

Q�1X0

jD0

RefWj .tm; tmC1/Xkj .x1; x2; �tm/gVj .tmC1/;

(4.12)

in which coefficients fVj .tmC1/g
Q�1
jD1 have been computed at time tmC1, and coeffi-

cients W and X are given by

Wj .tm; tmC1/

D exp

�
�

Z tmC1

tm

	.s/ ds C iuj 	.tmC1/

� iuja � QBg.uj ; �tm/	.tm/C QAg.uj ; �tm/

�
; (4.13)
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Xkj .x1; x2; �tm/

D

Z x2

x1

cos.uk.y � a// exp. QBg.uj ; �tm/y/ dy

D
1

.uk/2 C . QBg.uj ; �tm//2

� Œexpf QBg.uj ; �tm/x2g

� .uk sin.uk.x2 � a//C cos.uk.x2 � a// QBg.uj ; �tm//

� expf QBg.uj ; �tm/x1g

� .uk sin.uk.x1 � a//C cos.uk.x1 � a// QBg.uj ; �tm//�: (4.14)

The analytic formulas for the coefficients QAg and QBg , and the integral with the
function 	 in (4.13), are given in Appendix 1 (available online).

At an early exercise date tm D Tn, n D N � 1; : : : ; 1, the option value is the
maximum of the continuation value and the immediate exercise value; hence, we
solve the following equation: C.Tn; x�.Tn// � Un.x�.Tn// D 0. Solution x�.Tn/
represents the optimal early exercise boundary at time Tn. The equation can be solved
by some root-finding algorithm, such as the Newton–Raphson method.

The coefficients fVk.tm/g
Q�1

kD0
at time tm D Tn with the optimal exercise value

x�.Tn/ are given by

Vk.Tn/ D

Z b

a

max.C.Tn; y/; Un.y// cos.uk.y � a// dy

D

(
Gk.r

�.Tn/; b; Tn/C Ck.a; r
�.Tn/; Tn/ payer;

Gk.a; r
�.Tn/; Tn/C Ck.r

�.Tn/; b; Tn/ receiver:
(4.15)

The computation of the coefficients fVkg
Q�1

kD0
depends on the early exercise bound-

ary value at each exercise date Tn. The continuation function from the Fourier-cosine
expansions in (4.5) converges with respect to the number of Fourier terms Q when
the integration interval is chosen properly.

At each tm, the continuation values for all scenarios can be computed by (4.5).
Risk-neutral and real-world exposure profiles are obtained by backward iteration, as in
Sections 3.1.1 and 3.1.2. One can employ interpolation to enhance the computational
speed for the computation of the continuation values.

5 NUMERICAL EXPERIMENTS

We test the developed algorithms for different test cases under the one-factor Hull–
White and two-factor G2++ models.
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The notional amount of the underlying swap is set equal to 100. We define aT1�TN
Bermudan swaption as a Bermudan option written on the underlying swap that can
be exercised between T1 and TN , the first and last early exercise opportunities. The
option can be exercised annually after T1, and the payment of the underlying swap is
made by the end of each year until the fixed end date TNC1 D TN C 1, ie, the time
fraction �n D 1.

We take a fixed strikeK to be 40%S , 100%S and 160%S , where S is the swap rate
associated with date T1 and payment dates T1 D fT2; : : : ; TNC1g given by (2.9). It is
the at-the-money strike of the European swaption that expires at date T1 associated
with payment dates T1.

5.1 Experiments with the Hull–White model

We generate risk-neutral and real-world scenarios using the Hull–White model pre-
sented inAppendix 1 (available online), with risk-neutral parameters 
 and � obtained
by market prices and real-world parameters � and � obtained by historical data.

Table 1 reports the time-zero option values, CVA and real-world EPEs and MPFEs
of 1Y�5Y and 4Y�10Y receiver Bermudan swaptions by the COS method, SGBM
and LSM-bundle and LSM-all algorithms.

For the computation of future exposure distributions, one needs to combine the COS
method computations with Monte Carlo scenario generation, so there are standard
errors as well for the corresponding CVA, EPE and MPFE values. We present 100 �
CVA values instead of CVA to enlarge the differences and standard errors in Table 1.

The reference results by the COS method are obtained with Q D 100 cosine
terms. In the SGBM algorithm, we use as basis functions f1; r; r2g for the approx-
imation of the continuation values and ten bundles containing an equal number
of paths. In the LSM, we choose a cubic function based on f1; r; r2; r3g for
the approximation. It is observed that SGBM and LSM converge with respect to
the number of basis functions, and, from our experiments, we also find that for
longer maturities a larger number of basis functions are required to maintain the
accuracy.

As shown in Table 1, the differences in the computed time-zero option values
between all algorithms are very small. The LSM-bundle and LSM-all algorithms
return the same time-zero option value, as they are based on the same technique to
determine the early exercise policy. Compared with the LSM, the SGBM has improved
accuracy with smaller variances. The absolute difference in V0-values between the
SGBM and COS method is as small as 10�3, and the standard errors are less than 1%.
The largest difference in V0 between the LSM and COS method is 6 � 10�3, with a
standard error between 1 and 2% in Table 1.
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The SGBM is particularly accurate for computing the MPFE values. The results
in Table 1 show that the absolute differences for MPFE computed by the SGBM and
COS methods are less than 0.01. The LSM-all algorithm does not result in satisfactory
results for the exposure values. MPFE is overestimated, while EPE is underestimated.
The LSM-bundle algorithm, however, shows significant improvements with smaller
errors.

For the computation of EPE and MPFE, the results obtained via these algorithms
have a similar standard error. This shows that the dominating factor in the EPE and
MPFE variances is connected to the number of generated scenarios.

Figure 3 compares the statistics of the risk-neutral and real-world exposure distri-
butions: the mean in Figure 3(a) and the 99% quantile in Figure 3(b) for a 4Y/10Y
receiver Bermudan swaption along time horizon Œ0; 10�. The significant difference
between the curves shows that one cannot use quantiles computed by risk-neutral
exposure distributions to represent the real-world PFE. There are downward jumps
in the EE and PFE curves at each early exercise date f4Y; 5Y; : : : g as the swaption on
some of the paths is exercised.

The mean and 99% percentile of the real-world exposure are the required EE and
PFE values. Figure 4 compares the EE and PFE curves obtained by the different
algorithms for the periods 2Y–4Y and 6Y–8Y. The LSM tends to overestimate the
PFE prior to the first early exercise opportunity and underestimate it afterwards. The
SGBM results are as accurate as the reference values.

The main reason for the SGBM’s excellent fit in the tails of the distributions is
that, at each date, the algorithm provides an accurate local approximation of the
continuation function for the whole realized domain of the underlying factor.

Figure 5(a) compares the reference continuation functions (by COS) with the
approximated continuation functions (by the SGBM and LSM) on the bounded real-
ized risk-neutral region at time 6.5Y, for the 4Y/10Y receiver swaption. The approxi-
mation by LSM-all is not accurate at the upper and lower regions, which explains its
performance in Table 1. We observe an accuracy improvement in the results from the
LSM-bundle algorithm. From the plot, we observe that the SGBM’s approximated
function well resembles the reference value on the whole domain. Figure 5(b) presents
the empirical density of the risk-neutral short rate and the observed real-world short
rate, where we see that the realized domain under the risk-neutral measure is more
widely spread.

Table 2 gives the computational times for these algorithms. The SGBM is signif-
icantly faster than the reference COS algorithm, while the LSM is less accurate but
faster than the SGBM. The experiments are performed on a computer with a CPU Intel
Core i7-2600 3.40GHz� 8 processor and 15.6 Gigabytes of RAM. The computational
cost increases proportionally with respect to parameter M .
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TABLE 1 Bermudan receiver swaption under the Hull–White model.

(a) 1Y�5Y

K=S Value COS SGBM LSM-bundle LSM-all

40% V0 4.126 4.127(0.00) 4.126(0.01) 4.126(0.01)
MPFE 9.125(0.06) 9.118(0.06) 9.039(0.05) 8.8(0.05)
EPE 1.704(0.00) 1.705(0.00) 1.708(0.01) 1.806(0.01)
100CVA 15.87(0.01) 15.74(0.01) 15.75(0.08) 15.87(0.08)

100% V0 5.463 5.464(0.00) 5.461(0.01) 5.461(0.01)
MPFE 11.07(0.05) 11.07(0.05) 11.06(0.05) 10.9(0.04)
EPE 2.094(0.00) 2.096(0.00) 2.098(0.00) 2.215(0.00)
100CVA 18.56(0.02) 18.33(0.02) 18.35(0.04) 18.44(0.04)

160% V0 7.11 7.11(0.00) 7.113(0.01) 7.113(0.01)
MPFE 14.43(0.04) 14.42(0.04) 14.26(0.04) 13.92(0.04)
EPE 2.368(0.00) 2.369(0.00) 2.372(0.01) 2.483(0.01)
100CVA 21.28(0.02) 20.95(0.02) 20.98(0.05) 21.01(0.05)

(b) 4Y�10Y

K=S Value COS SGBM LSM-bundle LSM-all

40% V0 4.235 4.236(0.00) 4.237(0.01) 4.237(0.01)
MPFE 14.12(0.12) 14.13(0.12) 13.86(0.11) 13.16(0.09)
EPE 1.827(0.00) 1.829(0.00) 1.834(0.01) 1.91(0.01)
100CVA 38.22(0.02) 37.98(0.02) 38.04(0.13) 38.34(0.13)

100% V0 6.199 6.199(0.00) 6.201(0.02) 6.201(0.02)
MPFE 19.29(0.11) 19.29(0.11) 19.08(0.12) 18.08(0.10)
EPE 2.606(0.00) 2.607(0.00) 2.616(0.01) 2.719(0.01)
100CVA 53.35(0.05) 52.92(0.05) 53.03(0.14) 53.26(0.14)

160% V0 8.691 8.691(0.00) 8.687(0.02) 8.687(0.02)
MPFE 24.33(0.09) 24.34(0.09) 24.28(0.09) 23.42(0.09)
EPE 3.526(0.00) 3.527(0.00) 3.539(0.01) 3.628(0.01)
100CVA 71.94(0.06) 71.35(0.06) 71.47(0.09) 71.5(0.10)

(a) S � 0.0109; risk-neutral: � D 0.010, � D 0.020; real-world: � D 0.010, � D 0.015. (b) S � 0.0113; risk-
neutral: � D 0.020, � D 0.012; real-world: � D 0.006, � D 0.008. Risk-neutral and real-world scenarios are
generated; the forward rate is flat, f M.0; t/ D 0.01; the default probability function PS.t/ D 1 � exp.�0.02t/ and
LGD D 1; option values and CVA are based on Kq D 100� 103 risk-neutral scenarios; MPFE and EPE are based
on Ka D 100 � 103 real-world scenarios; the number of monitoring dates M D TN =�t with �t D 0.05; standard
errors are in parentheses, based on ten independent runs.

5.2 Experiments with the G2++ model

The dynamics of the risk-neutral and real-world G2++ models are given inAppendix 2
(available online), where the associated parameters (ie, the reversion speed �1, �2; the
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FIGURE 3 Comparison of the mean and 99% quantile of the exposure distributions,
computed by the COS method and based on risk-neutral and real-world scenarios, for the
4Y/10Y Bermudan receiver swaption, as specified in Table 1, when K=S D 1.
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FIGURE 4 Comparison of PFE curves obtained by the COS method, SGBM and LSM for
2Y–4Y and 6Y–8Y, for the 4Y/10Y Bermudan receiver swaption specified in Table 1, when
K=S D 1.
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FIGURE 5 Comparison of continuation functions via all algorithms at 6.5Y, for the 4Y/10Y
Bermudan receiver swaption, specified in Table 1, when K=S D 1.
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TABLE 2 Computational costs (seconds) for computation of risk-neutral and real-world
exposure distributions.

COS SGBM LSM-bundle LSM-all
TN M (s) (s) (s) (s)

5Y 100 60.9 4.48 3.32 1.67
10Y 200 122.7 9.02 7.09 3.26

volatility �1, �2; and the correlation 
) are based on historical data, and risk-neutral
parameters (
1, 
2, �1, �2 and �) are based on market prices.

In this two-dimensional model, we use the following monomials as the basis
functions in the LSM algorithm

f1; xt ; yt ; x
2
t ; xtyt ; y

2
t ; x

3
t ; x

2
t yt ; xty

2
t ; y

3
t gI

the basis functions in the SGBM algorithm are given by

f1; xt ; yt ; x
2
t ; xtyt ; y

2
t g;

from which we observe that the number of basis functions increases rapidly with
regard to the dimension of the underlying variable.

The associated discounted moments, required in the SGBM, can easily be derived
from the analytic formula of the dChF of the G2++ model. As for the Hull–White
model, we use J D 10 bundles in SGBM. In SGBM, we can either use the
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TABLE 3 Receiver Bermudan swaption under the G2++ model.

(a) 1Y�5Y

K=S Value SGBM LSM-bundle Difference

40% V0 1.742(0.00) 1.747(0.01) 0.005
MPFE 5.066(0.02) 5.037(0.17) �0.029
EPE 0.771(0.00) 0.773(0.00) 0.002
100CVA 7.491(0.01) 7.51(0.03) 0.019

100% V0 2.897(0.00) 2.900(0.01) 0.003
MPFE 6.535(0.04) 6.448(0.11) �0.087
EPE 1.113(0.00) 1.113(0.01) 0.000
100CVA 10.05(0.01) 10.07(0.03) 0.02

160% V0 4.560(0.00) 4.563(0.01) 0.003
MPFE 9.652(0.01) 9.601(0.09) �0.51
EPE 1.33(0.00) 1.337(0.01) 0.007
100CVA 12.67(0.01) 12.7(0.04) 0.03

(b) 3Y�10Y

K=S Value SGBM LSM-bundle Difference

40% V0 0.861(0.00) 0.865(0.00) 0.005
MPFE 2.784(0.03) 2.704(0.04) �0.08
EPE 0.446(0.00) 0.447(0.00) 0.001
100CVA 8.678(0.01) 8.705(0.03) 0.027

100% V0 2.466(0.00) 2.475(0.01) 0.008
MPFE 7.176(0.03) 7.115(0.03) �0.061
EPE 1.059(0.00) 1.063(0.00) 0.004
100CVA 19.53(0.01) 19.61(0.04) 0.08

160% V0 5.42(0.00) 5.428(0.00) 0.008
MPFE 12.1(0.03) 12.22(0.04) 0.012
EPE 1.839(0.00) 1.846(0.00) 0.007
100CVA 35.49(0.01) 35.62(0.04) 0.13

(a) S � 0.0104; risk-neutral: �1 D 0.015, �2 D 0.008, �1 D 0.07, �2 D 0.08, � D �0.6; real-world: �1 D 0.005,
�2 D 0.01, �1 D 0.54, �2 D 0.07, 	 D �0.8. (b) S � 0.0102; risk-neutral: �1 D 0.005, �2 D 0.008, �1 D 0.09,
�2 D 0.15, � D �0.6; real-world: �1 D 0.002, �2 D 0.006, �1 D 0.04, �2 D 0.07, 	 D �0.8. Risk-neutral and real-
world scenarios are generated; forward ratef M.0; t/ D 0.01; the default probability function PS.t/ D 1�exp.�0.02t/
and LGD D 1; option values and CVA are based on Kq D 100 � 103 risk-neutral scenarios; MPFE and EPE are
based on Ka D 100� 103 real-world scenarios; the number of monitoring dates M D TN =�t with �t D 0.05.

two-dimensional equal-number bundling method, introduced in Feng and Ooster-
lee (2014), or the one-dimensional version based on projecting the high-dimensional
variable onto a one-dimensional variable. Here, we create the bundles based on the
realized values of .xt C yt / on each path at time tm.
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FIGURE 6 PFE and the 99% quantile of the exposure distributions of a receiver Bermudan
swaption, as specified in Table 3, when K=S D 1.
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TABLE 4 Computational costs (seconds) for the computation of risk-neutral and real-world
exposure distributions under the G2++ model.

LSM-bundle SGBM
TN M (s) (s)

5Y 100 6.28 8.10
10Y 200 12.96 15.07

Table 3 reports the time-zero option value results for SGBM and LSM as well as
the exposure measures for receiver Bermudan swaptions, where we can analyze the
difference between the results by these algorithms.

Figure 6 presents the PFE curves computed on the real-world scenarios as well
as the mean and 99% quantiles of the risk-neutral exposure distributions at each
monitoring date. As expected, there is a clear difference between the statistics of the
risk-neutral and real-world exposure distributions.

Table 4 presents the computational cost of the algorithms for this two-dimensional
model. The cost increases with respect to the dimension of the variable.
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6 CONCLUSION

This paper presents computationally efficient techniques for the simultaneous com-
putation of exposure distributions under the risk-neutral and observed real-world
probability measures. They are based on only two sets of scenarios, one generated
under the risk-neutral dynamics and another under the observed real-world dynam-
ics, as well as on basic techniques such as regression. Compared with nested Monte
Carlo simulation, the techniques presented significantly reduce the computational
cost and maintain high accuracy, which we demonstrated by using numerical results
for Bermudan swaptions and comparing these with reference results generated by the
Fourier-based COS method. We illustrated the ease of implementation for both the
one-factor Hull–White and two-factor G2++ models.

We recommend the SGBM because of its accuracy and efficiency in the computation
of continuation values. A highly satisfactory alternative is to use the LSM-bundle
approach. The reference COS method is highly efficient for computing time-zero
values of the Bermudan swaption, but for the computation of exposure, there is room
for improvement in terms of computational speed.

The results for the parameter values chosen show that there are clear differences
in exposure distributions for the risk-neutral and real-world scenarios. The pro-
posed algorithms are based on the requirement that the sample space induced by
the observed historical model is a subspace of the sample space under the risk-neutral
measure.

The valuation framework presented is flexible and may be used efficiently for
any type of Bermudan-style claim, such as Bermudan options and swaptions. For a
Bermudan option, one can compute the sensitivities of CVA at the same time as using
the SGBM, which is an additional benefit. The algorithms developed can be extended
easily to the situation in which model parameters are piecewise constant over the time
horizon.
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